Articles | Volume 25, issue 10
https://doi.org/10.5194/nhess-25-3779-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3779-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing economic impacts of future GLOFs in Nepal's Everest region under different SSP scenarios using three-dimensional simulations
Wilhelm Furian
CORRESPONDING AUTHOR
Climatology Lab, Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
Tobias Sauter
Climatology Lab, Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
Related authors
No articles found.
Hanwu Zheng, Doerthe Tetzlaff, Christian Birkel, Songjun Wu, Tobias Sauter, and Chris Soulsby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2166, https://doi.org/10.5194/egusphere-2025-2166, 2025
Short summary
Short summary
Ecohydrological processes in heavily managed catchments are often incorrectly represented in models. We applied a tracer-aided model STARR in an ET-dominated region (the Middle Spree, NE Germany) with major management impacts. Water isotopes were useful in identifying runoff contributions and partitioning ET even at sparse resolution. Trade-offs between discharge- and isotope-based calibrations could be partially mitigated by integrating more process-based conceptualizations into the model.
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-428, https://doi.org/10.5194/egusphere-2025-428, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Annelies Voordendag, Brigitta Goger, Rainer Prinz, Tobias Sauter, Thomas Mölg, Manuel Saigger, and Georg Kaser
The Cryosphere, 18, 849–868, https://doi.org/10.5194/tc-18-849-2024, https://doi.org/10.5194/tc-18-849-2024, 2024
Short summary
Short summary
Wind-driven snow redistribution affects glacier mass balance. A case study of Hintereisferner glacier in Austria used high-resolution observations and simulations to model snow redistribution. Simulations matched observations, showing the potential of the model for studying snow redistribution on other mountain glaciers.
Franziska Temme, David Farías-Barahona, Thorsten Seehaus, Ricardo Jaña, Jorge Arigony-Neto, Inti Gonzalez, Anselm Arndt, Tobias Sauter, Christoph Schneider, and Johannes J. Fürst
The Cryosphere, 17, 2343–2365, https://doi.org/10.5194/tc-17-2343-2023, https://doi.org/10.5194/tc-17-2343-2023, 2023
Short summary
Short summary
Calibration of surface mass balance (SMB) models on regional scales is challenging. We investigate different calibration strategies with the goal of achieving realistic simulations of the SMB in the Monte Sarmiento Massif, Tierra del Fuego. Our results show that the use of regional observations from satellite data can improve the model performance. Furthermore, we compare four melt models of different complexity to understand the benefit of increasing the processes considered in the model.
Tobias Sauter, Anselm Arndt, and Christoph Schneider
Geosci. Model Dev., 13, 5645–5662, https://doi.org/10.5194/gmd-13-5645-2020, https://doi.org/10.5194/gmd-13-5645-2020, 2020
Short summary
Short summary
Glacial changes play a key role from a socioeconomic, political, and scientific point of view. Here, we present the open-source coupled snowpack and ice surface energy and mass balance model, which provides a lean, flexible, and user-friendly framework for modeling distributed snow and glacier mass changes. The model provides a suitable platform for sensitivity, detection, and attribution analyses for glacier changes and a tool for quantifying inherent uncertainties.
Cited articles
Ahmed, R., Wani, G. F., Ahmad, S. T., Sahana, M., Singh, H., and Ahmed, P.: A Review of Glacial Lake Expansion and Associated Glacial Lake Outburst Floods in the Himalayan Region, Earth Syst. Environ., 5, 695–708, https://doi.org/10.1007/s41748-021-00230-9, 2021.
Akgun, C., Nas, S. S., and Uslu, A.: 2D and 3D Numerical Simulation of Dam-Break Flooding: A Case Study of the Tuzluca Dam, Turkey, Water, 15, 3622, https://doi.org/10.3390/w15203622, 2023.
Allen, S. K., Linsbauer, A., Randhawa, S. S., Huggel, C., Rana, P., and Kumari, A.: Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats, Nat. Hazards, 84, 1741–1763, https://doi.org/10.1007/s11069-016-2511-x, 2016.
Allen, S. K., Sattar, A., King, O., Zhang, G., Bhattacharya, A., Yao, T., and Bolch, T.: Glacial lake outburst flood hazard under current and future conditions: worst-case scenarios in a transboundary Himalayan basin, Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, 2022.
Anacona, P. I., Mackintosh, A., and Norton, K.: Reconstruction of a glacial lake outburst flood (GLOF) in the Engaño Valley, Chilean Patagonia: Lessons for GLOF risk management, The Science of the Total Environment, 527–528, 1–11, https://doi.org/10.1016/j.scitotenv.2015.04.096, 2015.
