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Abstract. Rapid and accurate acquisition of urban flood in-
formation is crucial for flood prevention, disaster mitiga-
tion, and emergency management. With the development of
mobile internet, crowdsourced images on social media have
emerged as a novel and effective data source for flood in-
formation collection. However, selecting appropriate targets
and employing suitable methods to determine flooding level
has not been well investigated. You Only Look Once version
8 (YOLOVS) is a convolutional neural network-based com-
puter vision model that has been widely applied in image
recognition tasks due to its end-to-end architecture and high
computational efficiency. This study proposes a method to
assess urban flood risk levels based on the submerged status
of buses captured in social media images. First, a dataset con-
taining 1008 images in complex scenes is constructed from
social media. The images are annotated using Labelimg, and
expanded with a data augmentation strategy. Four YOLOVS8
configurations are validated for their ability to identify urban
flood risk levels. The validation process involves training the
models on original datasets, augmented datasets, and datasets
representing complex scenes. Results demonstrate that, com-
pared to traditional reference objects (e.g., cars), buses ex-
hibit greater stability and higher accuracy in identification
of urban flood risk levels due to their standardized height
and widespread presence as they remain in service during
flood events. The data augmentation strategy enhances the
model’s mAP50 and mAP50-95 metrics by over 10 % and
20 %, respectively. Additionally, through comparative analy-
sis of YOLOVS8 configurations, YOLOv8s demonstrates su-
perior results and achieves an effective balance between ac-
curacy, training time, and computational resources, recom-

mended for the identification of urban flood risk levels. This
method provides a reliable technical foundation for real-time
flood risk assessment and emergency management of urban
transportation systems, with substantial potential for practi-
cal applications.

1 Introduction

With the intensification of global climate change, extreme
precipitation events have increasingly triggered urban pluvial
flooding, severely disrupting the operation of major cities
(Guan et al., 2015). Concurrently, the proportion of imper-
vious surfaces has been rising due to rapid urbanization, sig-
nificantly diminishing the infiltration capacity of urban land-
scapes (Cao et al., 2025; Zhengzheng et al., 2025) and result-
ing in an increase in surface runoff (Chaudhary et al., 2020).
This has led to more frequent urban flooding incidents, im-
posing substantial impacts and losses on urban infrastructure,
transportation networks, and human wellbeing. For instance,
on 20 July 2021, a rare extreme rainfall event, with a record-
breaking maximum hourly rainfall of 201.9 mm, driven by
Typhoon In-Fa struck Zhengzhou, Henan Province, China,
leading to severe urban inundation that resulted in 292 casu-
alties and direct economic losses reaching 53.2 billion (Yang
and Wang, 2022).

In the event of urban flooding, the ability to rapidly and
accurately identify flood risk levels is crucial for urban flood
prevention, mitigation, and emergency response decision
making (Fohringer et al., 2015; Qian et al., 2022; Smith et
al., 2017). Flood depth is widely regarded as the most repre-
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sentative indicator for assessing the severity of flood impacts
(Betterle and Salamon, 2024). The prediction of flood depth
helps guide evacuation planning and resource allocation, pro-
viding decision support for emergency response and thereby
significantly reducing loss of life and property damage (Jiang
et al., 2020; Park et al., 2021). Alizadeh Kharazi and Be-
hzadan (2021) pointed out that even 2.54 cm of floodwater
can cause approximately USD 27 000 in combined damages
to an average one-story home. When flood depth ranges be-
tween 30 to 60 cm, the risks of vehicle flotation and stalling
increase substantially (Kramer et al., 2016; Pregnolato et al.,
2017; Wang et al., 2025), posing serious threats to human
safety. Moreover, flood depth information on various roads
during rescue operations is essential as it influences resource
allocation and rescue route planning. For example, during
Hurricane Katrina, emergency responders often requested in-
formation regarding the flood extent and water depth in order
to deploy appropriate vehicles for search and rescue (SAR)
operations and to identify the optimal routes to reach victims
(Nayak and Zlatanova, 2008). For example, in Texas dur-
ing the Hurricane Katrina flooding event, it was estimated
that approximately 75 % of flood-related fatalities occurred
during evacuation efforts via local roadways, primarily due
to the lack of awareness regarding inundation depth in the
surrounding areas (Alizadeh Kharazi and Behzadan, 2021).
Consequently, flood depth prediction plays a vital role in as-
sessing road passability, delineating road closures, optimiz-
ing rescue logistics, and prioritizing areas for emergency in-
tervention (Jiang et al., 2020; Kundu et al., 2022).

Currently, urban waterlogging monitoring primarily relies
on water level gauges (Fohringer et al., 2015). Although wa-
ter level gauges can monitor flood depth in real-time, their
deployment and maintenance are costly, and the monitoring
range is restricted by the installation locations, limiting their
suitability for wider spatial coverage (Chaudhary et al., 2020;
Fohringer et al., 2015; Paul et al., 2020). Microwave remote
sensing methods have limitations in spatial-temporal resolu-
tion and data frequency, and are susceptible to interference
from clouds and obstructions, rendering them unable to de-
termine flood depth (Chaudhary et al., 2020; DeVries et al.,
2020; Liang and Liu, 2020). An intelligent and low-cost tech-
nology capable of identifying urban flood risks with exten-
sive spatial coverage is urgently needed.

In recent years, with the rapid development of social me-
dia and mobile internet, the application of social media data
in flood monitoring and risk assessment has garnered exten-
sive attention (Baranowski et al., 2020; Kankanamge et al.,
2020; Li et al., 2023; Rosser et al., 2017; Smith et al., 2017).
Platforms like Weibo, Twitter and Douyin provide users with
channels to share flood information in real time, where user-
generated content (UGC) contains rich flood imagery and ge-
olocation data, offering a novel data source for urban flood
level detection research (Igbal et al., 2021). Concurrently,
significant advancements have been made in computer vision
technology, particularly in the application of convolutional
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neural networks (Voulodimos et al., 2018), opening new av-
enues for the analysis of vast amounts of flood imagery data.
Current studies have attempted to use objects in social media
images, such as bridges (Bhola et al., 2018), roadside barriers
(Jiang et al., 2019), bicycles (Chaudhary et al., 2020), traffic
cones (Jiang et al., 2020), traffic signs (Alizadeh Kharazi and
Behzadan, 2021), water level markers (Jafari et al., 2021),
and pedestrians (Li et al., 2023), as reference points for flood
level estimation. While specific reference objects have shown
promising results in studies, their infrequent occurrence hin-
ders their broad application in urban settings. Pedestrians are
prevalent in urban areas, but their low image resolution and
diminished presence in severely flooded zones reduce their
reliability and practicality as reference points for water level
estimation.

