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Abstract. Drought events can have significant agricultural
and economic impacts, and in many parts of the world their
intensity appears to be increasing with climate change. How-
ever, drought measurement remains a highly contested space,
with a multitude of indicators across both research and op-
erational settings. This article presents a new drought mon-
itoring and forecasting system: the Australian Agricultural
Drought Indicators (AADI). Rather than use common me-
teorological indicators, AADI attempts to estimate specific
agricultural and economic drought impacts. An integrated
bio-physical and economic modelling system is developed,
which translates gridded climate observations and forecasts
into outcome-based indicators of crop yields, pasture growth
and farm business profits. These indicators are validated
against a range of ground-truth data drawn from survey and
administrative sources. Results confirm the benefits of the
outcome-based approach with the AADI showing higher cor-
relation with both agricultural (crop yield, fodder demand)
and economic outcomes (farm profits, regional incomes)
compared with rainfall measures. The novel farm profit in-
dicator also shows promise as a predictor of drought-induced
financial stress and flow-on socio-economic impacts.

1 Introduction

It is widely accepted that a universal definition of drought
is, if not impossible, highly impractical (Wilhite and Glantz,
1985; Mishra and Singh, 2010; Lloyd-Hughes, 2014).
Rather, drought is usually viewed in terms of its specific
impacts: “agricultural drought” (e.g. crop failure or pasture
loss), “hydrological drought” (e.g. low streamflow or dam
storage) or “economic drought” (e.g. reduced farm profits,
income or jobs) (Wilhite and Glantz, 1985). While these im-
pacts are all somewhat dependent on rainfall deficit (i.e. “me-
teorological drought”), each is the product of unique bio-
physical and human processes, and as such they are imper-
fectly correlated with each other.

As aresult, a multitude of drought indicators have emerged
both in the research literature and among operational sys-
tems, although, as Bachmair et al. (2016) note, “often with
little consideration of which are most meaningful for describ-
ing drought impacts”. Validation of new indicators against
ground-truth data is not common, with research often limited
to indicator—indicator comparisons (Bachmair et al., 2016).
Further, the selection of indicators for operational systems
often reflects pragmatic factors (such as data availability and
common practice) more than systematic assessment (Bach-
mair et al., 2016).

Among operational systems there has been a trend towards
composite or weighted average indicators, typically referred
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to as “combined drought indicators” (CDIs). Examples in-
clude the US Drought Monitor, the European Drought Ob-
servatory (see Cammalleri et al., 2021), and in Australia the
NACP Drought Monitor (Guillory et al., 2023) and the NSW
Enhanced Drought Information System (EDIS). However,
the design and interpretation of composite indicators remain
somewhat subjective, and systematic validation is uncom-
mon (Bachmair et al., 2016).

This study presents a new operational drought measure-
ment and forecasting system: the Australian Agricultural
Drought Indicators (AADI). This system measures agricul-
tural drought impacts via an integrated bio-physical and eco-
nomic modelling system. AADI combines existing models
including APSIM (Holzworth et al., 2014) to simulate crop
yields and AussieGRASS (Carter et al., 2000) and GrassGro
(Moore et al., 1997) to simulate pasture growth, with these
outputs then linked to the farmpredict model (Hughes et al.,
2022b) to simulate farm business profits. These models form
an operational system, which translates gridded climate ob-
servations and forecasts into outcome-based indicators, in-
cluding winter and summer crop yields, pasture growth, and
farm profits.

While the AADI approach differs from most comparable
systems, the concept of outcome-based drought indicators is
not a new one. In Australia, historical reliance on rainfall per-
centiles as drought indicators (Gibbs and Maher, 1967) has
long been criticized given limited correlation with agricul-
tural and economic outcomes in practice (Wilhite and Glantz,
1985; Hughes et al., 2022a). Economists have frequently ar-
gued drought indicators should be developed consistently
with policy goals (i.e. economic drought programmes should
be informed by economic indicators; see Thompson and
Powell, 1998; Nelson et al., 2007; Hughes et al., 202221).1
While current operational systems mostly use meteorological
indicators (Bachmair et al., 2016), outcome-based measures
are not without precedent,> and further within the research
literature, crop yield indicators are relatively common (see
Stephens, 1998; Diodato and Bellocchi, 2008).

More novel is the inclusion in AADI of a farm profit indi-
cator, as proposed by Hughes et al. (2022a). Here the farm-
predict model is used to simulate sequences of farm profits
based on climatic and bio-physical (crop and pasture growth)
inputs for representative farms at each location. While AADI
does not employ a CDI as such, the farm profit indicator per-
forms a similar role, integrating a diverse range of metrolog-
ical and agricultural data into a single value. In contrast with

1A recent example of this issue is the operation of the Aus-
tralian Drought Communities Program during 2018-2020. This pro-
gramme provided government funding to drought-affected regions,
using rainfall percentiles to determine eligibility with mixed success
(see Commonwealth of Australia, 2021).

2In Australia, the former National Agricultural Monitoring Sys-
tem (NAMS) included crop and pasture growth indicators (Stovold
et al., 2009), while the NSW EDIS includes a plant growth index in
its CDI.
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a CDI, farm profit has a clear conceptual basis and can also
be easily validated against real-world data.

In Australia, drought indicators have historically been as-
sociated with agricultural subsidy programmes, leading to a
decline in their popularity (see Hughes et al., 2024). This is
despite a long-term shift in Australian drought policy away
from short-term relief towards preparedness and resilience,
more or less in line with the recommendations of the research
community (see Freebairn, 1983; Botterill and Hayes, 2012;
Wilhite et al., 2014). The 2018-2020 Australian drought
events led to a re-evaluation however, with subsequent in-
quiries recognizing the value of indicators in supporting pre-
paredness and encouraging proactive responses from gov-
ernment (see Commonwealth of Australia, 2021). AADI has
been developed to complement this more modern policy fo-
cus, acting as a drought early warning system in the sense of
Wilhite et al. (2014), albeit with an emphasis on government
users (see Hughes et al., 2024).

Forecasting aspects of AADI, including estimates of fore-
cast skill at various lead times, are presented in a separate ar-
ticle (Schepen et al., 2025). In the present article we provide
an overview of the AADI system and its component models,
input data and key assumptions. We then provide detailed
validation results to assess how well these indicators are cor-
related with observed agricultural (crop yield, livestock fer-
tility) and economic (farm profit, regional income) outcomes,
drawing on a range of historical survey and administrative
data. For reference, the validation performance of AADI is
contrasted with that of rainfall percentiles.