Anacona, P. I., Norton, K., Mackintosh, A., Escobar, F., Allen, S., Mazzorana, B., and Schaefer, M.: Dynamics of an outburst flood originating from a small and high-altitude glacier in the Arid Andes of Chile, Nat. Hazards, 94, 93–119, https://doi.org/10.1007/s11069-018-3376-y, 2018.
ASF DAAC: PALSAR Radiometric Terrain Corrected Dataset: high resolution, NASA Alaska Satellite Facility Distributed Active Archive Center, https://doi.org/10.5067/Z97HFCNKR6VA, 2015.
Azeez, O., Elfeki, A., Kamis, A. S., and Chaabani, A.: Dam break analysis and flood disaster simulation in arid urban environment: the Um Al-Khair dam case study, Jeddah, Saudi Arabia, Nat. Hazards, 100, 995–1011, https://doi.org/10.1007/s11069-019-03836-5, 2020.
Bajracharya, S. R., Maharjan, S. B., Shresta, F., Sherpa, T. C., Wagle, N., and Shresta, A. B. (Eds.): Glacial lakes in the Koshi, Gandaki, and Karnali river basins of Nepal, the Tibet Autonomous Region of China, and India: Research Report, ICIMOD and UNDP, https://doi.org/10.53055/ICIMOD.773, 2020.
Baral, P., Allen, S., Steiner, J. F., Gurung, T. R., and McDowell, G.: Climate change impacts and adaptation to permafrost change in High Mountain Asia: a comprehensive review, Environ. Res. Lett., 18, 93005, https://doi.org/10.1088/1748-9326/acf1b4, 2023.
Brackbill, J., Kothe, D., and Zemach, C.: A continuum method for modeling surface tension, Journal of Computational Physics, 100, 335–354, https://doi.org/10.1016/0021-9991(92)90240-Y, 1992.
Burke, E., Thonicke, K., Chang, J., Ciais, P., Ostberg, S., Schaphoff, S., Seneviratne, S., Thiery, W., Gädeke, A., and Frieler, K.: ISIMIP2b Simulation Data from the Permafrost Sector (v1.0), ISIMIP Repository, https://doi.org/10.48364/ISIMIP.850212, 2023.
Byers, A. C., Rounce, D. R., Shugar, D. H., Lala, J. M., Byers, E. A., and Regmi, D.: A rockfall-induced glacial lake outburst flood, Upper Barun Valley, Nepal, Landslides, 16, 533–549, https://doi.org/10.1007/s10346-018-1079-9, 2019.
Carrivick, J. L. and Tweed, F. S.: A global assessment of the societal impacts of glacier outburst floods, Global and Planetary Change, 144, 1–16, https://doi.org/10.1016/j.gloplacha.2016.07.001, 2016.
Chai, L. T., Wong, C. J., James, D., Loh, H. Y., Liew, J. J. F., Wong, W. V. C., and Phua, M. H.: Vertical accuracy comparison of multi-source Digital Elevation Model (DEM) with Airborne Light Detection and Ranging (LiDAR), IOP Conf. Ser.: Earth Environ. Sci., 1053, 12025, https://doi.org/10.1088/1755-1315/1053/1/012025, 2022.
Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., and Wang, Y.-C.: OpenFOAM for Computational Fluid Dynamics, Notices Amer. Math. Soc., 61, 354, https://doi.org/10.1090/noti1095, 2014.
Chen, H., Zhao, J., Liang, Q., Maharjan, S. B., and Joshi, S. P.: Assessing the potential impact of glacial lake outburst floods on individual objects using a high-performance hydrodynamic model and open-source data, Science of The Total Environment, 806, 151289, https://doi.org/10.1016/j.scitotenv.2021.151289, 2022.
Chen, H., Liang, Q., Zhao, J., and Maharjan, S. B.: Assessing national exposure to and impact of glacial lake outburst floods considering uncertainty under data sparsity, Hydrol. Earth Syst. Sci., 29, 733–752, https://doi.org/10.5194/hess-29-733-2025, 2025.
Chow, V. T.: Open-channel hydraulics, McGraw-Hill Book Co., New York, 680 pp., ISBN 978-0070107762, 1959.
CIDR: Groundswell Spatial Population and Migration Projections at One-Eighth Degree According to SSPs and RCPs, 2010–2050, CUNY Institute for Demographic Research (CIDR), New York, https://doi.org/10.7927/c5kq-fb78, 2022.