Vehicles serve as ideal reference objects for recognizing
urban flood levels, attributed to their stable morphological
features, widespread availability, and ease of detection. Cur-
rent research leverages vehicles for urban flood water level
identification. For example, Park et al. (2021) and Huang et
al. (2020) used Mask R-CNN to detect the submerged state of
vehicles or their wheels as an indicator of flood levels. Wan
et al. (2024) utilized the YOLO (You Only Look Once) se-
ries models, a CNN-based computer vision (CV) model, for
urban flood risk assessment and detection (Puliti and Astrup,
2022; Redmon et al., 2016; Zhong et al., 2024). However,
most studies use cars as reference objects; the diversity of car
types (e.g., sedans, SUVs, and pickup trucks) introduces sig-
nificant variations in height and dimensions, affecting model
generalization. Furthermore, the limited height of car bodies
means they cannot provide effective water level information
once submerged up to the roof, and their lower frequency of
appearance in extreme weather makes it challenging to col-
lect image datasets.

In comparison, buses, as a critical component of ur-
ban transportation systems, possess standardized heights and
structures with minimal variation between models, making
them a more ideal reference object for flood water level mon-
itoring. Buses overcome the limitations posed by cars, such
as variations in size and limited height. Additionally, buses
primarily operate in busy or essential areas, and their ability
to withstand submersion is crucial for the continued opera-
tion of the urban public transportation system. Flood level
recognition based on the submerged status of buses can in-
telligently assess their water-related risks, providing valuable
support for urban transportation emergency management.

In response to the gaps in existing research, this study aims
to create a comprehensive dataset of submerged buses by
sourcing flood images from social media platforms. Based
on urban flood safety standards and bus height characteris-
tics, the submerged states of buses are categorized into spe-
cific levels. The dataset includes complex scenes (e.g., night-
time, occlusions, and incomplete bus bodies) to enhance data
diversity.
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YOLO is an efficient real-time object detection algorithm
that simplifies the traditional multi-stage detection pipeline
by framing object detection as a regression problem. In the
YOLO model, the image is divided into a grid, with each
grid cell predicting the location (bounding box) and class
probability of an object. The uniqueness of YOLO lies in
its ability to predict multiple bounding boxes simultaneously
in a single forward pass, significantly improving computa-
tional efficiency and processing speed. The model utilizes a
convolutional neural network for feature extraction and con-
siders the global context of the image, which helps reduce
the likelihood of false positives. The YOLOVS algorithm, as
the most recent iteration of the YOLO series, has exhibited
outstanding accuracy and rapid detection performance on the
standard COCO (Common Objects in Context) dataset (Wan
et al., 2024). In this study, the YOLOvVS8 model is trained on
the purpose-built dataset to improve its performance in iden-
tifying urban flood water levels with precision.

This study introduces an innovative approach to flood level
detection by leveraging the submerged states of buses, ad-
dressing the limitations of traditional recognition methods
based on cars and other reference objects and overcoming the
limitations of conventional monitoring techniques in broader
applications. Specifically, the objectives of this study in-
clude:

1. Developing a comprehensive dataset of submerged
buses to examine the relationship between bus submer-
sion and flood water levels.

2. Evaluating the performance of YOLOv8 configurations
in assessing flood severity through original and aug-
mented data training, as well as experiments involving
complex scenes.

3. Proposing configuration recommendations for YOLOVS8
aims to address diverse application scenarios, ensuring
efficient deployment in varied urban environments.

This paper is structured as follows: Sect. 2 provides a de-
tailed description of the dataset construction, data augmenta-
tion strategies, YOLOv8 model configurations and explains
the experimental design and model evaluation metrics. Sec-
tion 3 explains experimental results, followed by a compara-
tive analysis of the findings. Section 4 discusses the experi-
mental results and offers configuration recommendations for
YOLOVS. Finally, Sect. 5 provides a summary of the main
conclusions and highlights potential directions for future re-
search.
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Table 1. Distribution of collected images by platform.

Platform  Number of Proportion  Time range
images (%)

Baidu 260 26 2020-2024

Google 437 43 2020-2024

Douyin 218 22 2020-2024

Others 93 9  2020-2024

2 Methodology
2.1 Data acquisition and processing
2.1.1 Data acquisition

In this study, a comprehensive dataset of submerged buses
was constructed, comprising 1008 images that capture buses
in various statues of submersion (Qiu, 2025a). These sub-
merged bus images were collected through keyword searches
such as “urban flooding” and “submerged bus” on Baidu and
Google, screenshots of relevant frames in short videos on
Douyin, browsing urban flood news, and obtaining images
from WeChat public accounts. The data collection generally
focused on images from the past five years. Due to the di-
verse sources of image data, the images used in the experi-
ment vary in resolution and size.

All collected images were manually screened based on the
following criteria: (1) the bus features (e.g., license plate,
doors, wheels) must be clearly discernible to the human eye;
(2) images without a bus were excluded; (3) grayscale or
monochrome images were excluded; (4) buses were either
stationary or normally moving through floodwater during
flooding events, without signs of floating or water-induced
displacement. These screening rules ensured the validity and
reliability of buses as stable reference objects.

On this basis, when selecting bus images, this study in-
cluded complex and challenging scenes, such as nighttime
scenes, partial occlusions, and incomplete buses, to en-
hance the dataset’s representativeness. The inclusion of these
scenes may help enhance the diversity of the dataset, po-
tentially enabling the trained model to better handle various
flood scenes. Table 1 presents the number and proportion of
images collected from each platform.

