Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3641-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3641-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hillslope torrential hazard cascades in tropical mountains
Maria Isabel Arango-Carmona
CORRESPONDING AUTHOR
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Paul Voit
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Marcel Hürlimann
Department of Civil and Environmental Engineering UPC-BarcelonaTECH, Barcelona, Spain
Edier Aristizábal
Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellín, Colombia
Oliver Korup
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Related authors
Z. Xiong, D. Stober, M. Krstić, O. Korup, M. I. Arango, H. Li, and M. Werner
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-5-W1-2023, 75–81, https://doi.org/10.5194/isprs-annals-X-5-W1-2023-75-2023, https://doi.org/10.5194/isprs-annals-X-5-W1-2023-75-2023, 2023
Núria Pantaleoni Reluy, Marcel Hürlimann, and Nieves Lantada
Nat. Hazards Earth Syst. Sci., 25, 3483–3504, https://doi.org/10.5194/nhess-25-3483-2025, https://doi.org/10.5194/nhess-25-3483-2025, 2025
Short summary
Short summary
Spain combines public funds with a state-backed insurance program for natural disaster recovery. Our study examines Storm Gloria, which struck Catalonia in 2020, causing severe damage. By systematically collecting and classifying direct losses, we offer insights into the role of government interventions in disaster response, define multi-hazard municipalities based on a loss database, and provide initial insights into loss assessments relative to annual occurrence probability.
Amalie Skålevåg, Lena Katharina Schmidt, Nele Eggers, Jana Tjeda Brettin, Oliver Korup, and Axel Bronstert
EGUsphere, https://doi.org/10.5194/egusphere-2025-3683, https://doi.org/10.5194/egusphere-2025-3683, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
As glaciers retreat in mountain regions, heavy rainstorms increasingly control how much soil and sediment rivers carry downstream. We analysed rainfall and sediment data over 21 years in the Austrian Alps and found short, intense storms becoming more important for sediment movement, although total annual sediment transport is declining as glaciers shrink. This shift may increase flood hazards, affecting ecosystems and water quality downstream.
Natalie Lützow, Bretwood Higman, Martin Truffer, Bodo Bookhagen, Friedrich Knuth, Oliver Korup, Katie E. Hughes, Marten Geertsema, John J. Clague, and Georg Veh
The Cryosphere, 19, 1085–1102, https://doi.org/10.5194/tc-19-1085-2025, https://doi.org/10.5194/tc-19-1085-2025, 2025
Short summary
Short summary
As the atmosphere warms, thinning glacier dams impound smaller lakes at their margins. Yet, some lakes deviate from this trend and have instead grown over time, increasing the risk of glacier floods to downstream populations and infrastructure. In this article, we examine the mechanisms behind the growth of an ice-dammed lake in Alaska. We find that the growth in size and outburst volumes is more controlled by glacier front downwaste than by overall mass loss over the entire glacier surface.
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024, https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
Short summary
Catalogues of mapped landslides are useful for learning and forecasting how frequently they occur in relation to their size. Yet, rare and large landslides remain mostly uncertain in statistical summaries of these catalogues. We propose a single, consistent method of comparing across different data sources and find that landslide statistics disclose more about subjective mapping choices than trigger types or environmental settings.
Amalie Skålevåg, Oliver Korup, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 4771–4796, https://doi.org/10.5194/hess-28-4771-2024, https://doi.org/10.5194/hess-28-4771-2024, 2024
Short summary
Short summary
We present a cluster-based approach for inferring sediment discharge event types from suspended sediment concentration and streamflow. Applying it to a glacierised catchment, we find event magnitude and shape complexity to be the key characteristics separating event types, while hysteresis is less important. The four event types are attributed to compound rainfall–melt extremes, high snowmelt and glacier melt, freeze–thaw-modulated snow-melt and precipitation, and late-season glacier melt.
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023, https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
Z. Xiong, D. Stober, M. Krstić, O. Korup, M. I. Arango, H. Li, and M. Werner
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-5-W1-2023, 75–81, https://doi.org/10.5194/isprs-annals-X-5-W1-2023-75-2023, https://doi.org/10.5194/isprs-annals-X-5-W1-2023-75-2023, 2023
Melanie Fischer, Jana Brettin, Sigrid Roessner, Ariane Walz, Monique Fort, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 22, 3105–3123, https://doi.org/10.5194/nhess-22-3105-2022, https://doi.org/10.5194/nhess-22-3105-2022, 2022
Short summary
Short summary
Nepal’s second-largest city has been rapidly growing since the 1970s, although its valley has been affected by rare, catastrophic floods in recent and historic times. We analyse potential impacts of such floods on urban areas and infrastructure by modelling 10 physically plausible flood scenarios along Pokhara’s main river. We find that hydraulic effects would largely affect a number of squatter settlements, which have expanded rapidly towards the river by a factor of up to 20 since 2008.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Melanie Fischer, Oliver Korup, Georg Veh, and Ariane Walz
The Cryosphere, 15, 4145–4163, https://doi.org/10.5194/tc-15-4145-2021, https://doi.org/10.5194/tc-15-4145-2021, 2021
Short summary
Short summary
Glacial lake outburst floods (GLOFs) in the greater Himalayan region threaten local communities and infrastructure. We assess this hazard objectively using fully data-driven models. We find that lake and catchment area, as well as regional glacier-mass balance, credibly raised the susceptibility of a glacial lake in our study area to produce a sudden outburst. However, our models hardly support the widely held notion that rapid lake growth increases GLOF susceptibility.