Darji, K., Patel, D., Prakash, I., and Altuwaijri, H. A.: Hydrodynamic modeling of dam breach floods for predicting downstream inundation scenarios using integrated approach of satellite data, unmanned aerial vehicles (UAVs), and Google Earth Engine (GEE), Applied Water Science, 14, https://doi.org/10.1007/s13201-024-02253-9, 2024.
Dellinger, G., Guiot, L., Pujol, L., Lawniczak, F., François, P., Finaud-Guyot, P., Vazquez, J., and Garambois, P.-A.: Assessing 3D and 2D hydrodynamic models for urban flood simulations: a district scale analysis with experimental street-level discharge, height and velocity, Urban Water Journal, 1–19., https://doi.org/10.1080/1573062X.2025.2531460, 2025.
Deshpande, S. S., Anumolu, L., and Trujillo, M. F.: Evaluating the performance of the two-phase flow solver interFoam, Comput. Sci. Disc., 5, 14016, https://doi.org/10.1088/1749-4699/5/1/014016, 2012.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173, https://doi.org/10.1038/s41561-019-0300-3, 2019a.
Farinotti, D., Round, V., Huss, M., Compagno, L., and Zekollari, H.: Large hydropower and water-storage potential in future glacier-free basins, Nature, 575, 341–344, https://doi.org/10.1038/s41586-019-1740-z, 2019b.
FEMA: Multi-hazard Loss Estimation Methodology: Flood Model Hazus®-MH, Technical Manual, Federal Emergency Management Agency, https://www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_technical-manual_2.1.pdf (last access: 30 September 2025), 2009.
Froehlich, D. C.: Embankment dam breach parameters revisited, Proc. Conference on Water Resources Engineering, San Antonio, Texas, 1995, https://www.researchgate.net/publication/239964974_Embankment_dam_breach_parameters_revisited (last access: 30 September 2025), 1995.
Froehlich, D. C.: Embankment Dam Breach Parameters and Their Uncertainties, J. Hydraul. Eng., 134, 1708–1721, https://doi.org/10.1061/(ASCE)0733-9429(2008)134:12(1708), 2008.
Furian, W.: An inventory of future glacial lakes in High Mountain Asia in Shapefile format, v1.0 [data set], Zenodo, https://doi.org/10.5281/zenodo.4282253, 2020.
Furian, W.: cryotools/GLOF-modeling: 3D CFD GLOF modeling using OpenFOAM, v1.0, Zenodo, https://doi.org/10.5281/zenodo.16022091, 2025.
Furian, W., Loibl, D., and Schneider, C.: Future glacial lakes in High Mountain Asia: an inventory and assessment of hazard potential from surrounding slopes, J. Glaciol., 67, 653–670, https://doi.org/10.1017/jog.2021.18, 2021.
Furian, W.: Projected 21st Century Glacial Lake Evolution in High Mountain Asia: A Dataset in Shapefile Format, v1.01 [data set], Zenodo, https://doi.org/10.5281/zenodo.6024450, 2022.
Furian, W., Maussion, F., and Schneider, C.: Projected 21st-Century Glacial Lake Evolution in High Mountain Asia, Front. Earth Sci., 10, https://doi.org/10.3389/feart.2022.821798, 2022.
Gao, Y., Li, B., Zhang, H., Wu, W., Li, J., and Yin, Y.: Numerical modeling of mixed two-phase in long runout flow-like landslide using LPF3D, Landslides, 21, 641–660, https://doi.org/10.1007/s10346-023-02159-8, 2024.
GAPHAZ: Assessment of Glacier and Permafrost Hazards in Mountain Regions: Technical Guidance Document, prepared by: Allen, S., Frey, H., and Huggel, C., Standing Group on Glacier and Permafrost Hazards (GAPHAZ) by the IACS and the IPA, https://doi.org/10.13140/RG.2.2.26332.90245, 2017.
Global Energy Monitor: Arun 3 hydroelectric plant, Global Energy Monitor, https://www.gem.wiki/Arun_3_hydroelectric_plant (last access: 19 August 2024), 2024.
Gouli, M. R., Hu, K., Khadka, N., and Talchabhadel, R.: Hazard assessment of a pair of glacial lakes in Nepal Himalaya: unfolding combined outbursts of Upper and Lower Barun, Geomatics, Natural Hazards and Risk, 14, https://doi.org/10.1080/19475705.2023.2266219, 2023.
Gupta, V., Rakkasagi, S., Rajpoot, S., Imanni, H. S. E., and Singh, S.: Spatiotemporal analysis of Imja Lake to estimate the downstream flood hazard using the SHIVEK approach, Acta Geophys., 71, 2233–2244, https://doi.org/10.1007/s11600-023-01124-2, 2023.