2.1.2 Data annotation

This study assesses flood risk levels based on the submersion
status of buses. In this study, the approximate height of buses
was uniformly set to 3m in the model, based on the spec-
ifications of commonly observed urban bus types in social
media images. Based on a systematic evaluation of the im-
ages, it was found that the submersion depths of buses were
mostly concentrated between 0 and 50 cm, with values ex-
ceeding 100 cm observed only in a few cases. Given that high
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water levels (greater than 100 cm) are relatively rare in urban
scenarios, this study chooses to define classification levels
within the more commonly observed water depth range. Con-
sequently, four flood levels were established, with detailed
information on each flood level and corresponding bus exam-
ples provided in Table 2. Using Labelimg, a widely used an-
notation tool for object detection model training, the 1008 ac-
quired images were annotated to identify 1562 bus instances,
which were stored in YOLO format for subsequent training.
Notably, the number of Level 4 instances is comparable to
that of the other levels (Table 2). This is because the few im-
ages in our dataset with water depths exceeding 100 cm con-
tained a relatively large number of Level 4 bus-submersion
instances. Based on different states of bus movement, anno-
tation types were divided into two categories: holistic and
segmented. In holistic annotation, the entire bus is assigned
a single flood level, while in segmented annotation, specific
parts of the bus correspond to different levels, as illustrated
in Fig. 1.

2.1.3 Data augmentation

The original dataset, comprising 1008 images, is relatively
small in scale, necessitating its enhancement and expansion
to increase background complexity, prevent overfitting, and
improve robustness. Image data augmentation methods can
be broadly categorized into two types: luminosity distortions
and geometric distortions (Li et al., 2023). The former in-
volves adjusting image brightness, contrast, hue, saturation,
and adding noise, while the latter encompasses random scal-
ing, cropping, flipping, and rotation operations. In this study,
horizontal and vertical flipping, rotation, and random crop-
ping were applied to augment the original dataset, as illus-
trated in Fig. 2. All images in the augmented dataset were
annotated using Labelimg and stored in YOLO format. Addi-
tionally, considering the potential for manual annotation bias,
a review process was conducted to verify the correctness of
all bounding boxes and annotations related to flood risk lev-
els.

2.2 Object detection model

A key feature of the YOLO model is its ability to achieve
an optimal trade-off between speed and accuracy, enabling
rapid and precise object detection across a wide range of ap-
plication scenes (Wan et al., 2024). This study constructed an
object detection model based on the YOLOV8 source code,
which operates on convolutional neural networks (CNN).
YOLOVS is an integrative and enhanced version building
on previous YOLO generations and represents the latest it-
eration in the YOLO series. This version significantly im-
proves computational efficiency and inference speed by opti-
mizing the network architecture and refining inference algo-
rithms. Moreover, YOLOv8 demonstrates higher stability in
multi-object detection tasks under complex scenes, particu-
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larly with its advanced features such as automated hyperpa-
rameter tuning and dynamic convolution modules. These en-
hancements further boost the model’s flexibility and adapt-
ability, making it more capable of meeting the diverse re-
quirements of real-world applications.

The YOLOV8 processing workflow includes image pre-
processing, multi-level feature extraction through CNN, and
multi-scale feature fusion via a feature pyramid and path ag-
gregation network. Following this, adaptive anchor boxes are
used for bounding box regression and classification predic-
tion, with non-maximum suppression applied to eliminate re-
dundant bounding boxes. The model ultimately outputs the
target’s class, bounding box, and confidence score, ensuring
a balance between detection accuracy and efficiency.

As shown in Fig. 3, the YOLOVS network architecture
is composed of three primary parts: Backbone, Neck, and
Head. The Backbone consists of five convolutional mod-
ules, four C2f modules, and a Spatial Pyramid Pooling-Fast
(SPPF) module, all designed for feature extraction. The Neck
refines and integrates features derived from the Backbone,
improving both the precision and reliability of object detec-
tion. The Head utilizes a decoupled structure to handle fea-
ture maps across multiple scales, generating the final detec-
tion outputs.

2.2.1 Experiment on object detection model

Following data augmentation, the original dataset was ex-
panded to 2184 images for model training. In this study, four
different YOLOVS configurations — YOLOvV8n, YOLOVSs,
YOLOv8m, and YOLOVSI — were used for training, each de-
signed with specific network depths and widths to address
varying application requirements. Table 3 presents the key
characteristics of these four YOLOv8 configurations. The
number of layers reflects the depth of the model, with a
greater number of layers indicating a deeper model capable
of capturing higher-level semantic features. However, this
also leads to increased computational complexity. Parame-
ters refer to the total number of learnable weights and biases
within the model. A higher number of parameters signifies
stronger representational capacity, making the model suitable
for more complex tasks, but it also requires greater computa-
tional resources and longer training times.

2.2.2 Experimental setup

The model was implemented using PyTorch, a framework
offering libraries for object detection models. Training was
performed on NVIDIA Quadro RTX 3090 GPU. The origi-
nal dataset contained 1008 images, with 90 % allocated for
training and the remaining 10 % for validation. The initial
input size was set to 640 x 640, with a batch size of 16 and
100 training epochs. In the data augmentation experiment,
augmentation was applied only to the training set, resulting
in 1986 augmented training images. To maintain a consistent
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Table 2. Flooded bus dataset: bus instances and flood levels.

3529

Flood levels  Analysis of bus submersion depths Range of water depth Number of instances
total  validation set  validation set
(n =108) (n =198)
Levell bottom of wheels submerged; 0-20cm 296 42 67
inner wheel contour not visible
Level2 between bottom of wheels and halfway 20-45cm 585 48 129
up the tires, between bottom of wheels
and top edge of license plate, water
reaches 1/4 of the step at bottom of door
Level3 between halfway up the tires and full 45-100cm 371 43 72
tire coverage, between top edge of
license plate and bottom edge of windshield
Level4 above the bottom edge of the windshield, >100cm 310 35 61

fully submerged tires

Figure 1. Examples of dataset annotations: (a) The entire bus is assigned a single flood level; (b) The specific part of bus is assigned different

levels.

