Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-3355-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-3355-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The dynamics of peak head responses at Dutch canal dikes and the impact of climate change
Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Risk and disaster management Unit, HKV Consultants, Botter 11 29, 8232 JN Lelystad, the Netherlands
Matthijs Kok
Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Risk and disaster management Unit, HKV Consultants, Botter 11 29, 8232 JN Lelystad, the Netherlands
Related authors
No articles found.
Cees Oerlemans, Martine van den Boomen, Ties Rijcken, and Matthijs Kok
EGUsphere, https://doi.org/10.5194/egusphere-2024-2910, https://doi.org/10.5194/egusphere-2024-2910, 2025
Short summary
Short summary
This study analyzes flood exposure in Rotterdam's unembanked areas from 1970 to 2150, exploring the interplay between rising sea levels, urban development, and flood protection measures. Without measures, flood exposure will increase, especially after 2100. The Maeslant storm surge barrier had the most impact on flood exposure, followed by urban development and sea level rise. Varied exposure levels across neighborhoods suggest the need for localized adaptation strategies.
Guus Rongen, Oswaldo Morales-Nápoles, and Matthijs Kok
Hydrol. Earth Syst. Sci., 28, 2831–2848, https://doi.org/10.5194/hess-28-2831-2024, https://doi.org/10.5194/hess-28-2831-2024, 2024
Short summary
Short summary
This study proposes a new method for predicting extreme events such as floods on the river Meuse. The current method was shown to be unreliable as it did not predict a recent flood. We developed a model that includes information from experts and combines this with measurements. We found that this approach gives more accurate predictions, particularly for extreme events. The research is important for predictions of extreme flood levels that are necessary for protecting communities against floods.
Cited articles
Actueel Hoogtebestand Nederland: http://www.ahn.nl (last access: 22 November 2023), 2022.
Arsenault, R., Brissette, F., and Martel, J. -L.: The hazards of split-sample validation in hydrological model calibration, Journal of Hydrology, 566, 346–362, https://doi.org/10.1016/j.jhydrol.2018.09.027, 2018.
Azizi, A., Musso, G., and Jommi, C.: Effects of repeated hydraulic loads on microstructure and hydraulic behaviour of a compacted clayey silt, Can. Geotech. J., 57, 100–114, https://doi.org/10.1139/cgj-2018-0505, 2020.
Bakker, M. and Schaars, F.: Solving groundwater flow problems with time series analysis: you may not even need another model, Groundwater, 57, 826–833, https://doi.org/10.1111/gwat.12927, 2019.
Bengfort, B. and Bilbro, R.: Yellowbrick: Visualizing the Scikit-Learn Model Selection Process, Journal of Open Source Software, 4, 1075, https://doi.org/10.21105/joss.01075, 2019.
Berendrecht, W. L., Heemink, A. W., Van Geer, F. C., and Gehrels, J. C.: A non-linear state space approach to model groundwater fluctuations, Adv. Water Resour., 29, 959–973, https://doi.org/10.1016/j.advwatres.2005.08.009, 2006.
Box, G. E. P. and Jenkins, G. M.: Time Series Analysis: Forecasting and Control, Holden-Day, ISBN 0816210942, 1970.
Collenteur, R. A., Bakker, M., Caljé, R., Klop, S. A., and Schaars, F.: Pastas: open source software for the analysis of groundwater time series, Groundwater, 57, 877–885, https://doi.org/10.1111/gwat.12925, 2019.
Collenteur, R. A., Bakker, M., Klammler, G., and Birk, S.: Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data, Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, 2021.
De Bruin, H. A. R.: From penman to makkink, in: Evaporation and Weather, Technical Meeting 44, 5–31, 1987.
Everitt, B. S., Landau, S., Leese, M., and Stahl, D.: Cluster Analysis, Wiley Online Library, https://doi.org/10.1002/9780470977811, 2011.
Frank, R., Bauduin, C., and Driscoll, R. M.: Designers' Guide to Eurocode 7: Geotechnical Design: Designers' Guide to EN 1997-1, Eurocode, 7: Geotechnical Design-General Rules, Thomas Telford, ISBN 978-0-7277-3154-8, 2004.