Haeberli, W., Buetler, M., Huggel, C., Friedli, T. L., Schaub, Y., and Schleiss, A. J.: New lakes in deglaciating high-mountain regions – opportunities and risks, Climatic Change, 139, 201–214, https://doi.org/10.1007/s10584-016-1771-5, 2016.
Haritashya, U., Kargel, J., Shugar, D., Leonard, G., Strattman, K., Watson, C., Shean, D., Harrison, S., Mandli, K., and Regmi, D.: Evolution and Controls of Large Glacial Lakes in the Nepal Himalaya, Remote Sensing, 10, 798, https://doi.org/10.3390/rs10050798, 2018.
Hausfather, Z. and Peters, G. P.: Emissions – the 'business as usual' story is misleading, Nature, 577, 618–620, https://doi.org/10.1038/d41586-020-00177-3, 2020.
Hewitt, K. and Liu, J.: Ice-Dammed Lakes and Outburst Floods, Karakoram Himalaya: Historical Perspectives on Emerging Threats, Physical Geography, 31, 528–551, https://doi.org/10.2747/0272-3646.31.6.528, 2010.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Noetzli, J., Rixen, C., and Zhang, Y.: High mountain areas, in: The ocean and cryosphere in a changing climate. A special report of the intergovernmental panel on climate change, 131–202, https://doi.org/10.1017/9781009157964.004, 2019.
Huizinga, J., de Moel, H., and Szewczyk, W.: Global flood depth-damage functions: Methodology and the database with guidelines, Publications Office of the European Union, Luxembourg, 108 pp., https://doi.org/10.2760/16510, 2017.
Iverson, R. M.: The physics of debris flows, Reviews of Geophysics, 35, 245–296, https://doi.org/10.1029/97RG00426, 1997.
Jiang, H., Zhao, B., Dapeng, Z., and Zhu, K.: Numerical Simulation of Two-Dimensional Dam Failure and Free-Side Deformation Flow Studies, Water, 15, 1515, https://doi.org/10.3390/w15081515, 2023.
Kayastha, R. B. and Maskey, S.: Glacial lake outburst flood (GLOF) modeling of Tsho Rolpa glacial lake, Nepal, Proc. IAHS, 387, 59–63, https://doi.org/10.5194/piahs-387-59-2024, 2024.
Kc, D., Khatri, T., and Sharma, R.: Glacial Lake Outburst Floods Early Warning System to save lives and livelihood of the Nepal Himalaya communities: A case Study of Imja Glacial Lake, Nepal , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4163, https://doi.org/10.5194/egusphere-egu21-4163, 2021.
Kershaw, J. A., Clague, J. J., and Evans, S. G.: Geomorphic and sedimentological signature of a two-phase outburst flood from moraine-dammed Queen Bess Lake, British Columbia, Canada, Earth Surf. Processes Landf., 30, 1–25, https://doi.org/10.1002/esp.1122, 2005.
Khadka, N., Zhang, G., and Thakuri, S.: Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017), Remote Sensing, 10, 1913, https://doi.org/10.3390/rs10121913, 2018.
Khadka, N., Chen, X., Nie, Y., Thakuri, S., Zheng, G., and Zhang, G.: Evaluation of Glacial Lake Outburst Flood Susceptibility Using Multi-Criteria Assessment Framework in Mahalangur Himalaya, Front. Earth Sci., 8, https://doi.org/10.3389/feart.2020.601288, 2021.
Khadka, N., Chen, X., Sharma, S., and Shrestha, B.: Climate change and its impacts on glaciers and glacial lakes in Nepal Himalayas, Reg. Environ. Change, 23, 1–14, https://doi.org/10.1007/s10113-023-02142-y, 2023.
Khadka, N., Liu, W., Shrestha, M., Watson, C. S., Acharya, S., Chen, X., and Gouli, M. R.: Multidisciplinary perspectives in understanding Himalayan glacial lakes in a climate challenged world, Information Geography, 1, 100002, https://doi.org/10.1016/j.infgeo.2025.100002, 2025.
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., and Immerzeel, W. W.: Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers, Nature, 549, 257–260, https://doi.org/10.1038/nature23878, 2017.
Lala, J. M., Rounce, D. R., and McKinney, D. C.: Modeling the glacial lake outburst flood process chain in the Nepal Himalaya: reassessing Imja Tsho's hazard, Hydrol. Earth Syst. Sci., 22, 3721–3737, https://doi.org/10.5194/hess-22-3721-2018, 2018.
Larocque, L. A., Imran, J., and Chaudhry, M. H.: 3D numerical simulation of partial breach dam-break flow using the LES and k – turbulence models, Journal of Hydraulic Research, 51, 145–157, https://doi.org/10.1080/00221686.2012.734862, 2013.