90 %-10 % split ratio, the validation set comprised 198 im-
ages, while all other settings remained the same as previously
described. The distribution of the validation set across the 4
levels is summarized in Table 2. Throughout the entire train-
ing process, the validation set was strictly separated from the
training set, and the model had no access to any original
or augmented images from the validation set. In this study,
the official default hyperparameter settings of YOLOvVS were
adopted (Sun et al., 2023; Yu et al., 2025). These values
are widely validated by the Ultralytics team across multiple

https://doi.org/10.5194/nhess-25-3525-2025

benchmark datasets and tasks, providing a stable balance be-
tween accuracy, convergence speed, and computational effi-
ciency, and are designed to be hardware-friendly for common
GPU configurations.

2.2.3 Complex scenes prediction experiment
The performance of object detection models on the valida-
tion dataset does not fully represent its overall capabilities,

as view of the bus, impacted by camera angle and distance,
introduces numerous sources of interference. To address this,

Nat. Hazards Earth Syst. Sci., 25, 3525-3544, 2025
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Figure 3. The YOLOvV8 network structure: (a) YOLOVS network diagram; (b) Conv module architecture diagram; (¢) SPPF module archi-

tecture diagram; (d) C2f module architecture diagram.

a complex scene prediction experiment was designed in this
study to assess the detection capabilities of the different
YOLOVS configurations under challenging urban flood en-
vironments.

In this experiment, YOLOvV8 models trained on either the
original or augmented datasets were used to conduct com-
plex scene predictions, evaluating their performance under
challenging conditions. Currently, there is no publicly avail-
able large-scale dataset of bus flood inundation images, and
the images obtainable from social media predominantly de-
pict routine scenes, whereas extreme, complex scenes are
rare and dispersed, making it infeasible to construct an inde-
pendent large-scale evaluation dataset. Therefore, this study

Nat. Hazards Earth Syst. Sci., 25, 3525-3544, 2025

selected two particularly demanding scenes for experimen-
tal evaluation. Figure 4 presents two particularly demanding
scenes, not in the existing dataset, Fig. 4a shows a rainy scene
with multiple vehicles, where the incomplete view of the bus,
impacted by camera angle and distance, introduces numerous
sources of interference, increasing detection complexity. Fig-
ure 4b depicts a nighttime scene of a submerged bus, where
low light and poor image quality significantly elevate the dif-
ficulty of detection.

2.24 Comparative experiment with YOLOv5 model

Although the introduction states that YOLOVS is the latest al-
gorithm in the YOLO series and has been known to perform
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Y. Qiu et al.: Automated urban flood level detection

3531

Table 3. The primary characteristics of the four YOLOV8 configurations.

Model Size Layers Params (M) mAP50-950on FLOPs(B)  Speed CPU Speed A100
val (%) ONNX (ms) TensorRT (ms)
YOLOv8n 640 225 32 37.3 8.7 80.4 0.99
YOLOv8s 640 225 11.2 44.9 28.6 128.4 1.20
YOLOv8m 640 295 25.9 50.2 78.9 234.7 1.83
YOLOvSI 640 365 43.7 52.9 165.2 375.2 2.39

(a)

(b}

Figure 4. Two complex urban flooding scenes: (a) Low flood risk scene with multiple vehicles present; (b) High flood risk scene with

blurring and corruption.

better than earlier versions on a general image dataset, com-
parative analysis with earlier versions was performed for this
dataset to quantify performance differences. This study will
compare and analyze the configuration demonstrating supe-
rior performance in the experiments with the corresponding
configuration in the YOLOvS5 model. The experiments in-
clude training on the original dataset, training with data aug-
mentation, and complex scene prediction, following the same
experimental setup described earlier.

2.3 Model evaluation

The widely recognized evaluation metrics, such as precision
(P), recall (R), and F'1 scores are as follows:

TP

Precision = —— (1
TP + FP
TP
Recall = —— 2)
TP+ FN
2 x Precision x Recall
Fl= 3

Precision + Recall

Precision (P) quantifies the model’s false detection rate,
while Recall (R) evaluates its true detection rate. The F1-
score evaluates model performance, particularly in object de-
tection tasks, as it combines both P and R, representing their
harmonic mean, where True Positive (TP) refers to the count
of objects correctly identified as positive, True Negative (TN)
denotes the count of non-objects accurately classified as neg-
ative, False Positive (FP) indicates the count of non-objects
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incorrectly classified as positive, and False Negative (FN)
represents the count of objects wrongly classified as nega-
tive.

In this study, mean Average Precision (mAP), a well-
established evaluation indicator, is utilized as the primary
criterion to evaluate the performance of different YOLOvVS8
configurations in detecting bus submersion states. The mAP
is computed by summing the average precision across all la-
bels and dividing the result by the total number of categories.
A higher mAP value signifies improved average accuracy
of the model, indicating enhanced overall detection perfor-
mance. The formula for calculating mAP is as follows:

mAP = — ZAP =—ZfP (R;)dR;

where n is the number of categories, Average Precision (AP)
is the area under the Precision—Recall (P—R) curve, P is used
to measure the false detection rate of the model and R is used
to measure the true detection rate, the formulas for P and R
are given in Egs. (1) and (2).

Additionally, the metric Intersection over Union (IOU)
was also calculated. IoU is a fundamental metric in object
detection that measures the degree of overlap between the
predicted bounding box (generated by the algorithm) and the
ground truth bounding box (annotated using labeling soft-
ware), with a range of values from O to 1. A higher IoU value
signifies better prediction accuracy, representing a greater

“4)
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Figure 5. The mAP of the validation dataset throughout the training process. (a) The trend of mAP50; (b) the trend of mAP50-95.

overlap between the predicted bounding box and the ground
truth bounding box. The formula for calculating IoU is as
follows:

&)

where A denotes the area of the detection box, while B refers
to the area of the ground truth box.