2 Methods

2.1 The Australian Agricultural Drought Indicators
(AADI) system

The Australian Agricultural Drought Indicator (AADI) sys-
tem translates spatial climate data and forecasts into pre-
dictions of local agricultural outcomes (Fig. 1). The AADI
system takes gridded historical and forecast climate data as
inputs to agricultural simulation models; given other data
and assumptions on the types of soil, pasture and agricul-
tural activity prevailing at each grid cell, these models pre-
dict agricultural outcomes including pasture growth via the
AussieGRASS system (Carter et al., 2000) and the GrassGro
model (Moore et al., 1997; Donnelly et al., 2016), winter and
summer crop yields via APSIM (Holzworth et al., 2014), and
farm business profits via the farmpredict model (Hughes et
al., 2022b).

The AADI system has been designed to represent Aus-
tralian dry-land broadacre agriculture (non-irrigated exten-
sive livestock and cropping), which accounts for the vast ma-
jority (more than 90 %) of Australian agricultural land use
and is highly vulnerable to drought impacts (relative to irri-
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Figure 1. Overview of the Australian Agriculture Drought Indicators system.

gation and other more intensive forms of agriculture; Hughes
et al., 2022b).

The AADI system operates on a monthly cycle; at the be-
ginning of each month, indicators are updated given observed
weather data to the end of the previous month and the latest
climate forecasts. Indicators are for annual (financial year)
periods, so the updates make use of both observed data over
the year to date and forecasts for the rest of the year. The
indicators are generated across Australia for a defined “agri-
cultural zone” (visible Fig. 1, right), which excludes areas
with no agricultural activity (protected reserves, forests, etc.;
see Hughes et al., 2024).

The final indicators are presented as percentile statistics,
comparing current and forecast conditions at each location
to a rolling 33-year historical reference period. Given the
long-term effects of climate change on Australian temper-
atures and rainfall, older climate data are now less relevant
to benchmarking current conditions or defining drought (see
Hughes et al., 2022a). This rolling 33-year reference period
is intended to strike a pragmatic balance: attempting to rep-
resent the present-day climate while being long enough to
characterize climatological variability at each location.

Indicators are available for specific grid cells but can also
be aggregated to produce regional estimates (at national, state
or local government area (LGA) level), with weightings to
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account for the relative amount of agricultural activity at each
location (see Hughes et al., 2024).

A user interface (Fig. 2) was developed to present AADI
results, building on the existing Climate Services for Agricul-
ture (CSA) platform, which also hosts the separate MyCli-
mateView app (https://myclimateview.com.au/, last access:
15 November 2024; see Malakar et al., 2024). The user in-
terface design focused exclusively on government users, par-
ticularly staff engaged in the implementation of drought re-
sponse programmes (see Hughes et al., 2024). Key compo-
nents of the AADI system are summarized below, with fur-
ther documentation provided in Hughes et al. (2024).

2.1.1 Climate data

The AADI system operates on an 0.05° (approximately 5 km)
grid drawing on interpolated historical daily weather data
from the SILO database (Jeffrey et al., 2001). Weather vari-
ables used in AADI include rainfall (mm), minimum and
maximum temperature (°C), shortwave radiation (MJ m~2),
vapour pressure (hPa), and evaporation (mm).

Seasonal weather forecasts are obtained from the Bu-
reau of Meteorology (BoM) Australian Community Climate
and Earth-System Simulator Seasonal (ACCESS-S2) model
(Wedd et al., 2022). ACCESS-S2 is a global climate model
operating on a coarse 60 to 80 km grid. The AADI system
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Figure 2. Australian Agricultural Drought Indicators user interface (national farm profit indicator forecast for 2025-2026 on 1 August 2025).

© Commonwealth of Australia 2025.

includes a custom forecast-downscaling and calibration ap-
proach (outlined in detail by Schepen et al., 2025).

2.1.2 Soil data

The simulation models require a range of input data in ad-
dition to climate observations, including soil types, pasture
types, livestock densities and farm business characteristics
(e.g. farm size and enterprise mix). To support the AADI sys-
tem, several new data layers were developed to provide the
required bio-physical, agronomic and economic features at a
grid scale.

Auvailable state soil measurement datasets were combined
to create new national high-resolution (90 mz) functional
soil-type maps for Australia (Fig. Al). The new soils maps
adopt the Soil Generic Group classification system, which
divides Australian soils into 18 functional groups, each with
distinct hydrologic properties that are required for crop and
pasture modelling (Bartley et al., 2013).

The development of a national soil-type map involved
applying digital soil mapping (DSM) (McBratney et al.,
2003) methods to data from the National Soil Site Collation
(NSSC) (Searle, 2014) along with other spatial environmen-
tal data (see Hughes et al., 2022a). The approach involved
application of machine learning (random forests) to predict
the probability of each of the 18 soil types existing at each
location.
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2.1.3 Farm business data

For AADI, a new synthetic dataset of farm business informa-
tion was developed to provide inputs for farmpredict sim-
ulations. These synthetic data were derived from the an-
nual Australian Agricultural and Grazing Industry Survey
(AAGIS). AAGIS provides a rotating stratified sample of
Australian broadacre (extensive crops and grazing) busi-
nesses, of around 1600 farms per year. For AADI, the AAGIS
data spanning the most recently available 10 years (2012—
2013 to 2021-2022) were used.

The new synthetic farm data were developed using a
distance-weighted Gaussian kernel interpolation method. To
protect the privacy of survey participants, a degree of random
perturbation is applied to AAGIS data prior to interpolation.
This process yields a set of synthetic or representative farm
business data (one farm per grid cell) reflecting the “typical”
broadacre farm at a given location, based on AAGIS farm
businesses observed in proximity to that location in recent
years (see Fig. A2).

2.1.4 Crop simulations
Cropping simulations make use of The Agricultural Produc-
tion Systems SIMulator (APSIM) (Holzworth et al., 2014),

specifically APSIM Next Generation 2022.12.7128 (Holz-
worth et al., 2018). Water-limited crop yield simulations are

https://doi.org/10.5194/nhess-25-3461-2025
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produced for wheat and sorghum, the two most common win-
ter and summer broadacre crops in Australia. Water-limited
yield represents yield that can be achieved using current best
practices, technology and genetics for rainfed crops.

