Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3461-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3461-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monitoring agricultural and economic drought: the Australian Agricultural Drought Indicators (AADI)
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Canberra, Australia
Donald Gaydon
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Mihir Gupta
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Canberra, Australia
Andrew Schepen
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Peter Tan
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Canberra, Australia
Geoffrey Brent
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Canberra, Australia
Andrew Turner
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Canberra, Australia
Sean Bellew
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Canberra, Australia
Wei Ying Soh
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Canberra, Australia
Christopher Sharman
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Peter Taylor
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
John Carter
Queensland Department of Environment, Tourism, Science, and Innovation (QDETSI), Brisbane, Australia
Dorine Bruget
Queensland Department of Environment, Tourism, Science, and Innovation (QDETSI), Brisbane, Australia
Zvi Hochman
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
private consultant: Sydney, Australia
Ross Searle
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Yong Song
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Patrick Mitchell
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Yacob Beletse
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Dean Holzworth
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Laura Guillory
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Connor Brodie
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Jonathon McComb
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Ramneek Singh
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
Related authors
Andrew Schepen, Andrew Bolt, Dorine Bruget, John Carter, Donald Gaydon, Mihir Gupta, Zvi Hochman, Neal Hughes, Chris Sharman, Peter Tan, and Peter Taylor
EGUsphere, https://doi.org/10.5194/egusphere-2024-4129, https://doi.org/10.5194/egusphere-2024-4129, 2025
Short summary
Short summary
The success of agricultural enterprises is affected by climate variability and other important factors like soil conditions and market prices. We have developed an agricultural drought forecasting system to help drought analysts and policymakers more accurately identify communities that are enduring financial stress. By coupling climate forecasts and agricultural models, we can skillfully predict crop yields and farm profits for the coming seasons, which will support proactive responses.
Andrew Schepen, Andrew Bolt, Dorine Bruget, John Carter, Donald Gaydon, Mihir Gupta, Zvi Hochman, Neal Hughes, Chris Sharman, Peter Tan, and Peter Taylor
EGUsphere, https://doi.org/10.5194/egusphere-2024-4129, https://doi.org/10.5194/egusphere-2024-4129, 2025
Short summary
Short summary
The success of agricultural enterprises is affected by climate variability and other important factors like soil conditions and market prices. We have developed an agricultural drought forecasting system to help drought analysts and policymakers more accurately identify communities that are enduring financial stress. By coupling climate forecasts and agricultural models, we can skillfully predict crop yields and farm profits for the coming seasons, which will support proactive responses.
Alexander Herr, Linda E. Merrin, Patrick J. Mitchell, Anthony P. O'Grady, Kate L. Holland, Richard E. Mount, David A. Post, Chris R. Pavey, and Ashley D. Sparrow
Hydrol. Earth Syst. Sci., 28, 1957–1979, https://doi.org/10.5194/hess-28-1957-2024, https://doi.org/10.5194/hess-28-1957-2024, 2024
Short summary
Short summary
We develop an ecohydrological classification for regions with limited hydrological records. It provides causal links of landscape features and their water requirement. The classification is an essential framework for modelling the impact of future coal resource developments via water on the features. A rule set combines diverse data with prioritisation, resulting in a transparent, repeatable and adjustable approach. We show examples of linking ecohydrology with environmental impacts.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Cited articles
ABARES: Australian Gridded Farm Data, ABARES [data set], https://www.agriculture.gov.au/abares/research-topics/surveys/farm-survey-data/australian-gridded-farm-data (last access: 1 January 2024), 2024a.
ABARES: Australian Agricultural and Grazing Industry Survey Data, ABARES [data set], https://www.agriculture.gov.au/abares/research-topics/surveys/farm-survey-data (last access: 1 January 2024), 2024b.
ABS: Data-by-region, ABS [data set], https://dbr.abs.gov.au/ (last access: 1 January 2024), 2024.
Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Knutson, C., Smith, K. H., Wall, N., Fuchs, B., Crossman, N. D., and Overton, I. C.: Drought indicators revisited: the need for a wider consideration of environment and society, WIRES Water, 3, 1154, https://doi.org/10.1002/wat2.1154, 2016.
Bartley, R., Thomas, M., Clifford, D., Phillip, S., Brough, D., Harms, D., Willis, R., Gregory, L., Glover, M., and Moodie, K.: Land suitability: technical methods, in: A Technical Report to the Australian Government for the Flinders and Gilbert Agricultural Resource Assessment (FGARA) Project, CSIRO Australia, https://doi.org/10.4225/08/584d97f34ddf4, 2013.