IoU is widely used to determine whether a predicted
bounding box is considered a true positive. As the output
quality of the model varies with changes in the Intersection
over Union (IoU) threshold, it is standard practice to evaluate
model performance across multiple IoU thresholds.

mAP50 and mAP50-95 are core metrics for evaluating
object detection model performance, each measuring the
model’s average detection precision under different IoU
threshold conditions. mAP50 indicates the average precision
computed at an IoU threshold of 0.5, where an overlap of
over 50 % between the detection box and ground truth box
qualifies as a correct detection. This metric primarily re-
flects the model’s basic object detection capability. mAP50-
95, on the other hand, is the mean average precision calcu-
lated across ten different IoU thresholds, from 0.5 to 0.95
in 0.05 increments. This metric averages AP across multi-
ple IoU thresholds, providing a comprehensive assessment
of the model’s performance. A higher mAP50-95 value in-
dicates stronger generalization ability across varying degrees
of overlap within the same scene. Collectively, mAP50 and
mAP50-95 provide a thorough and objective evaluation of
model prediction accuracy and are extensively utilized in the
domain of object detection.

Nat. Hazards Earth Syst. Sci., 25, 3525-3544, 2025

3 Result
3.1 Training experimental results
3.1.1 Analysis of training results on the original dataset

This subsection provides a comparative evaluation of the
training outcomes of the different YOLOv8 models on the
original dataset. Each model was trained under the exper-
imental settings outlined in Sect. 3.1. Figure 5 illustrates
the trend of mAP for each model during the training pe-
riod, while Fig. 6 presents the prediction performance of each
model across individual classes.

As illustrated in Fig. 5a, following 100 epochs of train-
ing, the four models (YOLOv8n, YOLOvVSs, YOLOvS8m,
YOLOVS]I) each reach convergence, achieving mAP50 val-
ues on the validation dataset of 0.618, 0.662, 0.611, and
0.639, respectively. YOLOv8s exhibits superior performance
in this object detection task, maintaining a higher mAP50
across the training duration compared to the other configu-
rations. YOLOV8I shows pronounced oscillations during the
early training stages, requiring a longer stabilization period.
Furthermore, it is observable that mAP50 for all models in-
creases rapidly in the early epochs (0-20), after which the
growth rate decelerates and plateaus. Notably, an increase in
network width (param) and depth (layer) for YOLOvVS8 does
not yield a substantial improvement in mAPS50.

As shown in Fig. 6, the detection performance of the four
YOLOvV8 models varies across different flood risk levels.
The YOLOVS8s model demonstrates superior average pre-
cision across all flood risk categories, with an mAP50 of
0.662. For low flood risk category identification (level 1),
all models achieve satisfactory detection results. However,
for higher flood risk categories, the detection performance
of YOLOv8n, YOLOv8m, and YOLOVSI is below expec-
tations, with only YOLOvS8s effectively capturing the sub-
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Figure 6. Precision-recall curve for each class of validation process: (a) YOLOv8n Validation Results; (b) YOLOvVSs Validation Results;
(¢) YOLOv8m Validation Results; (d) YOLOv8I Validation Results.
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Table 4. Training time and mAP for four YOLOVS configurations: pre- and post-data augmentation.

YOLOvV8 mAP50 (%) mAP50-95 (%) Training time (h)
original augmented increase original augmented increase original augmented
dataset dataset dataset dataset dataset dataset

n 61.7 72.2 17.0 43.0 55.2 28.4 0.102 0.325

S 66.0 73.4 11.2 47.5 58.2 22.5 0.152 0.483

m 61.2 71.6 17.0 45.0 574 27.6 0.293 0.930

1 63.8 70.3 12.2 454 56.6 24.7 0.438 1.390

mersion characteristics of buses at high water levels, thereby
achieving relatively accurate identification. Although the
YOLOVS8] model has higher complexity and a larger param-
eter scale, its AP values for the level 3 and level 4 categories
are 0.591 and 0.530, respectively, significantly lower than
those of the YOLOvV8s model, which are 0.632 and 0.602.
This suggests that, for detecting high flood risk features, in-
creased model complexity does not inherently result in im-
proved detection accuracy.

3.1.2 Analysis of training results on the augmented
dataset

This subsection compares the training performance of dif-
ferent YOLOvS8 models on the augmented dataset. Figure 7
illustrates the mAP trend, while Fig. 8 presents the prediction
performance of each model.

As depicted in Fig. 7a, after 100 training epochs, the four
models (YOLOv8n, YOLOvS8s, YOLOv8m, YOLOVS8I) all
converge, reaching mAP50 values on the validation dataset
of 0.722,0.734, 0.716, and 0.703, respectively. Among them,
YOLOvVS8s consistently outperforms the other models. The
early-stage fluctuations observed during YOLOVSI training
disappear, resulting in smoother curves and a more stable
optimization process. However, compared to other models,
the performance improvement of YOLOvVS8I during the early
stages of training remains relatively slower. This may be at-
tributed to the model’s higher complexity and larger param-
eter scale.

As illustrated in Fig. 8, following data augmentation, the
four YOLOVS models exhibit similar performance in detect-
ing each flood risk level. The highest overall effectiveness is
found in YOLOVSs, achieving an mAPS50 of 0.734, with con-
sistently high precision and recall across all flood risk cate-
gories. All models effectively capture the submergence char-
acteristics of buses at various water levels, with AP values for
each category exceeding 0.67, indicating robust performance
on the validation dataset.

Notably, the detection results for higher-risk categories
(Level 3 and Level 4) show improved AP values in all mod-
els trained with augmented images, as evidenced by the
Precision-Recall curves shifting closer to the upper-right cor-
ner. For example, in the YOLOv8n model, the AP value for

Nat. Hazards Earth Syst. Sci., 25, 3525-3544, 2025

Level 3 increased from 0.602 to 0.712, and for Level 4, from
0.574 to 0.746. Similarly, in the YOLOvV8I model, the AP
value for Level 3 rose from 0.600 to 0.685, and for Level
4, from 0.549 to 0.679. This improvement is primarily at-
tributed to enhanced data diversity, effectively mitigating the
interference caused by variations in viewpoint and object
scale. This not only improved the model’s ability to detect
higher-level targets but also enhanced the overall detection
performance.