APSIM simulations are based on daily historical and fore-
cast climate data along with soil-type data and management
rules. To calibrate initial soil conditions, all APSIM runs be-
gin with a 15-year “spin-up” period, which allows state vari-
ables to reach equilibrium. Wheat and sorghum simulations
are undertaken for each grid cell within the defined winter
and summer cropping zones (see Fig. A4). Simulations were
conducted for multiple soil types in each grid cell, with re-
sults presented as an area-based weighted average. Crop sow-
ing and fertilizer application rules for wheat and sorghum
were specified on a regional basis (see Hughes et al., 2024).
For wheat, simulations are based on the cultivar with the
highest average grain yield at each grid cell, derived from
historical (1989-1990 to 2021-2022) simulations of seven
cultivars. All sorghum simulations are based on the “Buster”
cultivar using a historically optimized plant density at each
grid cell. Cropping simulations use historical mean CO; lev-
els (Lan et al., 2022) for each year from 1988 (see NOAA,
2023).

2.1.5 Pasture simulations

AADI pasture simulations make use of both the GrassGro
model (Moore et al., 1997; Donnelly et al., 2016) and the
AussieGRASS system (Carter et al., 2000). GrassGro is a
process-based model that simulates pasture dynamics in re-
sponse to grazing pressure from sheep or cattle under a spec-
ified enterprise type and management scenario. GrassGro is
point-based and configured for a specific paddock and runs
on a daily time step. AussieGRASS is a spatial implemen-
tation of the GRASP model (Rickert et al., 2000) of pas-
ture growth developed to operate on an 0.05° grid across
Australia. Within AADI, GrassGro was applied to simulate
pasture growth for improved pastures across the Australian
wheat—sheep and high-rainfall zones, while AussieGRASS
is used for the Australian pastoral or “rangeland” zone
(Fig. A3).

As with APSIM, GrassGro simulations make use of digital
soil mapping derived from the NSSC, while AussieGRASS
relies on an older soil dataset (Northcote, 1960-1968). Pas-
ture simulations make use of daily-time-step historical and
forecast climate data (rainfall, temperature and solar radia-
tion) with AussieGRASS also requiring vapour pressure and
potential evaporation. As with APSIM, both models employ
a “spin-up” simulation period to initialize soil and pasture
conditions. Other model assumptions including pasture com-
position, grazing pressure (i.e. stocking rates), tree density
and fire scars (in the case of AussieGRASS) are detailed in
Hughes et al. (2024).
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2.1.6 Farm business simulations

Farm business simulations are derived using farmpredict
(Hughes et al., 2022b), a statistical micro-simulation model
of Australian broadacre farming businesses based on data
from the AAGIS. The farmpredict model simulates produc-
tion and financial outcomes at a farm business scale, given
each farm’s characteristics (e.g. its location, size, industry,
capital and livestock holdings), prevailing climate conditions
and commodity prices.

The model employs a machine learning approach (a multi-
variable XGBoost stack; see Hughes et al., 2022b) to develop
statistical links between farm production, climate and prices.
A sample of around 45000 observations from the AAGIS
over the period 1991-1992 to 2021-2022 is used to train
the model, with each farm linked via geocoding to historical
SILO data. The model predicts crop and livestock outputs, in-
put use, and stock (inventory) holdings (including livestock
on-farm crop and wool storage). These outcomes are then
combined within an accounting framework to simulate farm
profit (see Hughes et al., 2022b).

For AADI, farmpredict was updated to take bio-physical
data as inputs alongside existing weather data (i.e. rain-
fall and temperature), including simulated APSIM wheat
and sorghum yields and simulated pasture variables from
AussieGRASS (including pasture growth, total standing dry
matter (TSDM), green leaf mass and pasture growth days).
For AADI, farmpredict is applied to synthetic farm business
data (Sect. 2.1.3), which define a single farm for each grid
cell.

The farm profit indicator presented in the current AADI
user interface (UI) is based on a “climate only” scenario,
which, consistently with Hughes et al. (2022a), isolates the
effects of climate variability on farm profits. In these sim-
ulations, global output and input prices are held fixed (al-
though the spread between domestic and global grain prices
can vary in response to climate data to capture domestic price
increases in drought years; see Hughes et al., 2022a). A sec-
ond scenario (“with prices”) was also developed which al-
lows for annual variation in output and input prices along
with climate variability. For this scenario, historical prices
were de-trended to account for long-term trends in real out-
put and input prices (particularly increases in sheep and lamb
output prices).

As shown in Fig. 3, the inclusion of commodity price ef-
fects has a significant influence on the results. While both in-
dicators identify the similar drought years at a national scale
(2002-2003, 2006-2007, 2018-2019 and 2019-2020), the
relative rankings vary: price effects lessen the severity of the
2018-2019 drought (as commodity prices were favourable)
and increase the severity of the 2006-2007 drought (which
coincided with low commodity prices). More recently, 2023—
2024 was an adverse year for farm businesses due to a dra-
matic fall in Australian livestock prices (compounded by
below-average climate conditions).

Nat. Hazards Earth Syst. Sci., 25, 3461-3482, 2025
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October 2024. (d) AADI national average farm profit (with prices) indicator time series of 1991-1992 to 2024-2025.

2.2 Validation

The accuracy of the AADI can be assessed along two main
dimensions: “forecast skill” and “indicator skill”. Here fore-
cast skill refers to ability of forecasts at various lead times to
reflect end-of-period (i.e. crop season or financial year) val-
ues, which depends on both weather forecast skill and the
effects of antecedent conditions. AADI forecast skill is con-
sidered in detail in Schepen et al. (2025). Here the focus is
on indicator skill: the extent to which end-of period indica-
tors (derived from observed climate data) are correlated with
real-world outcomes.

In the absence of forecast error, indicators will still differ
from on-the-ground outcomes (e.g. crop yields, farm prof-
its) due to a combination of model error and input data er-
ror. Each of the simulation models used in the AADI sys-
tem (APSIM, AussieGRASS, GrassGro and farmpredict) has
been previously calibrated and validated against specific site
data. However, simulating models on a grid introduces ad-
ditional error, since gridded agricultural data (such as soil
type and farm business details) need be interpolated from a
limited number of site observations (Richetti et al., 2024).

Nat. Hazards Earth Syst. Sci., 25, 3461-3482, 2025

Weather data are also subject to interpolation error given a
limited number of weather station sites.