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate, Earth-Sci. Rev., 162, 227–252, https://doi.org/10.1016/j.earscirev.2016.08.011, 2016.
Gildeh, H. K., Hosseini, P., Zhang, H., Riaz, M., and Acharya, M.: Canal embankment failure mechanism, breach parameters and outflow predictions, in: Sustainable and Safe Dams Around the World/Un monde de barrages durables et sécuritaires, CRC Press, 61–74, https://doi.org/10.1201/9780429319778-6, 2019.
Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., and Altman, D. G.: Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations, Eur. J. Epidemiol., 31, 337–350, https://doi.org/10.1007/s10654-016-0149-3, 2016.
Hall, J. and Blöschl, G.: Spatial patterns and characteristics of flood seasonality in Europe, Hydrol. Earth Syst. Sci., 22, 3883–3901, https://doi.org/10.5194/hess-22-3883-2018, 2018.
Hartigan, J. A. and Wong, M. A.: Algorithm AS 136: A k-means clustering algorithm, J. Roy. Stat. Soc. C-App., 28, 100–108, https://doi.org/10.2307/2346830, 1979.
Huang, W., Loveridge, F. A., Briggs, K. M., Smethurst, J. A., Saffari, N., and Thomson, F.: Forecast climate change impact on porewater pressure regimes for the design and assessment of clay earthworks, Q. J. Eng. Geol. Hydroge., 57, qjegh2023-015, https://doi.org/10.1144/qjegh2023-015, 2024.
Jamalinia, E., Vardon, P. J., and Steele-Dunne, S. C.: The impact of evaporation induced cracks and precipitation on temporal slope stability, Comput. Geotech., 122, 103506, https://doi.org/10.1016/j.compgeo.2020.103506, 2020.
Jongejan, R. B., Diermanse, F., Kanning, W., and Bottema, M.: Reliability-based partial factors for flood defenses, Reliab. Eng. Syst. Safe., 193, 106589, https://doi.org/10.1016/j.ress.2019.106589, 2020.
Kanning, W.: The Weakest Link - Length Effects for Piping, PhD thesis, Delft University of Technology, Delft, The Netherlands, https://doi.org/10.4233/uuid:5fb7b121-dc00-48aa-bda2-b163f10513bf, 2012.
Knotters, M. and De Gooijer, J. G.: TARSO modeling of water table depths, Water Resour. Res., 35, 695–705, https://doi.org/10.1029/1998WR900049, 1999.
Knotters, M. and Van Walsum, P. E. V.: Estimating fluctuation quantities from time series of water-table depths using models with a stochastic component, J. Hydrology, 197, 25–46, https://doi.org/10.1016/s0022-1694(96)03278-7, 1997.
Lendering, K., Schweckendiek, T., and Kok, M.: Quantifying the failure probability of a canal levee, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 12, 203–217, https://doi.org/10.1080/17499518.2018.1426865, 2018.
Manh, N. V., Merz, B., and Apel, H.: Sedimentation monitoring including uncertainty analysis in complex floodplains: a case study in the Mekong Delta, Hydrol. Earth Syst. Sci., 17, 3039–3057, https://doi.org/10.5194/hess-17-3039-2013, 2013.
Martín-Antón,, M., Negro, V., del Campo, J. M., López-Gutiérrez, J. S., and Esteban, M. D.: Review of coastal land reclamation situation in the world, J. Coastal Res., 75, 667–671, https://doi.org/10.2112/si75-133.1, 2016.
McDonald, M. G. and Harbaugh, A. W.: The history of MODFLOW, Groundwater, 41, 280–283, https://doi.org/10.1111/j.1745-6584.2003.tb02591.x, 2003.
Moore, R., Carey, J. M., and McInnes, R. G.: Landslide behaviour and climate change: predictable consequences for the Ventnor Undercliff, Isle of Wight, Q. J. Eng. Geol. Hydroge., 43, 447–460, https://doi.org/10.1144/1470-9236/08-086, 2010.
Morton, L. W. and Olson, K. R.: The pulses of the Mekong River Basin: Rivers and the livelihoods of farmers and fishers, Journal of Environmental Protection, 9, 431, https://doi.org/10.4236/jep.2018.94027, 2018.