Berman, J. D., Ebisu, K., Peng, R. D., Dominici, F., and Bell, M. L.: Drought and the risk of hospital admissions and mortality in older adults in western USA from 2000 to 2013: a retrospective study, The Lancet Planetary Health, 1, e17–e23, https://doi.org/10.1016/S2542-5196(17)30002-5, 2017.
Botterill, L. C. and Hayes, M. J.: Drought triggers and declarations: science and policy considerations for drought risk management, Nat. Hazards, 64, 139–151, 2012.
Cammalleri, C., Arias-Muñoz, C., Barbosa, P., de Jager, A., Magni, D., Masante, D., Mazzeschi, M., McCormick, N., Naumann, G., Spinoni, J., and Vogt, J.: A revision of the Combined Drought Indicator (CDI) used in the European Drought Observatory (EDO), Nat. Hazards Earth Syst. Sci., 21, 481–495, https://doi.org/10.5194/nhess-21-481-2021, 2021.
Carter, J. O., Hall, W. B., Brook, K. D., McKeon, G. M., Day, K. A., and Paull, C. J.: AussieGRASS: Australian Grassland and Rangeland Assessment by Spatial Simulation, in: Applications of seasonal climate forecasting in agricultural and natural ecosystems – the Australian experience, edited by: Hammer, G., Nicholls, N., and Mitchell, C., Kluwer Academic Press, Netherlands, 229–249, https://doi.org/10.1007/978-94-015-9351-9, ISBN 978-0792362708, 2000.
Commonwealth of Australia: Federal Government's response to the drought, and the adequacy and appropriateness of policies and measures to support farmers, regional communities and the Australian economy, Commonwealth of Australia – Rural and Regional Affairs and Transport References Committee, https://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Rural_and_Regional_Affairs_and_Transport/DroughtResponse/Report (last access: 1 December 2024), 2021.
Diodato, N. and Bellocchi, G.: Drought stress patterns in Italy using agro-climatic indicators, Clim. Res., 36, 1–12, https://doi.org/10.3354/cr00726, 2008.
Donnelly, J. R., Simpson, R. J., Salmon, L., Moore, A. D., Freer, M., and Dove, H.: Forage-livestock models for the Australian livestock industry, in: Agricultural System Models in Field Research and Technology Transfer, CRC Press, 9–32, https://doi.org/10.1201/9781420032413, 2016.
Edwards, B., Gray, M. and Hunter, B.: The impact of drought on mental health in rural and regional Australia, Social Indicators Research, 121, 177–194, 2015.
Fleming-Muñoz, D. A., Whitten, S., and Bonnett, G. D.: The economics of drought: A review of impacts and costs, Aust. J. Agr. Resour. Ec., 67, 496–525, https://doi.org/10.1111/1467-8489.12527, 2023.
Freebairn, J. W.: Drought assistance policy, Aust. J. Agr. Econ., 27, 185–199, 1983.
Gibbs, W. J. and Maher, J. V.: Rainfall deciles drought indicators, Bureau of Meteorology Bulletin, https://library2.deakin.edu.au/record=b1458806~S1 (last access: 1 September 2025), 1967.
Guillory, L., Pudmenzky, C., Nguyen-Huy, T., Cobon, D., and Stone, R.: A drought monitor for Australia, Environ. Model. Softw., 170, 105852, https://doi.org/10.1016/j.envsoft.2023.105852, 2023.
Hanigan, I. C., Butler, C. D., Kokic, P. N., and Hutchinson, M. F.: Suicide and drought in New South Wales, Australia, 1970–2007, P. Natl. Acad. Sci. USA, 109, 13950–13955, https://doi.org/10.1073/pnas.1112965109, 2012.
Hanigan, I. C., Schirmer, J., and Niyonsenga, T.: Drought and distress in southeastern Australia, EcoHealth, 15, 642–655, https://doi.org/10.1007/s10393-018-1339-0, 2018.
Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., Chenu, K., van Oosterom, E. J., Snow, V., Murphy, C., and Moore, A. D.: APSIM–evolution towards a new generation of agricultural systems simulation, Environmental Modelling & Software, 62, 327–350, 2014.