Guilherme S. Mohor, Annegret H. Thieken, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 21, 1599–1614, https://doi.org/10.5194/nhess-21-1599-2021, https://doi.org/10.5194/nhess-21-1599-2021, 2021
Short summary
Short summary
We explored differences in the damaging process across different flood types, regions within Germany, and six flood events through a numerical model in which the groups can learn from each other. Differences were found mostly across flood types, indicating the importance of identifying them, but there is great overlap across regions and flood events, indicating either that socioeconomic or temporal information was not well represented or that they are in fact less different within our cases.
Cited articles
Amarasinghe, M. P., Kulathilaka, S. A. S., Robert, D. J., Zhou, A., and Jayathissa, H. A. G.: Risk assessment and management of rainfall – induced landslides in tropical regions: a review, Nat. Hazards, 120, https://doi.org/10.1007/s11069-023-06277-3, 2023.
Arango-Carmona, M. I., Aristizábal, E., and Gómez, F.: Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques, Nat. Hazards, 105, https://doi.org/10.1007/s11069-020-04346-5, 2021.
Aristizábal, E., Arango-Carmona, M. I., and García Lopez, I. K.: Definición y clasificación de las avenidas torrenciales y su impacto en los Andes colombianos, Cuadernos de Geografia: Revista Colombiana de Geografia, 29, 242–258, https://doi.org/10.15446/rcdg.v29n1.72612, 2020.
ASF DAAC: ALOS PALSAR High Resolution Radiometric Terrain Corrected Product [data set], NASA Alaska Satellite Facility Distributed Active Archive Center, https://doi.org/10.5067/Z97HFCNKR6VA, 2014.
Bai, H., Feng, W., Yi, X., Fang, H., Wu, Y., Deng, P., Dai, H., and Hu, R.: Group-occurring landslides and debris flows caused by the continuous heavy rainfall in June 2019 in Mibei Village, Longchuan County, Guangdong Province, China, Nat. Hazards, 108, 3181–3201, https://doi.org/10.1007/s11069-021-04819-1, 2021.
Bertrand, M., Liébault, F., and Piégay, H.: Debris-flow susceptibility of upland catchments, Nat. Hazards, 67, 497–511, https://doi.org/10.1007/s11069-013-0575-4, 2013.
Bessette-Kirton, E. K., Coe, J. A., Schulz, W. H., Cerovski-Darriau, C., and Einbund, M. M.: Mobility characteristics of debris slides and flows triggered by Hurricane Maria in Puerto Rico, Landslides, 17, 2795–2809, https://doi.org/10.1007/s10346-020-01445-z, 2020.
Borga, M., Stoffel, M., Marchi, L., Marra, F., and Jakob, M.: Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows, J. Hydrol., 518, 194–205, https://doi.org/10.1016/j.jhydrol.2014.05.022, 2014.
Bovis, M. and Jakob, M.: The role of debris supply conditions in predicting debris flow activity, Earth Surf. Proc. Land., 24, 1039–1054, https://doi.org/10.1002/(SICI)1096-9837(199910)24:11<1039::AID-ESP29>3.0.CO;2-U, 1999.
Bracken, L. J. and Croke, J.: The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems, Hydrol. Process., 21, 1749–1763, https://doi.org/10.1002/hyp.6313, 2007.
Brenna, A., Surian, N., Ghinassi, M., and Marchi, L.: Sediment–water flows in mountain streams: Recognition and classification based on field evidence, Geomorphology, 371, https://doi.org/10.1016/j.geomorph.2020.107413, 2020.
Brookes, A. and Gabriel, P.: Dominica Geothermal Development – Non-Technical Summary, https://www.caribank.org/publication_types/documents/environmental-and-social-impact-assessments/dominica-geothermal-development-non-technical-summary (last access: 9 March 2024), 2018.
Cabral, V., Reis, F., Veloso, V., Correa, C., Kuhn, C., and Zarfl, C.: The consequences of debris flows in Brazil: a historical analysis based on recorded events in the last 100 years, Landslides, 20, 511–529, https://doi.org/10.1007/s10346-022-01984-7, 2023.
Callaghan, J. and Bonell, M.: An overview of the meteorology and climatology of the humid tropics, in: Forests, Water and People in the Humid Tropics: Past, Present and Future Hydrological Research for Integrated Land and Water Management, edited by: Bonell, M. and Bruijnzeel, L. A., Cambridge University Press, https://doi.org/10.1017/CBO9780511535666.016, 2005.