2.2.1 Data sources

In this study, we validate AADI against a range of pub-
lic small-region observational data drawn from a range of
sources (Table 1). These observational data are compared
with historical AADI percentile values (for the period 1990-
1991 to 2021-2022) that are aggregated to match the same
regional scales. In addition to the four indicators in the cur-
rent AADI UI (“climate only” farm profit, pasture growth,
winter crop yield and summer crop yield), we also consider
the “with prices” farm profit indicator, the AussieGRASS
pasture biomass (total standing dry matter) indicator and
rainfall percentiles. In Appendix B, we also present corre-
lation maps at the grid scale, comparing AADI data against
interpolated AAGIS variables. Agricultural production data
are obtained from annual ABS and ABARES surveys, in-
cluding a range of regional data from AAGIS over the period
1990-1991 to 2022-2023 (Table 1).

https://doi.org/10.5194/nhess-25-3461-2025
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Table 1. Regional observation data, sources and summary statistics.
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Variable Source  Units (AUD)  Year range Region  Sample Mean SD
Annual FHA claims lodged (per total DAFF No. 2014-2015 t0 20222023 LGA 3789 0.03 0.14
number of agricultural businesses)

House transfers per 1000 population ~ ABS No. per 1000  2015-2016 to 2020-2021 LGA 2322 15.13 5.97
Dwelling transfers ABS No. per 1000  2015-2016 to 2020-2021 LGA 1402 2.92 242
Personal insolvencies ABS No. per 1000 2016-2017 to 2020-2021 LGA 1561 1.21 0.86
Job numbers per capita ABS No. 2015-2016 to0 20192020 LGA 2123 0.72 0.15
Agricultural job numbers per capita ABS No. 2015-2016 t0 20192020 LGA 2095 0.07 0.06
Total employee income per capita ABS AUD 1000 2015-2016 t0 2019-2020 LGA 2052 23.59 7.30
Total unincorporated business ABS AUD 1000 2015-2016 to0 2019-2020 LGA 2010 3.79 4.42
Income per capita

Total income per capita ABS AUD 1000 2015-2016 to 20192020 LGA 2043 29.19 8.10
Small-business exits ABS No. per 1000  2018-2019 to 2021-2022 LGA 1468 21.16 31.27
(turnover < 200 000)

Births per 1000 population® ABS No. per 1000 2016 to 2021 LGA 2513 11.89 3.86
Deaths per 1000 population? ABS No. per 1000 2016 to 2021 LGA 2426 8.09 3.09
Net internal migration ABS No. per 1000 2016 to 2021 LGA 2522 10.86 10.32
Wheat yield AAGIS  tha™! 1990-1991 to 2021-2022  AAGIS 602 1.99 1.00
Sorghum yield AAGIS  tha™! 1990-1991 to 2021-2022  AAGIS 129 2.87 2.06
Farm rate of return (profit/capital) AAGIS % 1990-1991 to 2021-2022  AAGIS 961 1.29 3.09
Farmer seasonal conditions AAGIS 04 1990-1991 to 2021-2022  AAGIS 961 2.34 0.91
assessment

Farmer drought assessment AAGIS 0-1 1990-1991 to 2021-2022  AAGIS 961 0.20 0.27
Fodder demand® AAGIS  Index 1990-1991 to 2021-2022  AAGIS 961 2.73 2.86

ABS: Australian Bureau of Statistics data by region https://dbr.abs.gov.au/ (last access: 1 December 2024); AAGIS: Australian Agricultural and Grazing Industry Survey
(AAGIS) https://www.agriculture.gov.au/abares/research-topics/surveys/farm-definitions-methods (last access: 1 December 2024); DAFF: Australian Government Department
of Agriculture, Fisheries and Forestry. ® Demographic variables are calendar years 1 January to 31 December. All other data are financial years 1 July to 30 June. Demographic
data are linked to financial-year data (ending 30 June in that year), allowing for some lag between drought impacts and demographic changes. b purchased fodder quantity
index (fodder expenditure/fodder price index) relative to total livestock holdings measured in dry sheep equivalent (DSE).

To test whether these indicators have predictive power be-
yond the farm level, we also consider socio-economic data at
the local government area (LGA) level taken from the ABS
“data by region” product (see Table 1). The ABS “data by re-
gion” product is a relatively new dataset derived largely from
administrative data and offers small-region estimates for a se-
lection of recent years. Administrative data are also obtained
on the number of claims that have been made by Australian
farmers under the Farm Household Allowance (FHA) pro-
gramme  (https://www.agriculture.gov.au/agriculture-land/
farm-food-drought/drought/farm-household-allowance
(last access: 1 December 2024) at the LGA level since
2014-2015.

https://doi.org/10.5194/nhess-25-3461-2025

Annual LGA level socio-economic data are subject to re-
gression analysis to estimate the marginal effect of low (be-
low 10th percentile) indicator values on socio-economic out-
comes. Here, for each indicator and socio-economic mea-
sure, a fixed-effects regression is estimated, with a binary
variable equal to 1 for percentile values less than 10 (and O
otherwise), along with regional identifiers (fixed effects) and
a linear time trend. An additional control variable is included
for the mortality regression model: state level covid-19 death
rates (with data obtained from the Australian Government;
NNDSS, 2024).
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Table 2. Correlation of drought indicators with observed farm rate of return 1990-1991 to 2022-2023.

Farm profit Farm profit ~ Pasture Pasture Rainfall

(AADI) (with prices)* (AADI) (TSDM) (July-June)

Regional  25th 0.31 0.57 0.21 0.36 0.07
(AAGIS) 50th 0.50 0.66 0.32 0.46 0.18
75th 0.65 0.76 0.45 0.56 0.45

Mean 0.46 0.64 0.32 0.45 0.25

State NSW 0.72 0.85 0.58 0.74 0.55
VIC 0.43 0.78 0.38 0.57 0.16

QLD 0.63 0.78 0.54 0.53 0.59

SA 0.52 0.72 0.25 0.46 0.16

WA 0.30 0.60 0.07 0.44 —-0.02

TAS 0.46 0.80 0.26 0.36 0.16

NT 0.41 0.44 0.43 0.41 0.07

National 0.42 0.80 0.41 0.54 0.27

* Indicator with highest correlation.

3 Results

3.1 Indicator skill

Correlation between the drought indicators and relevant agri-
cultural outcomes is summarized in Tables 2 to 3 and Figs. 6
to 7. It is important to note that AADI historical percentiles
are based on model scenarios which hold technology and
management practices fixed and simulate historical climate
(and price) variability. Further, outcome data have not been
subject to de-trending or any other calibration. As such these
correlation scores are intended for measuring the relative per-
formance of the indicators (rather than an absolute assess-
ment of the AADI system).