Lee, J., Lee, S., Jeong, Y., Seo, B., Kim, D., Seo, Y., Her, Y., and Choi, W.: Enhancing flood wave modelling of reservoir failure: a comparative study of structure-from-motion based 2D and 3D methodologies, Nat. Hazards, 120, 11611–11640, https://doi.org/10.1007/s11069-024-06634-w, 2024.
Lee, K.-H.: Simulation of Dam-Breach Outflow Hydrographs Using Water Level Variations, Water Resour. Manage., 33, 3781–3797, https://doi.org/10.1007/s11269-019-02341-5, 2019.
Maharjan, S. B., Joshi, S., Peppa, M. V., Xiao, W., and Liang, Q.: Digital elevation models and bathymetry data of Tsho Rolpa glacier lake, Nepal, 2019 [Data set], NERC EDS Environmental Information Data Centre, https://doi.org/10.5285/8e483692-3b65-41d2-a7fd-5a3cd589a71c, 2021.
Majeed, U., Rashid, I., Sattar, A., Allen, S., Stoffel, M., Nüsser, M., and Schmidt, S.: Recession of Gya Glacier and the 2014 glacial lake outburst flood in the Trans-Himalayan region of Ladakh, India, The Science of the Total Environment, 756, 144008, https://doi.org/10.1016/j.scitotenv.2020.144008, 2021.
Mandal, A., Adhikari, A., Shakya, A., Dwivedi, A., Bhusal, A., Shrestha, A., and Kafle, M. R.: Hydrodynamic modelling of glacial lake outburst flood in lower Barun lake, Discov. Civ. Eng., 2, https://doi.org/10.1007/s44290-025-00176-1, 2025.
Maranzoni, A. and Tomirotti, M.: Three-Dimensional Numerical Modelling of Real-Field Dam-Break Flows: Review and Recent Advances, Water, 15, 3130, https://doi.org/10.3390/w15173130, 2023.
Marconcini, M., Metz-Marconcini, A., Esch, T., and Gorelick, N.: Understanding Current Trends in Global Urbanisation – The World Settlement Footprint Suite, Giforum, 1, 33–38, https://doi.org/10.1553/giscience2021_01_s33, 2021.
Marriot, M. J. and Jayaratne, R.: Hydraulic roughness – links between Manning's coefficient, Nikuradse's equivalent sand roughness and bed grain size, in: Proceedings of Advances in Computing and Technology 5th Annual Conference, 27–32, https://repository.uel.ac.uk/item/86292 (last access: 1 October 2025), 2010.
Maskey, S., Kayastha, R. B., and Kayastha, R.: Glacial Lakes Outburst Floods (GLOFs) modelling of Thulagi and Lower Barun Glacial Lakes of Nepalese Himalaya, Progress in Disaster Science, 7, 100106, https://doi.org/10.1016/j.pdisas.2020.100106, 2020.
Mayhew, B. and Bindloss, J.: Trekking in the Nepal Himalaya/Bradley Mahew, Joe Bindloss, 9th ed., Lonely Planet, Footscray, Vic., 436 pp., ISBN 9781741041880, 2009.
Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., Smith, S. J., van den Berg, M., Velders, G. J. M., Vollmer, M. K., and Wang, R. H. J.: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, 2020.
Mergili, M., Pudasaini, S. P., Emmer, A., Fischer, J.-T., Cochachin, A., and Frey, H.: Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru), Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, 2020.
Meyrat, G., Munch, J., Cicoira, A., McArdell, B., Müller, C. R., Frey, H., and Bartelt, P.: Simulating glacier lake outburst floods (GLOFs) with a two-phase/layer debris flow model considering fluid-solid flow transitions, Landslides, 21, 479–497, https://doi.org/10.1007/s10346-023-02157-w, 2024.
Neupane, S., Pinto, H., and Pintassilgo, P.: Mountain Tourism Stakeholders' Perspectives on Waste Management: The Case of Everest in Nepal, Tourism Planning & Development, 1–21, https://doi.org/10.1080/21568316.2024.2377565, 2024.
Nie, Y., Liu, W., Liu, Q., Hu, X., and Westoby, M. J.: Reconstructing the Chongbaxia Tsho glacial lake outburst flood in the Eastern Himalaya: Evolution, process and impacts, Geomorphology, 370, 107393, https://doi.org/10.1016/j.geomorph.2020.107393, 2020.