Caracena, F., Maddox, R. A., Hoxit, L. R., and Chappell, C. F.: Mesoanalysis of the Big Thompson storm, Mon. Weather Rev., 107, 1–17, 1979.
Cardinali, M., Galli, M., Guzzetti, F., Ardizzone, F., Reichenbach, P., and Bartoccini, P.: Rainfall induced landslides in December 2004 in south-western Umbria, central Italy: types, extent, damage and risk assessment, Nat. Hazards Earth Syst. Sci., 6, 237–260, https://doi.org/10.5194/nhess-6-237-2006, 2006.
Cavalli, M., Trevisani, S., Comiti, F., and Marchi, L.: Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments, Geomorphology, 188, 31–41, https://doi.org/10.1016/j.geomorph.2012.05.007, 2013.
Chigira, M.: Micro-sheeting of granite and its relationship with landsliding specifically after the heavy rainstorm in June 1999, Hiroshima Prefecture, Japan, Eng. Geol., 59, 219–231, https://doi.org/10.1016/S0013-7952(00)00075-2, 2001.
Chigira, M., Mohamad, Z., Sian, L. C., and Komoo, I.: Landslides in Weathered Granitic Rocks in Japan and Malaysia, Bulletin of the Geological Society of Malaysia, 57, 1–6, 2011.
Church, M. and Jakob, M.: What Is a Debris Flood?, Water Resour. Res., 56, 1–17, https://doi.org/10.1029/2020WR027144, 2020.
Costa, J. E.: Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows, Flood Geomorphology, 113–122, 1988.
Crema, S. and Cavalli, M.: SedInConnect: a stand-alone, free and open source tool for the assessment of sediment connectivity, Comput. Geosci., 111, 39–45, https://doi.org/10.1016/j.cageo.2017.10.009, 2018.
Crozier, M. J.: Multiple-occurrence regional landslide events in New Zealand: Hazard management issues, Landslides, 2, 247–256, https://doi.org/10.1007/s10346-005-0019-7, 2005.
Dayananda, K. C.: Analysis of August 2018 disaster in Kodagu: an overview, IOSR J. Human Soc. Sci., 24, https://www.iosrjournals.org/iosr-jhss/papers/Vol.%2024%20Issue8/Series-4/E2408044348.pdf, 2019.
de Haas, T., Lau, C. A., and Ventra, D.: Debris-Flow Watersheds and Fans: Morphology, Sedimentology and Dynamics, in: Advances in Debris-flow Science and Practice, edited by: Jakob, M., McDougall, S., and Santi, P., Springer, https://doi.org/10.1007/978-3-031-48691-3_2, 9–73, 2024.
Deijns, A. A. J., Dewitte, O., Thiery, W., d'Oreye, N., Malet, J.-P., and Kervyn, F.: Timing landslide and flash flood events from SAR satellite: a regionally applicable methodology illustrated in African cloud-covered tropical environments, Nat. Hazards Earth Syst. Sci., 22, 3679–3700, https://doi.org/10.5194/nhess-22-3679-2022, 2022.
Desinventar Sendai.: Consolidated disaster loss database, UNDRR, https://www.desinventar.net/DesInventar/download_base.jsp?countrycode=GAR15 (last access: 18 March 2024), 2024.
Dias, V. C., McDougall, S., and Vieira, B. C.: Geomorphic analyses of two recent debris flows in Brazil, J. S. Am. Earth Sci., 113, https://doi.org/10.1016/j.jsames.2021.103675, 2022a.
Dias, V. C., Mitchell, A., Vieira, B. C., and McDougall, S.: Differences in the occurrence of debris flows in tropical and temperate environments: field observations and geomorphologic characteristics in Serra do Mar (Brazil) and British Columbia (Canada), Braz. J. Geol., 52, https://doi.org/10.1590/2317-4889202220210064, 2022b.
Dowling, C. A. and Santi, P. M.: Debris flows and their toll on human life: A global analysis of debris-flow fatalities from 1950 to 2011, Nat. Hazards, 71, 203–227, https://doi.org/10.1007/s11069-013-0907-4, 2014.
Encalada, A. C., Flecker, A. S., Poff, N. L., Suárez, E., Herrera-R, G. A., Ríos-Touma, B., Jumani, S., Larson, E. I., and Anderson, E. P.: A global perspective on tropical montane rivers, Science, 365, 1124–1129, 2019.
Fang, C., Fan, X., Wang, X., Nava, L., Zhong, H., Dong, X., Qi, J., and Catani, F.: A globally distributed dataset of coseismic landslide mapping via multi-source high-resolution remote sensing images, Earth Syst. Sci. Data, 16, 4817–4842, https://doi.org/10.5194/essd-16-4817-2024, 2024.
Fernández-González, S., Valero, F., Sánchez, J. L., Gascón, E., López, L., García-Ortega, E., and Merino, A.: Analysis of a seeder-feeder and freezing drizzle event, J. Geophys. Res., 120, 3984–3999, https://doi.org/10.1002/2014JD022916, 2015.