As shown in Table 2 and Fig. 4, the farm profit (with
prices) indicator has by far the strongest correlation with
the historical rate of return data (farm profit relative to cap-
ital holdings), with a mean correlation of 0.64 at a regional
scale. The inclusion of commodity price variability leads to
a significant improvement in skill, relative to the farm re-
turns (climate only) indicator (mean regional correlation of
0.46), although the “climate only” indicator still yields a non-
trivial improvement over a simple rainfall percentile (mean
regional correlation of 0.25). The inclusion of commodity
price effects tends to yield a larger gain in skill in livestock-
dominant regions (coastal, high-rainfall zones and inland,
pastoral zones) given the greater relative exposure of these
farms to price risk.

Correlation maps (Fig. 4) show that the skill of the profit
indicators tends to be higher in eastern Australia, with lower
correlation observed in parts of South Australia (SA) and
Western Australia (WA) along with far north Queensland.
Appendix B presents higher-resolution correlation maps us-
ing interpolated observational data (Fig. B2). These maps
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highlight some more specific areas of low correlation, includ-
ing the SA Yorke peninsula (Fig. B2)

Table 3 presents correlation against agricultural produc-
tion outcomes, including wheat yields, sorghum yields and
fodder demand. Assessments of pasture indicators are dif-
ficult, given the lack of ground-truth data (pasture observa-
tions). Here we rely on fodder demand (hay/grain purchased
to feed livestock) as a proxy for pasture condition (i.e. farms
with good pasture require less purchased fodder, so negative
correlation is expected; see Table 3 and Fig. 5c and d). Over-
all, the results show slightly better skill for the AADI pasture
indicator in terms of fodder demand (relative to TSDM and
rainfall), although performance of the AADI pasture indica-
tor is weaker in SA and Northern Territory (NT). The TSDM
indicator tends to perform better (relative to the AADI pas-
ture growth measure) in the more remote rangeland areas
(Figs. 5 and B2).

As shown in Table 3, both APSIM-based crop indicators
are well correlated with historical crop yield data (mean re-
gional correlation of 0.55 for wheat and 0.59 for sorghum).
In the majority of the AAGIS regions (11 of 17), the AADI
wheat yield indicator outperforms growing-season (April—
October) rainfall percentiles, with the largest gains in north-
ern NSW and QLD. But in a number of southern and western
cropping regions (e.g. southern VIC, SA and WA) growing-
season rainfall shows higher correlation. More detailed as-
sessments of crop indicator skill using interpolated gridded
data are presented in Appendix B. Figure B2 shows that the
AADI wheat indicator is weaker along the coastal fringe of
the winter cropping zone. In contrast, the APSIM sorghum
yield indicator generally outperforms rainfall across the sum-
mer cropping zone.

https://doi.org/10.5194/nhess-25-3461-2025
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Figure 4. Regional correlation of drought indicators with observed annual farm profit (AAGIS) from 1990-1991 to 2021-2022. (a) Annual
rainfall percentile. (b) Pasture growth indicator (AussiecGRASS). (¢) Farm profit indicator (climate only). (d) Farm profit indicator (with

prices).

3.2 Farm household allowance

Data on the number of claims under the Australian Govern-
ment’s Farm Household Allowance (FHA) programme show
a high level of correlation with AADI data, particularly the
farm profit “with prices” indicator (Table 4, Figs. 6 and B1).

Given the nature of the FHA programme (income support
for farms in financial hardship), it is logical that claims are
better correlated with financial than with climatic indicators.

https://doi.org/10.5194/nhess-25-3461-2025

Further, as would be expected, FHA claims are associated
with severely adverse (e.g. less than 10th percentile) out-
comes for farm profitability (see Figs. 6 and 7). Figure 6
demonstrates the large improvement in predictive power be-
tween the farm profit “with prices” indicator, with an effect
size around double that of the “climate only” version (a result
confirmed with regression analysis in Sect. 3.3).
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Table 3. Correlation of drought indicators with observed crop and livestock productivity from 1990-1991 to 2022-2023.

Wheat yield ‘ Sorghum yield ‘ Fodder demand
Wheat April-October | Sorghum April-March | Pasture  Pasture June—July
(AADI) rainfall (AADI)  rainfall (AADI) (TSDM) rainfall
Regional 25th  0.39 0.43* 0.55* 0.45 —0.54*  —0.52 —0.50
(AAGIS) 50th  0.64* 0.60 0.59* 0.50 —-0.37 —0.40* —0.35
75th  0.77* 0.76 0.64* 0.58 —0.17 —0.29* —0.18
Mean 0.55 0.60* 0.59* 0.52 —0.36 —0.38* —0.32
State NSW  0.83 0.85* 0.74 0.79* —0.63* —0.56 —0.61
VIC 0.69 0.78* —-0.59* —0.45 —0.57
QLD  0.79* 0.67 0.74* 0.55 —0.66* —0.62 —0.50
SA 0.81 0.84* —-0.37 —0.56* —-0.27
WA 0.76 0.80* —-0.36% —0.22 —0.28
TAS 0.40* 0.17 —0.51%  —0.40 —0.35
NT —0.08 —0.25* —0.04
National 0.85* 0.76 0.81* 0.71 —-0.67 —0.56 —0.56

* Indicator with best correlation.

Table 4. Correlation of drought indicators with Farm Household Allowance claims from 2014-2015 to 2022-2023 at regional, state and

national scales.

Farm profit ~ Farm profit Pasture  Pasture Rainfall
(AADI) (with prices) (AADI) (TSDM) (July—June)
Regional  25th -0.63 —0.75* —-0.53 —-0.61 —0.56
(AAGIS) 50th —0.46 —0.55* —-031 -0.41 —0.39
75th —0.11 —0.14* —-0.01 —-0.09 —0.08
Mean -035 —-041* —-024 -0.33 —0.29
State NSW -0.69 —0.78* —-0.51 —-0.70 —0.65
VIC —0.69 —0.84* —-0.55 —0.54 —0.6
QLD -0.78 —0.83* —-0.26 —0.65 —0.68
SA —-0.51 —0.51 -0.26 —0.55* —0.63
WA -0.17 —-0.42 020 —0.58* —0.37
TAS —-0.19 —0.08 038 —0.10 —0.20*
NT —-034 —041* —-0.39 -0.39 —0.38
National -0.60 —0.78* —-042 -0.74 —0.73

* Indicator with highest correlation.

