Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3525-2025
https://doi.org/10.5194/nhess-25-3525-2025
Research article
 | 
23 Sep 2025
Research article |  | 23 Sep 2025

Automated urban flood level detection based on flooded bus dataset using YOLOv8

Yanbin Qiu, Xudong Zhou, Jiaquan Wan, Tao Yang, Lvfei Zhang, Yuanzhuo Zhong, Leqi Shen, and Xinwu Ji

Related authors

Identification of nighttime urban flood inundation extent using deep learning
Jiaquan Wan, Xing Wang, Yannian Cheng, Cuiyan Zhang, Yufang Shen, Fengchang Xue, Tao Yang, and Quan J. Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-77,https://doi.org/10.5194/egusphere-2025-77, 2025
Short summary
An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China
Jingyu Lin, Peng Wang, Jinzhu Wang, Youping Zhou, Xudong Zhou, Pan Yang, Hao Zhang, Yanpeng Cai, and Zhifeng Yang
Earth Syst. Sci. Data, 16, 1137–1149, https://doi.org/10.5194/essd-16-1137-2024,https://doi.org/10.5194/essd-16-1137-2024, 2024
Short summary
AltiMaP: altimetry mapping procedure for hydrography data
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024,https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Hydrological modelling on atmospheric grids: using graphs of sub-grid elements to transport energy and water
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606, https://doi.org/10.5194/gmd-16-2583-2023,https://doi.org/10.5194/gmd-16-2583-2023, 2023
Short summary
Methodology for constructing a flood-hazard map for a future climate
Yuki Kimura, Yukiko Hirabayashi, Yuki Kita, Xudong Zhou, and Dai Yamazaki
Hydrol. Earth Syst. Sci., 27, 1627–1644, https://doi.org/10.5194/hess-27-1627-2023,https://doi.org/10.5194/hess-27-1627-2023, 2023
Short summary

Cited articles

Alizadeh Kharazi, B. and Behzadan, A. H.: Flood depth mapping in street photos with image processing and deep neural networks, Comput. Environ. Urban Syst., 88, 101628, https://doi.org/10.1016/j.compenvurbsys.2021.101628, 2021. 
Baranowski, D. B., Flatau, M. K., Flatau, P. J., Karnawati, D., Barabasz, K., Labuz, M., Latos, B., Schmidt, J. M., Paski, J. A. I., and Marzuki, M.: Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra, Nat. Commun., 11, 2503, https://doi.org/10.1038/s41467-020-16171-2, 2020. 
Betterle, A. and Salamon, P.: Water depth estimate and flood extent enhancement for satellite-based inundation maps, Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024, 2024. 
Bhola, P. K., Nair, B. B., Leandro, J., Rao, S. N., and Disse, M.: Flood inundation forecasts using validation data generated with the assistance of computer vision, J. Hydroinformatics, 21, 240–256, https://doi.org/10.2166/hydro.2018.044, 2018. 
Cai, Y., Bian, H., Lin, J., Wang, H., Timofte, R., and Zhang, Y.: Retinexformer: One-stage retinex-based transformer for low-light image enhancement, in: Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023, 12470–12479, https://doi.org/10.1109/ICCV51070.2023.01149, 2023. 
Download
Short summary
Floods pose a significant risk to cities, so fast and accurate information is essential for disaster management. This study used social media images to assess flood levels by analyzing submerged buses, a reliable reference object. An advanced AI model (YOLOv8) trained on different datasets achieved high flood detection accuracy. The results provide a scalable solution for real-time flood monitoring, enhancing urban transportation safety, and supporting emergency planning.
Share
Altmetrics
Final-revised paper
Preprint