Fuchs, S., Keiler, M., Ortlepp, R., Schinke, R., and Papathoma-Köhle, M.: Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward, J. Hydrol., 575, 587–595, https://doi.org/10.1016/j.jhydrol.2019.05.067, 2019.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with stations–a new environmental record for monitoring extremes, Sci Data 2, 150066, https://doi.org/10.1038/sdata.2015.66, 2015.
Galewsky, J., Stark, C. P., Dadson, S., Wu, C. C., Sobel, A. H., and Horng, M. J.: Tropical cyclone triggering of sediment discharge in Taiwan, J. Geophys. Res.-Earth, 111, 1–16, https://doi.org/10.1029/2005JF000428, 2006.
García-Delgado, H., Machuca, S., and Medina, E.: Dynamic and geomorphic characterizations of the Mocoa debris flow (March 31, 2017), Putumayo Department, southern Colombia, Landslides, 16, 597–609, https://doi.org/10.1007/s10346-018-01121-3, 2019.
García-Martínez, R. and López, J. L.: Debris flows of December 1999 in Venezuela, in: Debris-flow hazards and related phenomena, edited by: Jakob, M. and Hungr, O., Springer, https://doi.org/10.1007/3-540-27129-5_20, 519–538, 2005.
Gasica, T. A., Bioresita, F., and Murtiyoso, A.: Identification of temporary surface water using Sentinel-1 SAR data, case study: Sentani flash flooding, Indonesia, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 55–59, 2020.
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovièová, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, L., Velasco, D., Viglione, A.: A compilation of data on European flash floods, J. Hydrol., 367, 70–78, https://doi.org/10.1016/j.jhydrol.2008.12.028, 2009.
Geospatial Information Authority of Japan.: Information on the heavy rains of July 2018, https://www.gsi.go.jp/BOUSAI/H30.taihuu7gou.html (last access: 9 March 2024), 2018.
Government of Malawi: Malawi 2023 Tropical Cyclone Freddy Post-Disaster Needs Assessment, https://malawi.un.org/en/237772-malawi-2023-tropical-cyclone-freddy-post-disaster-needs-assessment (last access: 9 January 2025), 2023.
Government of the Commonwealth of Dominica.: Post-disaster Needs Assessment: Hurricane Maria: September 18, 2017, https://www.gfdrr.org/sites/default/files/publication/Dominica_mp_012418_web.pdf (last access: 9 March 2024), 2017.
Gregoretti, C. and Fontana, G. D.: The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff, Hydrol. Process., 22, 2248–2263, https://doi.org/10.1002/hyp.6821, 2008.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall intensity-duration control of shallow landslides and debris flows: An update, Landslides, 5, 3–17, https://doi.org/10.1007/s10346-007-0112-1, 2008.
Hashimoto, R., Tsuchida, T., Moriwaki, T., and Kano, S.: Hiroshima Prefecture geo-disasters due to Western Japan Torrential rainfall in July 2018, Soils Found., 60, 283–299, https://doi.org/10.1016/j.sandf.2019.11.010, 2020.
Hirata, Y. and Chigira, M.: Landslides associated with spheroidally weathered mantle of granite porphyry induced by 2011 Typhoon Talas in the Kii Peninsula, Japan, Eng. Geol., 260, https://doi.org/10.1016/j.enggeo.2019.105217, 2019.
Hooke, J.: Coarse sediment connectivity in river channel systems: a conceptual framework and methodology, Geomorphology, 56, 79–94, https://doi.org/10.1016/S0169-555X(03)00047-3, 2003.
Hungr, O.: Classificaction and terminology, in: Debris-flow hazards and related phenomena, edited by: Jakob, M. and Hungr, O., Springer, ISBN 978-3-540-27129-1, https://doi.org/10.1007/b138657, 2005.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides, 11, 167–194, https://doi.org/10.1007/s10346-013-0436-y, 2014.
International Charter Space and Major Disasters: How the Charter Works – International Disasters Charter, The International Charter Space and Major Disasters, 2020.
International Disasters Charter: Flash Flooding in The Democratic Republic of the Congo, (last access: 9 January 2025), 2023.
Iverson, R. M.: The physics of debris flows, Rev. Geophys., 35, 245–296, https://doi.org/10.1029/97RG00426, 1997.
Jaapar, A. R., Faruq, M., Aripin, S., Komoo, I., Ali, C. A., Ramli, Z., Rahim, A., Bachat, J., Mohamad, Z., Omar, R. C., Razak, K. A., and Lim, C. S.: The Emerging Widespread Debris Flow Disasters in Tropical Terrain of Peninsular Malaysia : Understanding the Risk and Policy Intervention, E3S Web of Conferences, 415, https://doi.org/10.1051/e3sconf/202341505008, 2023.
Jackson, L. E., Kostaschuk, R. A., and MacDonald, G. M.: Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains, in: Reviews in Engeneering Geology, Vol. 7, Geol. Soc. Am., 115–124, https://doi.org/10.13140/2.1.2321.1206, 1987.