The level of correlation is particularly strong in eastern
Australia (—0.78 NSW, —0.84 VIC and —0.83 QLD), with
lower correlation observed in WA (—0.42; Table 4, Fig. B1).
This may be partly a result of sample size, since the number
of claims during this period was lower in WA (and the period
2014-2015 to 2022-2023 included fewer < 10th percentile
values for the farm profit indicator in these regions).

Farmer drought self-assessments
Following Hughes et al. (2022a) we also consider how the
indicators of the AADI correlate with farmer subjective self-

assessments of drought (as reported by farmers participating
in the annual AAGIS). These self-assessments are based on

Nat. Hazards Earth Syst. Sci., 25, 3461-3482, 2025

survey questions asking farmers to assess conditions over the
preceding financial year (based on a 5-point scale ranging
from drought to flood). These data have then been aggregated
to the AAGIS region level to estimate proportion of farmers
self-assessing as drought affected in each year.

As might be expected, the farm profit “climate only” in-
dicator shows better correlation than the “with prices” ver-
sion, consistent with the common perception that drought
is derived from adverse weather conditions (rather than ad-
verse economic conditions) (Table 5). Overall, the pasture
(TSDM) indicator shows the highest correlation with farmer
self-assessments of drought, with both the pasture (TSDM)

https://doi.org/10.5194/nhess-25-3461-2025
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Figure 5. Regional correlation with observed annual crop and livestock productivity data of 1990-1991 to 2021-2022. (a) AADI wheat
yield indicator — wheat yields. (b) AADI sorghum yield indicator — sorghum yields. (¢) AADI pasture growth indicator — fodder demand
(negative correlation indicates better performance). (d) Pasture growth indicator (TSDM) — fodder demand (negative correlation indicates

better performance).

and the farm profit (climate only) indicators offering gains
compared with annual rainfall percentiles (Table 5).

3.3 Socio-economic outcomes

Tables 6 and 7 and Fig. 7 present regression results estimat-
ing the marginal effect of low (< 10th percentile) indicator

https://doi.org/10.5194/nhess-25-3461-2025

values on a range of socio-economic indicators. These re-
sults show that farm profit is a superior indicator of socio-
economic outcomes in regional areas. Across most of the
variables considered, farm profit indicators show the largest
and most statistically significant effects. Further, these re-
sponses are broadly consistent with prior expectations. For
example, droughts (indicators < 10th percentile) are associ-
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3472

N. Hughes et al.: The Australian Agricultural Drought Indicators (AADI)

Table 5. Correlation of drought indicators with farmer drought self-assessments (AAGIS) from 1990-1991 to 2022-2023 at regional, state

and national scales.

Farm profit Farm profit ~ Pasture  Pasture Rainfall

(AADI) (with prices) (AADI) (TSDM) (July—June)

Regional  25th —0.68 —0.53 —-0.64 —0.73* —0.68
(AAGIS) 50th —0.63 —0.38 -0.56 —0.66* -0.59
75th —0.51* —-0.22 -038 —-0.50 —-0.38

Mean —0.56 —0.37 —-0.50 —0.59* —-0.54

State NSW  —0.79* —0.64 -0.67 —0.77 —-0.67
VIC —-0.71 —0.57 -0.59 —0.78* —0.66

QLD -0.72 —0.44 -0.65 —0.73* —0.66

SA —0.68 —0.46 -0.40 —0.75* —-0.43

WA —0.59* —0.31 —-034 —-048 —0.08

TAS —0.68* —0.32 -0.54 -0.50 —0.63

NT —-0.30 —0.03 -0.39 —0.39* —-0.31

National —-0.70 —0.56 -0.61 —0.78* —0.53

* Indicator with highest correlation.
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Figure 6. Median regional FHA claims per total number of agricul-
tural businesses, by indicator decile (2014-2015 to 2022-2023).

ated with declines in regional income, house sales, job num-
bers and birth rates and increases in FHA claims, personal
insolvencies, small-business exits and mortality.

As would be expected, the farm profit (with prices) indi-
cator typically shows the largest effects on economic out-
comes (Table 6). Farm profit shocks are associated with sig-
nificant declines in business income (—54 %), total income
(—11 %), jobs (—3 %) and house sales (—17 %) and signifi-
cant increases in personal insolvencies (+15 %) and small-
business exits (+7.2 %). As shown earlier, the farm profit
“with prices” indicator is also strongly correlated with FHA
claims, which increase from an average of 0.03 per agricul-
tural business (in an above-10th-percentile year) to 0.11 (in a
below-10th-percentile year).

Nat. Hazards Earth Syst. Sci., 25, 3461-3482, 2025

While the correlations are generally weaker for demo-
graphic variables, significant effects are still observed for
births, deaths and net migration. For births and deaths,
the climate only version of the farm profit indicator shows
the most significant and strongest effects: a —3 % effect
on regional births and a 43 % effect on deaths. Net re-
gional migration is also negatively affected by drought, with
the strongest indicator being the pasture (TSDM) measure
(+16 %).

Overall, the relative performance of the indicators is
largely consistent with prior expectations. Economic impacts
of drought within Australian regional areas are expected to
be transmitted mostly via declines in farm business incomes
and subsequent flow-on impacts across the local economy
(see Fleming-Mufioz et al., 2023). As such, the farm profit
“with prices” indicator tends to dominate in this context. In
contrast, impacts on fertility, mortality and migration will
depend on a wider set of casual factors beyond farm in-
comes, including, for example, direct weather effects on hu-
man physical and mental health (see, Hanigan et al., 2012,
2018; Fleming-Muiioz et al., 2023).

4 Conclusions

The Australian Agricultural Drought Indicators (AADI) are
the product of an integrated modelling system which simu-
lates specific agricultural outcomes (i.e. crop yields, pasture
growth and farm profits) from gridded climate data. These
results are used to derive outcome-based indicators intended
to represent different aspects of agricultural drought. The key
purpose of this paper was to evaluate these indicators by test-
ing their performance against historical outcome data and
contrasting that against a commonly used meteorological in-
dicator (i.e. rainfall percentiles).

https://doi.org/10.5194/nhess-25-3461-2025
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Figure 7. Percentage effect of drought (indicator below 10th percentile) on selected regional socio-economic outcomes.