Nyaupane, G. P. and Chhetri, N.: Vulnerability to Climate Change of Nature-Based Tourism in the Nepalese Himalayas, Tourism Geographies, 11, 95–119, https://doi.org/10.1080/14616680802643359, 2009.
O'Brien, J. S. and Julien, P. Y.: Laboratory Analysis of Mudflow Properties, J. Hydraul. Eng., 114, 877–887, https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877), 1988.
Obu, J., Westermann, S., Kääb, A., and Bartsch, A.: Ground Temperature Map, 2000–2016, Northern Hemisphere Permafrost, https://doi.org/10.1594/PANGAEA.888600, 2018.
OpenCFD: OpenFOAM documentation, https://www.openfoam.com/documentation/overview (last access: 4 September 2024), 2024.
OpenStreetMap contributors: Planet dump, OpenStreetMap, https://www.openstreetmap.org (last access: 19 December 2024), 2024.
Pandey, P., Banerjee, D., Ali, S. N., Khan, M. A. R., Chauhan, P., and Singh, S.: Simulation and risk assessment of a possible glacial lake outburst flood (GLOF) in the Bhilangna Valley, central Himalaya, India, J. Earth Syst. Sci., 131, https://doi.org/10.1007/s12040-022-01940-y, 2022.
Panthi, J., Aryal, S., Dahal, P., Bhandari, P., Krakauer, N. Y., and Pandey, V. P.: Livelihood vulnerability approach to assessing climate change impacts on mixed agro-livestock smallholders around the Gandaki River Basin in Nepal, Reg. Environ. Change, 16, 1121–1132, https://doi.org/10.1007/s10113-015-0833-y, 2016.
Piontek, F., and Geiger, T.: ISIMIP2b population input data (v1.0), ISIMIP repository, https://doi.org/10.48364/ISIMIP.432399, 2017.
Rinzin, S., Zhang, G., Sattar, A., Wangchuk, S., Allen, S. K., Dunning, S., and Peng, M.: GLOF hazard, exposure, vulnerability, and risk assessment of potentially dangerous glacial lakes in the Bhutan Himalaya, Journal of Hydrology, 619, 129311, https://doi.org/10.1016/j.jhydrol.2023.129311, 2023.
Rounce, D., Watson, C., and McKinney, D.: Identification of Hazard and Risk for Glacial Lakes in the Nepal Himalaya Using Satellite Imagery from 2000–2015, Remote Sensing, 9, 654, https://doi.org/10.3390/rs9070654, 2017.
Sakai, A., Chikita, K., and Yamada, T.: Expansion of a moraine-dammed glacial lake, Tsho Rolpa, in Rolwaling Himal, Nepal Himalaya, Limnology & Oceanography, 45, 1401–1408, https://doi.org/10.4319/lo.2000.45.6.1401, 2000.
Sattar, A., Haritashya, U. K., Kargel, J. S., Leonard, G. J., Shugar, D. H., and Chase, D. V.: Modeling lake outburst and downstream hazard assessment of the Lower Barun Glacial Lake, Nepal Himalaya, Journal of Hydrology, 598, 126208, https://doi.org/10.1016/j.jhydrol.2021.126208, 2021.
Sattar, A., Cook, K. L., Rai, S. K., Berthier, E., Allen, S., Rinzin, S., van Vries, M. W. de, Haeberli, W., Kushwaha, P., Shugar, D. H., Emmer, A., Haritashya, U. K., Frey, H., Rao, P., Gurudin, K. S. K., Rai, P., Rajak, R., Hossain, F., Huggel, C., Mergili, M., Azam, M. F., Gascoin, S., Carrivick, J. L., Bell, L. E., Ranjan, R. K., Rashid, I., Kulkarni, A. V., Petley, D., Schwanghart, W., Watson, C. S., Islam, N., Gupta, M. D., Lane, S. N., and Bhat, S. Y.: The Sikkim flood of October 2023: Drivers, causes, and impacts of a multihazard cascade, Science, 387, eads2659, https://doi.org/10.1126/science.ads2659, 2025.
Schwalm, C. R., Glendon, S., and Duffy, P. B.: RCP8.5 tracks cumulative CO2 emissions, Proceedings of the National Academy of Sciences of the United States of America, 117, 19656–19657, https://doi.org/10.1073/pnas.2007117117, 2020.
Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., and Osmanoglu, B.: A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance, Front. Earth Sci., 7, https://doi.org/10.3389/feart.2019.00363, 2020.
Sherpa, S. F., Shrestha, M., Eakin, H., and Boone, C. G.: Cryospheric hazards and risk perceptions in the Sagarmatha (Mt. Everest) National Park and Buffer Zone, Nepal, Nat. Hazards, 96, 607–626, https://doi.org/10.1007/s11069-018-3560-0, 2019.