Holzworth, D., Huth, N. I., Fainges, J., Brown, H., Zurcher, E., Cichota, R., Verrall, S., Herrmann, N. I., Zheng, B., and Snow, V.: APSIM Next Generation: Overcoming challenges in modernising a farming systems model, Environmental Modelling & Software, 103, 43–51, 2018.
Hughes, N.: Australian Agricultural Drought Indicators (AADI) regional indicator evaluation data, V1, Mendeley Data [data set], https://doi.org/10.17632/8yhcr28wbk.2, 2024.
Hughes, N., Soh, W. Y., Boult, C., and Lawson, K.: Defining drought from the perspective of Australian farmers, Climate Risk Management, 35, 100420, https://doi.org/10.1016/j.crm.2022.100420, 2022a.
Hughes, N., Soh, W. Y., Lawson, K., and Lu, M.: Improving the performance of micro-simulation models with machine learning: The case of Australian farms, Econ. Model., 115, 105957, https://doi.org/10.1016/j.econmod.2022.105957, 2022b.
Hughes, N., Brent, G., Gaydon, D., Schepen, A., Mitchell, P., Hochman, Z., Carter, J., Sharman, C., Taylor, P., McComb, J., and Searle, R.: The Drought Early Warning System (aka AADI) project: progress report, ABARES research report, https://www.agriculture.gov.au/abares/research-topics/climate/drought/australian-agriculture-drought-indicators-progress-report (last access: 1 December 2024), 2024.
Jeffrey, S. J., Carter, J. O., Moodie, K. B., and Beswick, A. R.: Using spatial interpolation to construct a comprehensive archive of Australian climate data, Environ. Model. Softw., 16, 309–330, 2001.
Lan, X., K.W. Thoning, and E.J. Dlugokencky.: Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements, Version 2022-11, https://doi.org/10.15138/P8XG-AA10, 2022.
Lloyd-Hughes, B.: The impracticality of a universal drought definition, Theor. Appl. Climatol., 117, 607–611, https://doi.org/10.1007/s00704-013-1025-7, 2014.
Lynch, K. M., Lyles, R. H., Waller, L. A., Abadi, A. M., Bell, J. E., and Gribble, M. O.: Drought severity and all-cause mortality rates among adults in the United States: 1968–2014, Environ. Health-Glob., 19, 24, https://doi.org/10.1186/s12940-020-00597-8, 2020.
Malakar, Y., Snow, S., Fleming, A., Fielke, S., Jakku, E., Tozer, C., and Darbyshire, R.: Multi-decadal climate services help farmers assess and manage future risks, Nat. Clim. Change, 14, 44–49, 2024.
McBratney, A. B., Santos, M. M., and Minasny, B.: On digital soil mapping, Geoderma, 117, 3–52, 2003.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol., 391, 202–216, 2010.
Moore, A. D., Donnelly, J. R., and Freer, M.: GRAZPLAN: Decision support systems for Australian grazing enterprises. III. Pasture growth and soil moisture submodels, and the GrassGro DSS, Agr. Syst., 55, 535–582, 1997.
Nelson, R., Kokic, P. and Meinke, H.: From rainfall to farm incomes – transforming advice for Australian drought policy. II. Forecasting farm incomes, Australian Journal of Agricultural Research, 58, 1004–1012, 2007.
NNDSS (National Notifiable Disease Surveillance System): National Notifiable Disease Surveillance System Dashboard, https://nindss.health.gov.au/pbi-dashboard/ (last access: 1 December 2024), 2024.
NOAA: The National Oceanic and Atmospheric Administration (NOAA) US Department of Commerce, https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt (last access: 1 December 2024), 2023.
Northcote, K. H., Beckmann, G. G., Bettenay, E., Churchward, H. M., van Dijk, D. C., Dimmock, G. M., Hubble, G. D., Isbell, R. F., McArthur, W. M., Murtha, G. G., Nicolls, K. D., Paton, T. R., Thompson, C. H., Webb, A. A., and Wright, M. J.: Atlas of Australian Soils, Sheets 1 to 10, with explanatory data, CSIRO and Melbourne University Press, Melbourne, https://doi.org/10.25919/5f1632a855c17, 1960–1968.
Pang, A., Chang, M. W. L., and Chen, Y.: Evaluation of Random Forests (RF) for Regional and Local-Scale Wheat Yield Prediction in Southeast Australia, Sensors, 22, 717, https://doi.org/10.3390/s22030717, 2022.