Özer, I. E., van Damme, M., and Jonkman, S. N.: Towards an international levee performance database (ILPD) and its use for macro-scale analysis of levee breaches and failures, Water, 12, 119, https://doi.org/10.3390/w12010119, 2019.
Pleijster, E. J., van der Veeken, C., Jongerius, R., and Luiten, E.: Dijken van Nederland, Nai010 uitgevers, ISBN 978-94-6208-150-5, 2015.
Rianna, G., Zollo, A., Tommasi, P., Paciucci, M., Comegna, L., and Mercogliano, P.: Evaluation of the effects of climate changes on landslide activity of Orvieto clayey slope, Proced. Earth Plan. Sc., 9, 54–63, 2014.
Ridley, A., McGinnity, B., and Vaughan, P.: Role of pore water pressures in embankment stability, P. I. Civil Eng.-Geotec., 157, 193–198, 2004.
Rikkert, S. J. H.: A system perspective on flood risk in polder drainage canal systems, PhD thesis, Delft University of Technology, https://doi.org/10.4233/uuid:61e6645a-f275-4b69-aa29-1150d3cda2b1, 2022.
Rikkert, S. J. H., Kok, M., Lendering, K., and Jongejan, R.: A pragmatic, performance-based approach to levee safety assessments, J. Flood Risk Manag., 15, e12836, https://doi.org/10.1111/jfr3.12836, 2022.
Rouainia, M., Helm, P., Davies, O., and Glendinning, S.: Deterioration of an infrastructure cutting subjected to climate change, Acta Geotech., 15, 2997–3016, 2020.
Rousseeuw, P. J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 53–65, 1987.
Schweckendiek, T.: On reducing piping uncertainties: A Bayesian decision approach, PhD thesis, Delft University of Technology, https://doi.org/10.4233/uuid:f9be2f7e-7009-4c73-afe5-8b4bb16e956f, 2014.
Sharp, M., Wallis, M., Deniaud, F., Hersch-Burdick, R., Tourment, R., Matheu, E., Seda-Sanabria, Y., Wersching, S., Veylon, G., Durand, E., and others: The international levee handbook, CIRIA, ISBN 978-0-86017-734-0, 2013.
Shen, H., Tolson, B. A., and Mai, J.: Time to update the split-sample approach in hydrological model calibration, Water Resour. Res., 58, e2021WR031523, https://doi.org/10.1029/2021WR031523, 2022.
Šimůnek, J., Šejna, M., and Van Genuchten, M. T.: The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media: Version 2.0, US Salinity Laboratory, Agricultural Research Service, US Department Agriculture, 1999.
Stafleu, J., Maljers, D., Busschers, F. S., Gunnink, J. L., Schokker, J., Dambrink, R. M., Hummelman, H. J., and Schijf, M. L.: GeoTop modellering, TNO report, 10991, 2012.
Steenbergen, C. M., Reh, W., Nijhuis, S., and Pouderoijen, M. T.: The Polder Atlas of The Netherlands: Pantheon of the Lowlands, Uitgeverij Thoth, ISBN 978-9-06868-519-0, 2009.
Stirling, R. A., Toll, D. G., Glendinning, S., Helm, P. R., Yildiz, A., Hughes, P. N., and Asquith, J. D.: Weather-driven deterioration processes affecting the performance of embankment slopes, Géotechnique, 71, 957–969, 2021.
Strijker, B.: Dataset in support of the dynamics of peak head responses at Dutch canal dikes and the impact of climate change, 4TU.ResearchData [data set], https://doi.org/10.4121/4004f445-b71b-4996-bd7d-10b1fafbc86b, 2024.
Tran, D. D. and Weger, J.: Barriers to implementing irrigation and drainage policies in An Giang Province, Mekong Delta, Vietnam, Irrig. Drain., 67, 81–95, 2018.
Triet, N. V. K., Dung, N. V., Fujii, H., Kummu, M., Merz, B., and Apel, H.: Has dyke development in the Vietnamese Mekong Delta shifted flood hazard downstream?, Hydrol. Earth Syst. Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017, 2017.