Jacobs, L., Dewitte, O., Poesen, J., Delvaux, D., Thiery, W., and Kervyn, M.: The Rwenzori Mountains, a landslide-prone region?, Landslides, 13, 519–536, https://doi.org/10.1007/s10346-015-0582-5, 2016.
Jain, N., Martha, T. R., Khanna, K., Roy, P., and Kumar, K. V.: Major landslides in Kerala, India, during 2018–2020 period: an analysis using rainfall data and debris flow model, Landslides, 18, 3629–3645, https://doi.org/10.1007/s10346-021-01746-x, 2021.
Jakob, M. and Hungr, O.: Debris-flow hazard analysis, in: Debris-flow hazards and related phenomena, edited by: Jakob, M. and Hungr, O., Springer, 411–443, ISBN 978-3-540-27129-1, https://doi.org/10.1007/b138657, 2005.
Johnson, A. M., Rodine, J.R.: Debris flows, in: Slope Instability, edited by: Brundsen, D., Prior, D. B., John Wiley & Sons, New York, pp. 257–361, 1984.
Kaitna, R., Palucis, M. C., Marra, F., and Huggel, C.: Causes and Triggers, in: Advances in Debris-flow Science and Practice, edited by: Jakob, M., McDougall, S., and Santi, P., Springer, https://doi.org/10.1007/978-3-031-48691-3_7, 191–217, 2024.
Kanji, M. A., Massad, F., Cruz, T. P., and Cruz, P. T.: Debris flows in areas of residual soils: occurrence and characteristics, International Workshop on Occurrence and Mechanism of Flows in Natural Slopes and Earthfills, Sorrento, Italy, 14–16 May 2003, 2, 1–11, 2003.
Kim, S. W., Chun, K. W., Kim, M., Catani, F., Choi, B., and Seo, J. Il.: Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea, Landslides, 18, 569–582, https://doi.org/10.1007/s10346-020-01505-4, 2021.
Koutsoyiannis, D., Kozonis, D., and Manetas, A.: A mathematical framework for studying rainfall intensity-duration-frequency relationships, J. Hydrol., 206, 118–135, https://doi.org/10.1016/S0022-1694(98)00097-3, 1998.
Kristiawan, Y., Budianto, A., Santosa, I., and Suryadana, K. M.: Sentani debris flow modelling for emergency response on debris flow disaster in Sentani: a case study in Sereh river, Sentani, Bulletin of Volcanology and Geological Hazard, 14, 13–20, 2020.
Laigle, D. and Bardou, E.: Mass-Movement Types and Processes: Flow-Like Mass Movements, Debris Flows and Earth Flows, in: Treatise on Geomorphology 2nd Edition, edited by: Shroder, J. F., Elsevier, https://doi.org/10.1016/B978-0-12-818234-5.00152-8, 61–84, 2022.
Larsen, M. C., Wieczorek, G. F., Eaton, L. S., and Torres-Sierra, H.: Natural hazards on aluvial fans: the debris flow and flash flood disaster of December 1999, Vargas State, Venezuela, Proceedings of the Sixth Caribbean Islands Water Resources Congress, Mayagüez, Puerto Rico, 22–23 February 2001, 1–7, https://pubs.usgs.gov/publication/70171329 (last access: 12 March 2025), 2001.
Legiman, M. K. A., Mohamad, E. T., Abang Hasbollah, D. Z., Suparmanto, E. K., and Rathinasamy, V.: Contributing factors in initiation of debris flow in Malaysia, Phys. Chem. Earth, 129, https://doi.org/10.1016/j.pce.2022.103301, 2023.
Lin, C. W., Chang, W. S., Liu, S. H., Tsai, T. T., Lee, S. P., Tsang, Y. C., Shieh, C. L., and Tseng, C. M.: Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan, Eng. Geol., 123, 3–12, https://doi.org/10.1016/j.enggeo.2011.06.007, 2011.
Lin, M. L. and Jeng, F. S.: Characteristics of hazards induced by extremely heavy rainfall in Central Taiwan – Typhoon Herb, Eng. Geol., 58, 191–207, https://doi.org/10.1016/S0013-7952(00)00058-2, 2000.
Loice, K. J., Rop, K. B., and Namwiba, W. H.: Recurrent landslides of Lagam escarpment, Kaben Location, Marakwet East, Kenya, Global Journal of Geological Sciences, 19, 15–28, https://doi.org/10.4314/gjgs.v19i1.2, 2021.
Lucchese, L. V, de Oliveira, G. G., and Pedrollo, O. C.: A hybrid random forests and artificial neural networks bagging ensemble for landslide susceptibility modelling, Geocarto Int., 37, 16492–16511, https://doi.org/10.1080/10106049.2022.2109761, 2022.
Madden, R. A. and Julian, P. R.: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific, J. Atmos. Sci., 28, 702–708, 1971.