This study provides a comparative analysis of the de-
tection performance of different YOLOv8 model configura-
tions before and after data augmentation. Table 4 presents
the mAP50, mAP50-95, and training times for the optimal
YOLOv8 models. Table 5 further details the mAP50-95 per-
formance of the four models across different flood risk levels.

As indicated in Table 4, improvements in detection per-
formance were observed across all model configurations
when trained on the augmented dataset. For mAPS0, all
models demonstrated improvements exceeding 10 %, while
mAP50-95 gains surpassed 20% for each configuration.
YOLOv8m and YOLOVS8n exhibited the highest mAP50
increases, whereas YOLOvVS8s showed the smallest gain at
11.2%. In terms of mAP50-95, YOLOv8n achieved the
greatest improvement, rising from 43.0 % to 55.2 % (28.4 %
increase), while YOLOVSs displayed the smallest increase at
22.5 %.

In terms of overall performance, YOLOvS8s achieved the
highest mAP50 and mAP50-95 values across all configura-
tions, reaching 73.4 % and 58.2 %, respectively, with a mod-
erate training time. By contrast, YOLOVS8I achieved simi-
lar mAP50 and mAP50-95 values but required nearly triple
the training time. Similarly, YOLOv8m showed performance
close to that of YOLOvVSs, though with a nearly doubled
training time.

As shown in Table 5, all four YOLOVS variants achieved
measurable improvements in mAP50-95 across all flood risk
levels following data augmentation, indicating enhanced de-
tection accuracy. The most substantial gains occurred under
the highest risk level (Level 4), where YOLOvS8I exhibited
the largest relative increase — rising from 0.339 to 0.548 (a
61.7 % gain). YOLOvV8s and YOLOvV8m also showed no-
table improvements at this level, with increases of 47.8 %
and 43.9 %, respectively. In contrast, improvements under
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Figure 8. Precision-recall curve for each class of validation process after data augmentation: (a) YOLOv8n Validation Results; (b) YOLOvVS8s
Validation Results; (¢) YOLOv8m Validation Results; (d) YOLOv8I Validation Results.

Levels 1 to 3 were relatively modest. Moreover, YOLOv8n
and YOLOv8m demonstrated consistently stable enhance-
ments across all risk levels. By comparison, YOLOvVS8s and
YOLOWVSI displayed minimal gains at specific levels, pos-
sibly due to feature saturation — where the models had al-
ready learned most discriminative patterns, leaving limited
room for further improvement through augmentation. Im-
provements in the mAP50-95 metric indicate that the model
maintains high detection accuracy even under stricter eval-
uation thresholds, reflecting stronger robustness and fine-
grained recognition capabilities.

3.2 Experimental results in complex scenes

3.2.1 Validation results of models on the original
dataset

This section presents a comparative evaluation of the val-
idation outcomes for the four optimized YOLOvS models
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trained on the original dataset. The numbers in the top-right
corner of the detection boxes (ranging from 0 to 1) represent
the confidence level of the model for the detection results. As
shown in Fig. 9, all four models can detect the flood risk level
of the bus. However, only YOLOVSI correctly identifies it as
level 1, albeit with low confidence, while the other models in-
correctly classify it as level 2. At low flood risk levels, none
of the models effectively capture the critical distinguishing
features, highlighting limitations in their generalization ca-
pabilities.

Moreover, Fig. 10 presents the validation results at a high
flood risk level. All four optimal YOLOvV8 models success-
fully detect the blurred bus in the image and identify its sub-
merged state with high confidence. For the bus located at the
upper-right edge of the image, none of the models detected
it due to low lighting, though they were able to make par-
tial level assessments. The models have learned to extract
key features associated with incomplete bus bodies from the

Nat. Hazards Earth Syst. Sci., 25, 3525-3544, 2025
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(b)

(d)

Figure 9. Comparison of YOLOVS detection results in low flood risk scene with multiple vehicles present (pre-augmentation): (a) detection
outcomes obtained using YOLOv8n; (b) detection outcomes obtained using YOLOVSs; (¢) detection outcomes obtained using YOLOv8m;
(d) detection outcomes obtained using YOLOVSI.

Table 5. Improvement in mAP50-95 of YOLOvV8 models across risk levels after data augmentation.

Flood Levels Model Original dataset ~Augmented dataset Increase (%)
Levell n 0.504 0.597 18.5
S 0.520 0.640 23.1
m 0.491 0.609 24.0
1 0.540 0.636 17.8
Level2 n 0.377 0.523 38.7
S 0.492 0.555 12.8
m 0.476 0.586 23.1
1 0.505 0.548 8.5
Level3 n 0.410 0.500 22.0
S 0.465 0.504 8.4
m 0.434 0.505 16.4
1 0.429 0.524 22.1
Level4 n 0.411 0.592 44.0
S 0.423 0.625 47.8
m 0.410 0.590 439
1 0.339 0.548 61.7
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Figure 10. Comparison of YOLOVS detection results in high flood risk scene with blurring and corruption (pre-augmentation): (a) detection
outcomes obtained using YOLOv8n; (b) detection outcomes obtained using YOLOVSs; (c¢) detection outcomes obtained using YOLOv8m;

(d) detection outcomes obtained using YOLOVSI.

dataset. Furthermore, YOLOVS]I incorrectly classified the bus
station and surrounding environment as level 4 submersion.

3.2.2 Validation results of models on the augmented
dataset

This section provides a comparative evaluation of the valida-
tion outcomes for the four optimized YOLOvS models after
data augmentation. As shown in Fig. 11, all four models ac-
curately detect the flood risk level of the bus with high con-
fidence. In this detection, the best performance is found inY-
OLOvV8n, exhibiting higher confidence levels than the other
models. Besides, both YOLOv8s and YOLOv8m unexpect-
edly generated a level 2 prediction box during bus detection.

Figure 12 presents the validation results at a high flood risk
level. All four optimal YOLOv8 models successfully detect
the blurred bus in the image, accurately identifying its sub-
merged state with high confidence. The highest confidence
is found in YOLOvSs, without any false detections. How-
ever, none of the models detected the bus body located at the
upper-right edge of the image, even after data augmentation.
Besides, YOLOv8m and YOLOVSI incorrectly classified the
bus station and background environment as level 4 submer-
sion.