Van Baars, S. and Van Kempen, I. M.: The causes and mechanisms of historical dike failures in the Netherlands, E-Water Official Publication, European Water Association, 1–14, https://resolver.tudelft.nl/uuid:a44dbb70-8116-4dec-bf9d-e5879df3f678 (last access: 20 March 2024), 2009.
Van der Krogt, M. G., Klerk, W. J., Kanning, W., Schweckendiek, T., and Kok, M.: Value of information of combinations of proof loading and pore pressure monitoring for flood defences, Struct. Infrastruct. E., 18, 505–520, 2022.
Van Dorland, R., Beersma, J., Bessembinder, J., Bloemendaal, N., Van Den Brink, H., Brotons Blanes, H., Drijfhout, S., Groenland, R., Haarsma, R., Homan, C., Keizer, I., Krikken, F., Le Bars, D., Lenderink, G., van Meijgaard, E., Meirink, J. F., Overbeek, B., Reerink, T., Selten, F., Severijns, C., Siegmund, P., Sterl, A., de Valk, C., van Velthoven, P., de Vries, H., van Weele, M., Wichers Schreur, B. and Van Der Wiel, K.: Knmi national climate scenarios 2023 for The Netherlands, Scientific report WR-23-02, Royal Netherlands Meteorological Institute (KNMI), 2023.
Van Esch, J. M.: Modeling groundwater flow through embankments for climate change impact assessment, in: Proceedings, 19th International Conference on Computational Methods in Water Resources (CMWR 2012), 17–22 June 2022, University of Illinois at Urbana-Champaign, USA, 2012.
Vanmarcke, E. H.: Reliability of earth slopes, J. Geotech. Eng.-ASCE, 103, 1247–1265, 1977.
van Woerkom, T., van Beek, R., Middelkoop, H., and Bierkens, M. F.: Global sensitivity analysis of groundwater related dike stability under extreme loading conditions, Water, 13, 3041, https://doi.org/10.3390/w13213041, 2021.
Von Asmuth, J. R., Bierkens, M. F., and Maas, K.: Transfer function-noise modeling in continuous time using predefined impulse response functions, Water Resour. Res., 38, 1287, https://doi.org/10.1029/2001WR001136, 2002.
Von Asmuth, J. R., Maas, K., Bakker, M., and Petersen, J.: Modeling time series of ground water head fluctuations subjected to multiple stresses, Groundwater, 46, 30–40, 2008.
Vrijling, J. K. and Van Gelder, P. H. A. J. M.: Probabilistic design in hydraulic engineering, https://resolver.tudelft.nl/uuid:0ba44475-700e-436a-8a2d-7df89b85e19a (last access: 11 September 2025), 2002.
Warner, J. F., van Staveren, M. F., and van Tatenhove, J.: Cutting dikes, cutting ties? Reintroducing flood dynamics in coastal polders in Bangladesh and the netherlands, Int. J. Disast. Risk Re., 32, 106–112, 2018.
Wojciechowska, K. A.: Advances in operational flood risk management in the Netherlands, PhD thesis, Dissertation (TU Delft), Delft University of Technology, https://doi.org/10.4233/uuid:5d719beb-bbbf-4fde-8e10-526785315fd1, 2015.
Wolters, E., Hakvoort, H., Bosch, S., Versteeg, R., Bakker, M., Heijkers, J., Talsme, M., and Peerdeman, K.: Meteobase: Online neerslag-en referentiegewasver-dampingsdatabase voor het Nederlandse waterbeheer, Meteorologica, 1, 15–18, 2013.
Short summary
This study examines how hydraulic head levels in canal dikes respond to heavy rainfall, potentially causing instabilities and flooding. Using time series models and simulating long-term head levels, we identified clusters of dikes where head peaks are driven by similar rainfall events. Statistical analyses show that extreme and yearly conditions are close. However, extreme conditions are expected to become more frequent due to climate change, though some dikes will be less affected than others.
This study examines how hydraulic head levels in canal dikes respond to heavy rainfall,...
Altmetrics
Final-revised paper
Preprint