MapAfrica – African Development Bank Group: Democratic Republic of Congo – Emergency aid for victims of landslides and flooding in Kalehe territory, South Kivu province, https://mapafrica.afdb.org/en/projects/46002-P-CD-AA0-022 (last access: 9 January 2025), 2023.
Marchi, L., Borga, M., Preciso, E., and Gaume, E.: Characterisation of selected extreme flash floods in Europe and implications for flood risk management, J. Hydrol., 394, 118–133, https://doi.org/10.1016/j.jhydrol.2010.07.017, 2010.
Marin, R. J., Velásquez, M. F., and Sánchez, O.: Applicability and performance of deterministic and probabilistic physically based landslide modeling in a data-scarce environment of the Colombian Andes, J. S. Am. Earth Sci., 108, https://doi.org/10.1016/j.jsames.2021.103175, 2021.
Martinez, S. N., Allstadt, K. E., Slaughter, S. L., Schmitt, R. G., Collins, E., Schaefer, L. N., and Ellison, S.: Landslides triggered by the August 14, 2021, magnitude 7.2 Nippes, Haiti, earthquake, Open-File Report 2021–1112, US Geological Survey, http://pubs.er.usgs.gov/publication/ofr20211112 (last access: 15 March 2024), 2021.
Meena, S. R., Ghorbanzadeh, O., van Westen, C. J., Nachappa, T. G., Blaschke, T., Singh, R. P., and Sarkar, R.: Rapid mapping of landslides in the Western Ghats (India) triggered by 2018 extreme monsoon rainfall using a deep learning approach, Landslides, 18, 1937–1950, https://doi.org/10.1007/s10346-020-01602-4, 2021.
Melton, M. A.: An Analysis of the Relations Among Elements of Climate, Surface Properties, and Geomorphology, Office of Naval Research Technical Report No. 11, https://doi.org/10.7916/d8-0rmg-j112, 1957.
Michel, G. P., Schwarz, H., Abatti, B. H., Paul, L. R., Silva, M. A., Zanandrea, F., Salvador, C. G., Censi, G., Biehl, A., and Kobiyama, M.: Relatório Técnico dos Desastres de Dezembro de 2020 nos Municípios de Presidente Getúlio, Ibirama e Rio do Sul – SC, Encontro Nacional de Desastres, Eventos extremos e sociedade sob a perspectiva das mudanças climáticas, Porto Alegre: ABRHidro, 2023.
Muchaka, F. A., Gumindoga, W., Meck, L. M., and Gwitira, I.: Landslide susceptibility modelling in Nyahode and Buzi sub-catchments of Zimbabwe, Water Practice and Technology, 17, 1535–1552, https://doi.org/10.2166/wpt.2022.069, 2022.
Mulaya, E., Gama, R., Kimani, C., Joseph, P., Kazimoto, E., and Mshiu, E.: The triggering factors on the 3rd December 2023 catastrophic landslide in the Hanang area, northern Tanzania, Landslides, 22, 727–738, https://doi.org/10.1007/s10346-024-02386-7, 2025.
Müller, M. and Kaspar, M.: Event-adjusted evaluation of weather and climate extremes, Nat. Hazards Earth Syst. Sci., 14, 473–483, https://doi.org/10.5194/nhess-14-473-2014, 2014.
Nettleton, I., Martin, S., Hencher, S., and Moore, R.: Debris flow types and mechanisms. In: Scottish Road Network Landslides Study, edited by: Winter, M. G., Macgregor, F. & Shackman, L., Trunk Roads: Network Management Division Published Report Series, Edinburgh: The Scottish Executive, 45–67, 2005.
O'Brien, J. and Julien, P.: Physical properties and mechanics of hyperconcentrated sediment flows, Proc. ASCE HD Delineation of Landslides, Flash Flood and Debris Flow Hazards, 260–279, 1985.
Palmer, P. I., Wainwright, C. M., Dong, B., Maidment, R. I., Wheeler, K. G., Gedney, N., Hickman, J. E., Madani, N., Folwell, S. S., and Abdo, G.: Drivers and impacts of Eastern African rainfall variability, Nature Reviews Earth and Environment, 4, 254–270, 2023.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Petley, D.: The Landslide Blog, Eos, https://eos.org/landslide-blog (last access: 1 March 2025), 2024.
Picanço, J. and Nunes, L. H.: A severe convective episode triggered by accumulated precipitation in the coast of Parana State, Brazil, 7th European Conference of Severe Storms, Helsinki, Finland, 3–7 June 2013, 4–14, 2013.
Picanço, J., Mesquita, M. J., and Melo, L. L.: Geotechnical and mineralogical properties of granite regolith related to nucleation mechanisms of debris flows in tropical areas, International Journal of Erosion Control Engineering, 11, 54–62, 2019.
Pierson, T. C.: Hyperconcentrated flow – transitional process between water flow and debris flow, in: Debris-flow hazards and related phenomena, edited by: Jakob, M. and Hungr, O., Springer, 160–196, ISBN: 978-3-540-27129-1, https://doi.org/10.1007/b138657, 2005.