In summary, improvements in recognition accuracy and
confidence were observed across the four optimal models
when trained with augmented data, supporting more reliable
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detection of bus submersion states. In addition, detection per-
formance under low-light conditions remains an area that
warrants further investigation.

3.3 Experimental results compared with YOLOvS
3.3.1 Analysis of training experiment results

Figure 13 displays the precision-recall curves from the train-
ing results. A comparison reveals that YOLOvS8s outperforms
YOLOVSs on both the original and augmented datasets, indi-
cating that YOLOv8s achieves higher detection accuracy in
image recognition tasks. On the original dataset, YOLOvVSs
attains an mAP50 of 0.555, while YOLOvS8s reaches 0.662,
reflecting a performance gap of 19.3 %. After data augmenta-
tion, although the performance gap between YOLOVSs and
YOLOVS8s narrows, YOLOvS8s continues to lead. Addition-
ally, results from the two training experiments with YOLOv5
indicate that data augmentation has a substantial impact on
enhancing the training effectiveness of YOLO models.

3.3.2 Analysis of scene prediction experiment results

This section evaluates the stability and effectiveness of
YOLOvSs and YOLOV8s under challenging conditions by
testing their performance in two complex urban scenes. Fig-
ures 14 and 15 illustrate the detection results of YOLOvVSs
and YOLOVS8s in low and high flood risk scenes, respec-
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(b)

(d)

Figure 11. Comparison of YOLOVS detection results in low flood risk scene with multiple vehicles present (post-augmentation): (a) detection

outcomes obtained using YOLOVS8n; (b) detection outcomes obtained using YOLOVSs; (c) detection outcomes obtained using YOLOvS8m;
(d) detection outcomes obtained using YOLOVSI.

() (d)

Figure 12. Comparison of YOLOVS detection results in high flood risk scene with blurring and corruption (pre-augmentation): (a) detection

outcomes obtained using YOLOv8n; (b) detection outcomes obtained using YOLOVSs; (¢) detection outcomes obtained using YOLOv8m;
(d) detection outcomes obtained using YOLOVSI.
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Figure 13. Precision-recall curves from the training results: (a) YOLOVSs validation results on original dataset; (b) YOLOvSs validation
results on augmented dataset; (¢) YOLOVS8s validation results on original dataset; (d) YOLOVSs validation results on augmented dataset.

tively. In the low-risk scene, YOLOVSs accurately identifies
the bus and correctly predicts its submersion status, similar
to YOLOV8s; however, the confidence level of YOLOVSs,
even after data augmentation, shows limited improvement.
YOLOVSs, on the other hand, demonstrates higher detection
confidence and accuracy following data augmentation. In
the high-risk scene, characterized by blurred or partially de-
graded images, YOLOVS5s performs notably well. YOLOvVS5s
detects targets that YOLOVSs fails to recognize, likely due
to its capacity for handling noisy data. This difference in
performance under extreme conditions suggests that the net-
work structure of YOLOvVSs may enhance detection in low-
quality images, offering insights for potential optimizations
in YOLOVSs.
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4 Discussion
4.1 Impact of dataset size and diversity

The size and diversity of the training dataset play a criti-
cal role in determining the performance of YOLOvV8 models.
Models trained with the augmented dataset achieved substan-
tial improvements, with mAP50 and mAP50-95 on the vali-
dation set increasing by over 10 % and 20 % (Table 4), across
all YOLOvS configurations. The increased number and di-
versity of training samples not only enable a more compre-
hensive understanding of the key features of detection tar-
gets but also allow for a broader representation of annotated
instances, enhancing the model’s ability to learn. Such ex-
posure to varied input scenarios equips YOLOvS with en-
hanced generalization, leading to better results in the valida-
tion stage.

Moreover, this benefit extends beyond training to in-
ference capabilities. Under challenging conditions such as
low illumination, motion blur, and partial occlusion, models
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(b)

(d)

Figure 14. Comparison of YOLO detection results in low flood risk scene with multiple vehicles present: (a) YOLOvSs detection results
on original dataset; (b) YOLOVSs detection results on augmented dataset; (¢) YOLOvS8s detection results on original dataset; (d) YOLOvVS8s

detection results on augmented dataset.

trained on the augmented dataset exhibited greater robust-
ness, reflected in higher detection confidence. Dataset diver-
sity is therefore key to improving training performance and
significantly enhancing inference in complex real-world en-
vironments.

The impact of dataset size and diversity varies across dif-
ferent YOLOVS8 configurations. YOLOvV8n, with the smallest
number of parameters, is particularly responsive to changes
in training sample volume, showing the most notable im-
provement in mAP when trained on the augmented dataset.
In contrast, YOLOvS8s, which already performed well on the
original dataset, shows the smallest relative gain. Neverthe-
less, it consistently delivers the best results across multiple
experiments.

4.2 Recommended configurations for YOLOvVS

Based on the comprehensive performance of different
YOLOV8 configurations during training and in complex
scenes, this study recommends prioritizing the YOLOVS8s
model for urban flood detection using bus imagery. Al-
though the YOLOV8I model theoretically offers higher net-
work complexity and parameter count, which should enable
more granular feature extraction, its performance improve-
ments in this experiment were not significant. In contrast, the
YOLOVS8s model demonstrated superior results across mul-

Nat. Hazards Earth Syst. Sci., 25, 3525-3544, 2025

tiple performance metrics and achieved an effective balance
between model accuracy, training time, and computational
resource requirements. Therefore, in environments with lim-
ited resources and high computational costs, YOLOv8s has
proven to be the most advantageous choice.

When computational resources and dataset availability are
ample, YOLOv8m or YOLOVSI should be considered as pri-
ority options. As dataset size expands and more computa-
tional resources become available, the performance potential
of YOLOv8m and YOLOVS8I models may be more fully real-
ized. With larger datasets, the deeper network structures and
advanced feature extraction capabilities of YOLOv8m and
YOLOVSI can better capture critical features and details of
the targets, resulting in higher accuracy and stability in ob-
ject detection.