Potgieter, A. B., Schepen, A., Brider, J., and Hammer, G. L.: Lead time and skill of Australian wheat yield forecasts based on ENSO-analogue or GCM-derived seasonal climate forecasts – A comparative analysis, Agr. Forest Meteorol., 324, 109116, https://doi.org/10.1016/j.agrformet.2022.109116, 2022.
Queensland Government: The Long Paddock site, https://www.longpaddock.qld.gov.au/ (last access: 1 January 2024), 2024.
Richetti, J., Lawes, R. A., Whan, A., Gaydon, D. S., and Thorburn, P. J.: How well does APSIM NextGen simulate wheat yields across Australia using gridded input data? Validating Continental-Scale Crop Model Simulations, Eur. J. Agron., 158, 127212, https://doi.org/10.1016/j.eja.2024.127212, 2024.
Rickert K. G., Stuth, J. W. and McKeon, G. M.: Modelling pasture and animal production. Field and Laboratory Methods for Grassland and Animal Production Research, edited by: LT Mannetje & RM Jones, CAB International, 29-66, 2000.
Salvador, C., Nieto, R., Vicente-Serrano, S. M., García-Herrera, R., Gimeno, L., and Vicedo-Cabrera, A. M.: Public Health Implications of Drought in a Climate Change Context: A Critical Review, Annu. Rev. Publ. Health, 44, 213–232, https://doi.org/10.1146/annurev-publhealth-071421-051636, 2023.
Schepen, A., Bolt, A., Bruget, D., Carter, J., Gaydon, D., Gupta, M., Hochman, Z., Hughes, N., Sharman, C., Tan, P., and Taylor, P.: Forecasting agricultural drought: the Australian Agriculture Drought Indicators, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-4129, 2025.
Searle, R.: The Australian site data collation to support the GlobalSoilMap, in: “GlobalSoilMap: Basis of the global spatial soil information system. Proceedings 1st GlobalSoilMap Conference”, Orléans, France, 7–9 October 2013, edited by: Arrouays, D., McKenzie, N., Hempel, J., Richer de Forges, A., and McBratney, A. B., CRC Press, Boca Raton, FL, 127–132, 2014.
Stephens, D. J.: Objective criteria for estimating the severity of drought in the wheat cropping areas of Australia, Agr. Syst., 57, 301–323, https://doi.org/10.1016/S0308-521X(98)00022-5, 1998.
Stovold, R. G. H., Adams, M., Maier, S. W., Donald, G., Gherardi, S., and Broomhall, M.: Using Pasture Growth Rate Data in a National Agricultural Drought Assessment Monitoring Tool, in: Advances in Geoscience and Remote Sensing, InTech, 513–532, https://doi.org/10.1007/978-3-540-93962-7_25, 2009.
Thompson, D. and Powell, R.: Exceptional circumstances provisions in Australia – is there too much emphasis on drought?, Agricultural Systems, 57, 469–488, 1998.
Wedd, R., Alves, O., de Burgh-Day, C., Down, C., Griffiths, M., Hendon, H. H., Hudson, D., Li, S., Lim, E. P., Marshall, A. G., Shi, L., Smith, P., Smith, G., Spillman, C. M., Wang, G., Wheeler, M. C., Yan, H., Yin, Y., Young, G., and Zhou, X.: ACCESS-S2: the upgraded Bureau of Meteorology multi-week to seasonal prediction system, Journal of Southern Hemisphere Earth Systems Science, 72, 273–288, https://doi.org/10.1071/ES22026, 2022.
Wilhite, D. A. and Glantz, M. H.: Understanding: the drought phenomenon: the role of definitions, Water Int., 10, 111–120, 1985.
Wilhite, D. A., Sivakumar, M. V. K., and Pulwarty, R.: Managing drought risk in a changing climate: The role of national drought policy, Weather and Climate Extremes, 3, 4–13, 2014.
Short summary
Droughts can impact agriculture and regional economies, and their severity is rising with climate change. Our research introduces a new system, the Australian Agricultural Drought Indicators (AADI), which measures droughts based on their effects on crops, livestock and farm profits rather than on traditional weather metrics. Using climate data and modelling, AADI predicts drought impacts more accurately, helping policymakers prepare for and respond to financial and social impacts during droughts.
Droughts can impact agriculture and regional economies, and their severity is rising with...
Altmetrics
Final-revised paper
Preprint