Table 6. Percentage effect of drought (drought indicator below 10th percentile) on selected regional socio-economic outcomes.

Farm profit ~ Farm profit Pasture  Pasture Annual

(AADI) (with prices) (AADI) (TSDM) rainfall
Annual FHA claims lodged +158.1 +326.4* +69.3  +120.7 +90.9
House transfers —12.3 —16.9* —12.6 —10.5 —12.7
Dwelling transfers —14.1* —10.5 —10.6 —6.5 —-10.3
Personal insolvencies +7.7 +15.0* +4.7 493 +8.1
Job numbers -3.0 —3.0* -08 2.0 -0.0
Agricultural job numbers —8.2* 74 -22 —40 +1.6
Total employee income -1.0 -1.6 -1.7  —1.9* -1.8
Total business income —28.1 —53.5* —22.7 =398 —26.7
Total income —-5.8 —11.3* =50 71 —4.4
Small-business exits +9.2* +7.2 +43 +1.3 +3.5
Births —3.1* —-1.2 -12 =22 +0.1
Deaths +2.6* +1.1 +0.0 —-0.2 -0.1
Net internal migration -83 —4.7 +1.7 —155* -85

* Largest effect and statistically significant at 1 % level.

Overall, the results demonstrate the value of an outcome-
based approach to drought. The indicators of the AADI have
consistently higher correlation with a range of agricultural
and economic outcomes. The farm profit (with prices) indi-
cator — which accounts for both climatic and price variabil-
ity — was found to be a particularly strong predictor of farm
outcomes, in many cases offering large gains relative to the
“climate only” indicator.

In line with the findings of Hughes et al. (2022a), the
AADI farm profit (climate only) and pasture indicators

https://doi.org/10.5194/nhess-25-3461-2025

proved more consistent with farmer self-assessments of
drought than rainfall, and as would be expected the farm
profit “with prices” indicator proved less consistent. While
an indicator reflecting both price and climate effects is un-
conventional (at least relative to common perceptions of
drought) it is a superior predictor of economic drought im-
pacts and would likely be of use to AADI’s intended govern-
ment audience. For example, the farm profit indicator was
able to predict historical demand for a key Australian Gov-
ernment drought programme. Analysis of FHA claim data

Nat. Hazards Earth Syst. Sci., 25, 3461-3482, 2025
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Table 7. Marginal effect of drought (drought indicator below 10th percentile) on selected regional outcomes.

Variable Indicators

Farm profit ~ Farm profit Pasture Pasture Annual

(AADI) (with prices) (AADI) (TSDM) rainfall
Annual FHA claims lodged (per ag. bus.)  0.041* 0.088* 0.024* 0.035* 0.027*
House transfers (per 1000 population) —1.922* —2.601* —1.949* —1.614* —1.958*
Dwelling transfers (per 1000 population) — —0.429* -0.31* -0.317*  —-0.193  —0.306*
Personal insolvencies (per 1000 pop.) 0.091* 0.178* 0.057 0.111* 0.096*
Job numbers (per capita) —0.022* —0.022* —0.006 —-0.014* 0
Agricultural job numbers (per capita) —0.006* —0.005* —0.001 —0.003 0.001
Total employee income (per capita) —0.242* —0.386* —0.406*  —0.44* —0.428*
Total business income (per capita) —1.15* —2.171* —0.908* —1.616* —1.066*
Total income (per capita) —1.712* —3.346* —1.464* —2.102* -—1.3*
Small-business exits (per 1000 bus.) 1.897* 1.504* 0.853 0.27 0.746
Births (per 1000 population) —0.368* —0.148 —0.139 —0.261 0.007
Deaths (per 1000 population) 0.212* 0.092 0.001 —-0.017 —0.008
Net internal migration (per 1000) —-0.914 —0.515 0.186 —1.721*  —0.933

* Statistically significant at 1 % level.

found an effect size for the farm profit (with prices) indicator
around 3 times that of a rainfall percentile (and around twice
that of the farm profit “climate only” indicator, Table 5).

While models can predict outcomes better than climatic
data alone, measurement errors (i.e. differences between in-
dicators and on-the-ground outcomes) are unavoidable given
the limits of the underlying models and the approximations
required to perform simulations on national grids. This study
provides a detailed picture of the skill of each of the indi-
cators of the AADI and how this varies spatially. In future,
estimates of indicator skill could be added to the operational
system to inform end-users while also being used to guide
system enhancements. While current performance may be
adequate for the intended government use case, future im-
provements in skill could make other farm-level applications
— such as index-based insurance or farmer decision support
— more feasible by reducing “basis risk” (see Hughes et al.,
2022a).

At aregional level, the performance of the farm profit indi-
cators is weaker in some livestock-dominant regions, partic-
ularly the remote rangelands of Western Australia, far north-
ern Australia and parts of coastal Queensland. To some ex-
tent this reflects the limitations of the farmpredict model,
which currently performs better for cropping than for live-
stock farms (Hughes et al., 2022b). Higher-resolution maps
also identify specific areas of weaker performance in south-
ern Australia (Appendix B2), which warrants further consid-
eration.

The APSIM-based crop yield indicators show good cor-
relation with observed yields in most regions; however, the
performance is lower along the coastal fringe of the cropping
zone. In these areas, and in much of the South Australian
cropping zone, the AADI wheat indicator is outperformed by
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growing-season rainfall. Future research could consider al-
ternative specifications of APSIM or simpler statistical mod-
els as an alternative (for example Potgieter et al., 2022; Pang
et al., 2022; Stephens, 1998). The current AADI pasture in-
dicator is based on estimates of annual pasture growth (kg);
however in the more remote rangeland regions, an indicator
based on available pasture biomass (total standing dry mat-
ter) appears to have greater predictive power. Future research
could consider whether the indicators of the AADI could be
designed in a more flexible way to exploit the model or mea-
sure with the highest prevailing skill at each location.