4.3 Advantages and disadvantages

Crowdsourced images from social media have emerged as
a high-value data source for acquiring flood information
(Huang et al., 2020). The YOLO object detection model re-
quires annotated images as input for training, and such anno-
tation can be performed by non-experts, making the method
highly scalable. Buses, as structurally standardized and di-
mensionally stable vehicles, provide reliable and scalable
reference objects for flood status identification. Moreover,
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Figure 15. Comparison of YOLO detection results in high flood risk scene with blurring and corruption: (a) YOLOvSs detection results
on original dataset; (b) YOLOVSs detection results on augmented dataset; (¢) YOLOVS8s detection results on original dataset; (d) YOLOvS8s

detection results on augmented dataset.

buses typically operate in traffic-intensive or critical urban
areas, where water-related safety concerns directly impact
the stability of the public transportation system. The bus sub-
mergence detection technique adopted in this study signifi-
cantly enhances the precision of urban flood risk assessment,
offering a more scientific basis for future flood monitoring
and emergency response in cities.

Compared with existing studies, the method proposed in
this paper demonstrates distinct advantages in terms of refer-
ence object selection and object detection algorithms. The
present study can be compared with these approaches as
follows: Jiang et al. (2020), Bhola et al. (2018) and Al-
izadeh Kharazi and Behzadan (2021) respectively utilized
traffic cones and guardrails, bridge structures, and sign poles
as reference indicators. Although these objects offer advan-
tages such as fixed structure and known physical dimen-
sions, their applicability is often confined to specific loca-
tions with fixed viewing angles and clearly visible reference
targets. In contrast, this study adopts buses as reference ob-
jects. Given their extensive operating routes and easily rec-
ognizable structural features, the proposed method enables
flood perception across broader urban road networks, thereby
exhibiting enhanced spatiotemporal adaptability.

Huang et al. (2020) and Park et al. (2021) applied the
Mask R-CNN model to detect vehicle tires or body struc-
tures to support flood level estimation. While their methods
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achieve high prediction accuracy, Mask R-CNN is a two-
stage detection framework with a complex architecture and
relatively slow inference speed. Additionally, it is highly sen-
sitive to image quality and susceptible to errors under occlu-
sion, water splashes, or reflection interference — conditions
common in real-world flood scenarios — which limits its real-
time applicability and environmental robustness (Huang et
al., 2020). By contrast, the YOLOv8 model adopted in this
study is a single-stage, end-to-end detection framework. It
demonstrates superior robustness and detection speed under
complex scene conditions and can stably identify reference
targets, reducing false detection rates. Its lightweight archi-
tecture also facilitates deployment on edge devices (Liu et
al., 2025), making it suitable for practical engineering appli-
cations.

Wan et al. (2024) employed YOLOVS to classify flood sub-
mergence levels of cars and achieved the highest mAP50 of
0.707, demonstrating satisfactory detection accuracy. In their
complex scenario testing, sedans could be correctly identi-
fied, whereas pickup trucks failed to be recognized. This ob-
servation indicates that the diversity of vehicle features may
affect the model’s generalization capability. In comparison,
the structural consistency and height stability of buses help
reduce the impact of target variability on model performance.
Moreover, the best-performing model in this study achieved a
mAPS50 of 0.734, demonstrating superior detection accuracy.
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This study demonstrates that floodwater levels in urban
areas can be effectively identified by detecting the submer-
gence status of buses using the YOLOvV8 model. The pro-
posed method has been validated in terms of feasibility and
practical potential. However, further research is warranted
to enhance the model’s adaptability and applicability. On
the one hand, the current dataset remains limited in scale,
with insufficient images under nighttime or low-light condi-
tions, which constrains the model’s performance under such
scenarios. Future work may incorporate illumination-guided
transformers or light-aware attention mechanisms (Cai et al.,
2023) to improve model robustness under challenging light-
ing environments. Simultaneously, expanding the data acqui-
sition scope and incorporating more diverse scenes will be
critical for improving detection accuracy. On the other hand,
the current detection framework does not support quantita-
tive estimation of floodwater depth. Future research could
explore regression-based modules that leverage the actual
height of buses and the geometric relationships within im-
ages to develop numerically interpretable flood level esti-
mators, thereby providing more actionable support for urban
emergency response and flood risk management.

5 Conclusions

This study proposes an urban flood detection method based
on the YOLOVS8 deep learning model, which accurately as-
sesses flood risk levels by identifying the submersion state
of buses. A dataset of 1008 images depicting submerged
buses was collected from online platforms and expanded
to 2184 images using data augmentation strategies. Subse-
quently, the submersion states of buses were annotated into
four levels for training the object detection model. Finally,
the performance of various YOLOvV8 models was compared
through data augmentation and complex scene validation ex-
periments, resulting in the following experimental insights:

1. The highest detection accuracy for flood risk lev-
els is achieved by YOLOv8s. Although YOLOv8m
and YOLOv8] demonstrated comparable overall per-
formance, they required significantly greater computa-
tional resources and training time.

2. Compared with commonly used reference objects in ex-
isting studies, buses offer advantages such as structural
standardization, consistent height, and wide spatial cov-
erage, making them more suitable for flood identifica-
tion at the urban scale.

3. This study offers configuration recommendations for
YOLOvV8 models tailored to urban flood detection based
on the submersion state of buses.

This study supplements and extends existing research on
flood detection by validating the feasibility and effective-
ness of using buses as reference objects for the identifica-
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tion of urban flood risk levels. This study explores the ap-
plication potential of bus submersion state detection within
the YOLOVS framework. This approach broadens the techni-
cal pathways for urban flood monitoring and provides crucial
support for flood emergency management within urban trans-
portation systems, demonstrating practical value in the field
of disaster prevention and mitigation.

This study primarily relies on social media image recog-
nition to determine flood risk levels. However, the model
still lacks robustness in certain complex scenarios, such as
under extreme lighting conditions. Additionally, the model
currently lacks the capability to quantitatively measure flood
depth, which is critical for precise flood risk assessment. Fu-
ture research will concentrate on devising methods for quan-
titative flood depth estimation using bus submersion states
and creating noise-resistant model architectures to improve
the model’s applicability and precision.
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