Pierson, T. C. and Costa, J. E.: A rheologic classification of subaerial sediment-water flows, in: Debris Flows/Avalanches: Process, Recognition, and Mitigation, edited by: Costa, J. E. and Wieczorek, G. F., The Geological Society of America, https://doi.org/10.1130/reg7-p1, 1987.
Planet Team: Planet Application Program Interface: In Space for Life on Earth, https://api.planet.com (last access: 30 December 2024), 2017.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
Prada-Sarmiento, L. F., Cabrera, M. A., Camacho, R., Estrada, N., and Ramos-Cañón, A. M.: The Mocoa Event on March 31 (2017): analysis of a series of mass movements in a tropical environment of the Andean-Amazonian Piedmont, Landslides, 16, 2459–2468, https://doi.org/10.1007/s10346-019-01263-y, 2019.
Prakash, N., Santi, P., Strouth, A., Sepulveda, S. A., and Dowling, C.: Fatalities from Debris Flows: Worldwide Distribution and Trends, in: Advances in Debris-flow Science and Practice, edited by: Jakob, M., McDougall, S., and Santi, P., Springer, https://doi.org/10.1007/978-3-031-48691-3_3, 75–91, 2024.
Prenner, D., Hrachowitz, M., and Kaitna, R.: Trigger characteristics of torrential flows from high to low alpine regions in Austria, Sci. Total Environ., 658, 958–972, https://doi.org/10.1016/j.scitotenv.2018.12.206, 2019.
Quesada-Román, A., Fallas-López, B., Hernández-Espinoza, K., Stoffel, M., and Ballesteros-Cánovas, J. A.: Relationships between earthquakes, hurricanes, and landslides in Costa Rica, Landslides, 16, 1539–1550, https://doi.org/10.1007/s10346-019-01209-4, 2019.
Reuters: With shovels, rescuers search for rising number of Kenya flood victims, https://www.reuters.com/world/africa/with-shovels-rescuers-search-rising-number-kenya-flood-victims-2024-04-30/ (last access: October 2024).
Rickenmann, D. (Ed.): Methods for the quantitative assessment of channel processes in torrents (Steep Streams), Taylor and Francis Group, London, https://doi.org/10.1201/b21306, 2016.
Rodrigues Neto, J. M. dos S. and Bhandary, N. P.: Influence of Localized Rainfall Patterns on Landslide Occurrence—A Case Study of Southern Hiroshima with eXtended Radar Information Network Data during the July 2018 Heavy Rain Disasters, Geosciences, 13, https://doi.org/10.3390/geosciences13080245, 2023a.
Rodrigues Neto, J. M. dos S., Bhandary, N. P., and Fujita, Y.: An Analytical Study on Soil Water Index (SWI), Landslide Prediction and Other Related Factors Using XRAIN Data during the July 2018 Heavy Rain Disasters in Hiroshima, Japan, Geotechnics 2023, 3, 686–699, https://doi.org/10.3390/geotechnics3030037, 2023b.
Ruiz-Vásquez, D. and Aristizábal, E.: Landslide susceptibility assessment in mountainous and tropical scarce-data regions using remote sensing data: A case study in the Colombian Andes, Geophysical Research Abstracts, Vol. 20, 2018.
Sachs, J. D.: Tropical Underdevelopment, in: NBER Working Paper Series, National Bureau of Economic Research, https://ssrn.com/abstract=259426, 2001.
Scheip, C. M. and Wegmann, K. W.: HazMapper: a global open-source natural hazard mapping application in Google Earth Engine, Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021, 2021.
Schlögel, R., Belabbes, S., Oro, L. D., Déprez, A., and Malet, J.-P.: Disastrous landslides under changing forcing factors triggered end 2019 in West Kenya, EGU General Assembly Conference Abstracts, Online, 4–8 May 2020, https://doi.org/10.5194/egusphere-egu2020-19153, 2020.
Schlögl, M., Fuchs, S., Scheidl, C., and Heiser, M.: Trends in torrential flooding in the Austrian Alps: A combination of climate change, exposure dynamics, and mitigation measures, Climate Risk Management, 32, https://doi.org/10.1016/j.crm.2021.100294, 2021.
Schramm, L. F. P. and Osako, L. S.: Inventário de cicatrizes de movimentos gravitacionais de massa do desastre de 16 e 17 de dezembro de 2020, nos municípios de Presidente Getúlio, Ibirama e Rio do Sul, Santa Catarina, Anais Do XX Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brazil, 2–5 April 2023, 2245–2248, ISBN 978-65-89159-04-9, 2023.
Stager, H.: Post-disaster Opportunities: An Assessment of Reconstruction Activities Following The 1999 Debris Flows in Vargas State, Venezuela, University of Waterloo, 2009.
Stoffel, M., Schneuwly-Bollschweiler, M., and Rudolf-Miklau, F.: Dating Past Events on Fans and Cones – An Introduction, in: Dating Torrential Processes on Fans and Cones: Methods and Their Application for Hazard and Risk Assessment, edited by: Schneuwly-Bollschweiler, M., Stoffel, M., and Rudolf-Miklau, F., Springer Netherlands, https://doi.org/10.1007/978-94-007-4336-6_1, 1–11, 2013.