Perhaps the most surprising result from this study is the
ability of AADI to generalize beyond agriculture and predict
broader socio-economic drought impacts. The AADI farm
profit indicators were found to have superior correlation with
a range of regional economic impacts, predicting drought-
related decreases in regional incomes, jobs and house sales
and increases in personal insolvencies and business exits.
This study also found some correlation between the indi-
cators and demographic outcomes, with drought linked to
lower birth rates, higher mortality and negative net migra-
tion. While there has been some research measuring the ef-
fects of drought (as opposed to extreme heat) on mortality in
the USA (Berman et al., 2017; Salvador et al., 2023; Lynch
et al., 2020), the findings have been mixed. In Australia, re-
search has been limited to mental health effects and suicide
risk (Hanigan et al., 2012, 2018; Edwards et al., 2015), while
fertility and migration have received limited attention in gen-
eral. This study makes use of a relatively new dataset derived
from administrative records. While beyond the scope of this
study, future research could use these data to examine the
transmission of socio-economic drought impacts in more de-
tail.
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Appendix A: AADI system

Al Soil data

Soil type legend

- Shallow sand or loam (< 20 cm) over relatively friable clay subsoils
- Deep sand or loam (> 20 cm) over relatively friable clay subsoils
- Shallow (< 50 cm) friable non-cracking clay or clay loam soils
|- Deep (> 50 cm) friable non-cracking clay or clay loam soils
\:l Seasonally or permanently wet soils

\:| Shallow (< 50 cm) redyellow or grey earthy (loamy) soils

|:| Deep (< 50 cm) red,yellow or grey earthy (loamy) soils

I:l Peaty soils

\:] Deep sandy soils > 50 cm

\:] Shallow sandy soils < 50 cm

\:’ Shallow stony soils < 30 cm

\:l Shallow Sand or loam (< 20 cm) over intractable clay

\:l Deep sand or loam (> 20 cm) over intractable clay subsoils
\:| Grey cracking clay soils

\:| Other shallow (< 50 cm) cracking clay soils

Other moderately Deep (50 — 100 cm) cracking clay soils

- Other deep (> 100 cm) cracking clay soils

- Highly calcareous soils

Figure A1l. National Soil Generic Group (SGG) dominant-class map.

https://doi.org/10.5194/nhess-25-3461-2025

Nat. Hazards Earth Syst. Sci., 25, 3461-3482, 2025



3476 N. Hughes et al.: The Australian Agricultural Drought Indicators (AADI)

A2 Farm business data

Area operated (ha)
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Figure A2. Synthetic farm business data selected variables.
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A3 Pasture simulations

[l AussieGRASS
B GrassGro

Figure A3. Extent of AussieGRASS and GrassGro pasture growth data using in the AADI pasture indicator.

A4 Crop simulations

Cropping zones

[ Wheat and Sorghum

B Wheat

Figure A4. Extent of AADI cropping simulations for the winter (wheat) and summer (sorghum) crop yield indicators.
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Appendix B: Additional results

B1 AADI correlation with farmer drought
self-assessments and FHA claims

As shown in Fig. B1, the AADI farm profit (with prices)
indicator (Fig. B1b) is better correlated with FHA claims
than the climate only version (Fig. Bla), particularly in
eastern Australia, while the farm profit (with climate) in-
dicator shows better correlation with farmer drought self-
assessments across most regions (Fig. Blc), compared to the
farm profit (with prices) version (Fig. B1d).

correlation

0.80- 1.00
0.60- 0.80
0.40- 0.60

0.20- 0.40
0.00- 0.20
-0.20- 0.00
-0.40- -0.20
-0.60- -0.40
-0.80- -0.60
-1.00- -0.80
Non-agricultural land

(a)

Figure B1. (a) AADI farm profit (climate only) indicator correlation with FHA claims. (b) AADI farm profit (with prices) indicator correla-
tion with FHA claims. (¢) AADI farm profit (climate only) indicator correlation with farmer drought self-assessments. (d) AADI farm profit
(with prices) indicator correlation with farmer drought self-assessments.
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B2 AADI correlation with interpolated data

In this section the indicators of the AADI are evaluated at
the 0.05° scale by measuring their correlation with grid-
ded observational data. These gridded observation data are
derived from geo-coded unit-record AAGIS data (individ-
ual farm survey respondents/farm business locations), which
have been interpolated across the 0.05° grid using the same
distance-weighted kernel smoothing method applied to the
AADI farm business data (summarized in Sect. 2.1.1 of this
article and in the AADI progress report; see Hughes et al.,
2024).

(a) Wheat - wheat yield

Indicator skil

High skl
035065 Mediom skil 4
045035 Low skt

on-agricuttural land

(c) Farm profit (climate only) - rate of return
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Results are shown in Fig. B2. These maps show high-level
patterns comparable to the regional results presented in the
main article, just with much higher resolution. While these
results show more precise patterns, they need to be treated
with a degree of caution, given that the observational data
are interpolated.

Pasture (AADI) - fodder demand (b)

o000 [ ransen
025050 [ weakm scn s EY
R —

Hon-agricuturol ond

Farm profit (with prices) - rate of return  (d)

Figure B2. (a) AADI wheat indicator: correlation with interpolated wheat yield (AAGIS) from 1990-1991 to 2022-2023 at the 0.05° grid
scale. (b) Pasture (TSDM) indicator: correlation with interpolated farm profit (AAGIS) from 1990-1991 to 2022-2023 at the 0.05° grid scale.
(c) AADI farm profit (climate only) indicator: correlation with the interpolated farm rate of return (AAGIS) from 1990-1991 to 2022-2023
at the 0.05° grid scale. (d) Farm profit (with prices) indicator: correlation with the interpolated farm rate of return (AAGIS) from 1990-1991
to 2022-2023 at the 0.05° grid scale.
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Data availability. Datasets used to produce the validation results
presented in this paper are available for download at Mendeley Data
(https://doi.org/10.17632/8yhcr28wbk.1, Hughes, 2024). These
datasets include observed outcome data (as outlined in Table 1)
along with the indicators of the AADI aggregated to the same re-
gional scales (LGA and AAGIS regions). FHA claim data are held
by DAFF and could not be included in the datasets due to privacy
constraints (all other data listed in Table 1 are included). Historical
gridded farm simulation data generated from the AADI project
are available via the ABARES website as the Australian Gridded
Farm Data (https://www.agriculture.gov.au/abares/research-topics/
surveys/farm-survey-data/australian- gridded-farm-data, ABARES,
2024a). ABARES AAGIS farm survey data are available online
(https://www.agriculture.gov.au/abares/research-topics/surveys/
farm-survey-data, ABARES, 2024b). ABS “data by region”
are available online (https://dbr.abs.gov.au/, ABS, 2024). SILO
climate data and a selection of AussiecGRASS outputs are avail-
able via the Queensland Government “The Long Paddock™ site
(https://www.longpaddock.qld.gov.au/, Queensland Government,
2024).
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