Sherry, J. and Curtis, A.: At the intersection of disaster risk and religion: interpretations and responses to the threat of Tsho Rolpa glacial lake, Environmental Hazards, 16, 314–329, https://doi.org/10.1080/17477891.2017.1298983, 2017.
Shrestha, B., Mool, P. K., and Bajracharya, S. R.: Impact of Climate Change on Himalayan Glaciers and Glacial Lakes: Case Studies on GLOF and Associated Hazards in Nepal and Bhutan, Kathmandu, Nepal, https://doi.org/10.53055/ICIMOD.470, 2007.
Shrestha, B. B., Nakagawa, H., Kawaike, K., and Zhang, H.: Glacial and Sediment Hazards in the Rolwaling Valley, Nepal, IJECE, 5, 123–133, https://doi.org/10.13101/ijece.5.123, 2012.
Somos-Valenzuela, M. A. and McKinney, D. C.: Modeling a glacial lake outburst flood (GLOF) from Palcacocha Lake, Peru, An Adaptation Partnership Workshop: Andean-Asian Mountains Global Knowledge Exchange On Glaciers, Glacial lakes, Water & Hazard Management, Nepal, https://www.caee.utexas.edu/prof/mckinney/Peru/Somos_and_McKinney_Paper_Nepal.pdf (last access: 1 October 2025), 2011.
Somos-Valenzuela, M. A., McKinney, D. C., Byers, A. C., and Rounce, D. R.: Bathymetric Survey of Imja Lake, Nepal, Center for Research in Water Resources Online Report, 12, https://repositories.lib.utexas.edu/items/f1267f56-5b79-4162-b6a4-0d07b83b9884 (last access: 1 October 2025), 2013.
Somos-Valenzuela, M. A., McKinney, D. C., Byers, A. C., Rounce, D. R., Portocarrero, C., and Lamsal, D.: Assessing downstream flood impacts due to a potential GLOF from Imja Tsho in Nepal, Hydrol. Earth Syst. Sci., 19, 1401–1412, https://doi.org/10.5194/hess-19-1401-2015, 2015.
Somos-Valenzuela, M. A., Chisolm, R. E., Rivas, D. S., Portocarrero, C., and McKinney, D. C.: Modeling a glacial lake outburst flood process chain: the case of Lake Palcacocha and Huaraz, Peru, Hydrol. Earth Syst. Sci., 20, 2519–2543, https://doi.org/10.5194/hess-20-2519-2016, 2016.
Sun, Y. and Watanabe, T.: Tourism-Related Facility Development in Sagarmatha (Mount Everest) National Park and Buffer Zone, Nepal Himalaya, Land, 10, 925, https://doi.org/10.3390/land10090925, 2021.
Taylor, C., Robinson, T. R., Dunning, S., Rachel Carr, J., and Westoby, M.: Glacial lake outburst floods threaten millions globally, Nature Communications, 14, 487, https://doi.org/10.1038/s41467-023-36033-x, 2023.
Vargas-Muñoz, J. E., Lobry, S., Falcão, A. X., and Tuia, D.: Correcting rural building annotations in OpenStreetMap using convolutional neural networks, ISPRS Journal of Photogrammetry and Remote Sensing, 147, 283–293, https://doi.org/10.1016/j.isprsjprs.2018.11.010, 2019.
Veh, G., Korup, O., and Walz, A.: Hazard from Himalayan glacier lake outburst floods, Proceedings of the National Academy of Sciences of the United States of America, 117, 907–912, https://doi.org/10.1073/pnas.1914898117, 2020.
Wahl, T. L.: Uncertainty of Predictions of Embankment Dam Breach Parameters, J. Hydraul. Eng., 130, 389–397, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:5(389), 2004.
Wang, W., Zhang, T., Yao, T., and An, B.: Monitoring and early warning system of Cirenmaco glacial lake in the central Himalayas, International Journal of Disaster Risk Reduction, 73, 102914, https://doi.org/10.1016/j.ijdrr.2022.102914, 2022a.
Wang, X., Chen, G., Dai, X., Zhao, J., Liu, X., Gao, Y., Zhang, J., Chen, Y., Li, X., Qin, W., and Wang, P.: Improved Process Management of Glacial Lake Outburst Flood Hazards by Integrating Modular Monitoring, Assessment, and Simulation, Water Resour Manage., 36, 2343–2358, https://doi.org/10.1007/s11269-022-03146-9, 2022b.