Syvitski, J. P. M., Cohen, S., Kettner, A. J., and Brakenridge, G. R.: How important and different are tropical rivers? — An overview, Geomorphology, 227, 5–17, https://doi.org/10.1016/j.geomorph.2014.02.029, 2014.
Takahashi, T.: Debris flow, Annu. Rev. Fluid Mech., 13, https://doi.org/10.1146/annurev.fl.13.010181.000421, 1981.
Taylor, B. N., Stedman, E., Van Bloem, S. J., Whitmire, S. L., and DeWalt, S. J.: Widespread stem snapping but limited mortality caused by a category 5 hurricane on the Caribbean Island of Dominica, Forest Ecol. Manag., 532, https://doi.org/10.1016/j.foreco.2023.120833, 2023.
Theule, J. I., Liébault, F., Loye, A., Laigle, D., and Jaboyedoff, M.: Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France, Nat. Hazards Earth Syst. Sci., 12, 731–749, https://doi.org/10.5194/nhess-12-731-2012, 2012.
UNITAR and UNOSAR: March 4 Landslide analysis in Mount Talakmau in Pasaman & Pasaman Barat districts, Indonesia as of 04 March 2022 – Indonesia, https://reliefweb.int/map/indonesia/landslide-analysis-mount-talakmau-pasaman-pasaman-barat-districts-indonesia-04-march (last access: 9 January 2025), 2022.
UNITAR and UNOSAT: May 2 Landslide/mudslide Impact in Mai Mahiu and Kijabe Towns, Kenya as of 1 May 2024, https://unosat.org/products/3832 (last access: 9 January 2025), 2024.
Urrea, V., Ochoa, A., and Mesa, O.: Validación de la base de datos de precipitación CHIRPS para colombia a escala diaria, mensual y anual en el periodo 1981–2014, XXVII Congreso Latinoamericano de Hidráulica, Lima, Peru, 26–30 September 2016, 2016.
Velásquez, N., Hoyos, C. D., Vélez, J. I., and Zapata, E.: Reconstructing the 2015 Salgar flash flood using radar retrievals and a conceptual modeling framework in an ungauged basin, Hydrol. Earth Syst. Sci., 24, 1367–1392, https://doi.org/10.5194/hess-24-1367-2020, 2020.
Voit, P. and Heistermann, M.: A new index to quantify the extremeness of precipitation across scales, Nat. Hazards Earth Syst. Sci., 22, 2791–2805, https://doi.org/10.5194/nhess-22-2791-2022, 2022.
Wadhawan, S. K., Singh, B., and Ramesh, M. V.: Causative factors of landslides 2019: case study in Malappuram and Wayanad districts of Kerala, India, Landslides, 17, 2689–2697, https://doi.org/10.1007/s10346-020-01520-5, 2020.
Welsh, A. and Davies, T.: Identification of alluvial fans susceptible to debris-flow hazards, Landslides, 8, 183–194, https://doi.org/10.1007/s10346-010-0238-4, 2011.
Wilford, D., Innes, J., Sakals, M., and Innes, J.: Forest management on fans: Hydrogeomorphic hazards and general prescriptions, Land Management Handbook No. 57, B. C. Ministry of Forests, Res. Br., Victoria, B. C., http://www.for.gov.bc.ca/hfd/pubs/Docs/Lmh/Lmh57.htm (last access: 9 April 2019), 2005.
Wilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., and Bergerud, W. A.: Recognition of debris flow, debris flood and flood hazard through watershed morphometrics, Landslides, 1, 61–66, https://doi.org/10.1007/s10346-003-0002-0, 2004.
Zêzere, J. L., Trigo, R. M., and Trigo, I. F.: Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation, Nat. Hazards Earth Syst. Sci., 5, 331–344, https://doi.org/10.5194/nhess-5-331-2005, 2005.
Zhang, S., Wang, B., Zhang, L., Lacasse, S., Nadim, F., and Chen, Y.: Increased human risk caused by cascading hazards – A framework, Sci. Total Environ., 857, https://doi.org/10.1016/j.scitotenv.2022.159308, 2023.
Zhao, B., Wang, Y., Li, W., Lu, H., and Li, Z.: Evaluation of factors controlling the spatial and size distributions of landslides, 2021 Nippes earthquake, Haiti, Geomorphology, 415, https://doi.org/10.1016/j.geomorph.2022.108419, 2022.
Short summary
We studied 22 cascading landslide and torrential events in tropical mountains to understand how rainfall, slopes, and soil types interact to trigger them. We found that extreme rainfall alone is not always the cause and long wet periods and sediment type also play a role. Our findings can help improve warning systems and reduce disaster risks in vulnerable regions.
We studied 22 cascading landslide and torrential events in tropical mountains to understand how...
Altmetrics
Final-revised paper
Preprint