Wang, X., Meng, X., and Long, Y: Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways, Sci Data 9, 563, https://doi.org/10.1038/s41597-022-01675-x, 2022c
Washakh, R. M. A., Chen, N., Wang, T., Almas, S., Ahmad, S. R., and Rahman, M.: GLOF Risk Assessment Model in the Himalayas: A Case Study of a Hydropower Project in the Upper Arun River, Water, 11, 1839, https://doi.org/10.3390/w11091839, 2019.
Watanbe, T. and Rothacher, D.: The 1994 Lugge Tsho Glacial Lake Outburst Flood, Bhutan Himalaya, Mountain Research and Development, 16, 77, https://doi.org/10.2307/3673897, 1996.
Watson, C. S., Kargel, J. S., Shugar, D. H., Haritashya, U. K., Schiassi, E., and Furfaro, R.: Mass Loss From Calving in Himalayan Proglacial Lakes, Front. Earth Sci., 7, https://doi.org/10.3389/feart.2019.00342, 2020.
Weller, H. G., Tabor, G., Jasak, H., and Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in Physics, 12, 620–631, https://doi.org/10.1063/1.168744, 1998.
Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D. J., and Reynolds, J. M.: Modelling outburst floods from moraine-dammed glacial lakes, Earth-Science Reviews, 134, 137–159, https://doi.org/10.1016/j.earscirev.2014.03.009, 2014.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., Reynolds, J. M., Hassan, M. A. A. M., and Lowe, A.: Numerical modelling of glacial lake outburst floods using physically based dam-breach models, Earth Surf. Dynam., 3, 171–199, https://doi.org/10.5194/esurf-3-171-2015, 2015.
Xu, W., Li, J., Peng, D., Yin, H., Jiang, J., Xia, H., and Wen, D.: Vertical Accuracy Assessment and Improvement of Five High-Resolution Open-Source Digital Elevation Models Using ICESat-2 Data and Random Forest: Case Study on Chongqing, China, Remote Sensing, 16, 1903, https://doi.org/10.3390/rs16111903, 2024.
Yang, L., Lu, Z., Ouyang, C., Zhao, C., Hu, X., and Zhang, Q.: Glacial Lake Outburst Flood Monitoring and Modeling through Integrating Multiple Remote Sensing Methods and HEC-RAS, Remote Sensing, 15, 5327, https://doi.org/10.3390/rs15225327, 2023.
Yu, D., Tang, L., and Chen, C.: Three-dimensional numerical simulation of mud flow from a tailing dam failure across complex terrain, Nat. Hazards Earth Syst. Sci., 20, 727–741, https://doi.org/10.5194/nhess-20-727-2020, 2020.
Zhang, G., Carrivick, J. L., Emmer, A., Shugar, D. H., Veh, G., Wang, X., Labedz, C., Mergili, M., Mölg, N., Huss, M., Allen, S., Sugiyama, S., and Lützow, N.: Characteristics and changes of glacial lakes and outburst floods, Nat. Rev. Earth Environ., 5, 447–462, https://doi.org/10.1038/s43017-024-00554-w, 2024.
Zheng, G., Allen, S. K., Bao, A., Ballesteros-Cánovas, J. A., Huss, M., Zhang, G., Li, J., Yuan, Y., Jiang, L., Yu, T., Chen, W., and Stoffel, M.: Increasing risk of glacial lake outburst floods from future Third Pole deglaciation, Nat. Clim. Chang., 11, 411–417, https://doi.org/10.1038/s41558-021-01028-3, 2021a.
Zheng, G., Mergili, M., Emmer, A., Allen, S., Bao, A., Guo, H., and Stoffel, M.: The 2020 glacial lake outburst flood at Jinwuco, Tibet: causes, impacts, and implications for hazard and risk assessment, The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, 2021b.
Zhuang, Y., Yin, Y., Xing, A., and Jin, K.: Combined numerical investigation of the Yigong rock slide-debris avalanche and subsequent dam-break flood propagation in Tibet, China, Landslides, 17, 2217–2229, https://doi.org/10.1007/s10346-020-01449-9, 2020.
Short summary
Glacial lake outburst floods (GLOFs) continue to threaten high-mountain communities in Nepal. We simulate potential GLOF events from five glacial lakes in the Everest region during the 21st century using a 3D flood model and several breach and SSP scenarios. Large GLOFs could extend over 100 km and inundate 80 to 100 km of roads/trails, 735 to 1989 houses and 0.85 to 3.52 km2 of agricultural land. The results help to assess the changing GLOF impacts and support more accurate risk assessments.
Glacial lake outburst floods (GLOFs) continue to threaten high-mountain communities in Nepal. We...
Altmetrics
Final-revised paper
Preprint