Articles | Volume 25, issue 1
https://doi.org/10.5194/nhess-25-335-2025
https://doi.org/10.5194/nhess-25-335-2025
Research article
 | 
23 Jan 2025
Research article |  | 23 Jan 2025

Multi-scale hydraulic graph neural networks for flood modelling

Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina

Related authors

Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023,https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Deep learning methods for flood mapping: a review of existing applications and future research directions
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022,https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Deep Learning Methods for Flood Mapping: A Review of Existing Applications and Future Research Directions
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-614,https://doi.org/10.5194/hess-2021-614, 2021
Manuscript not accepted for further review
Short summary

Related subject area

Hydrological Hazards
The role of antecedent conditions in translating precipitation events into extreme floods at the catchment scale and in a large-basin context
Maria Staudinger, Martina Kauzlaric, Alexandre Mas, Guillaume Evin, Benoit Hingray, and Daniel Viviroli
Nat. Hazards Earth Syst. Sci., 25, 247–265, https://doi.org/10.5194/nhess-25-247-2025,https://doi.org/10.5194/nhess-25-247-2025, 2025
Short summary
Brief communication: Stay local or go global? On the construction of plausible counterfactual scenarios to assess flash flood hazards
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 4609–4615, https://doi.org/10.5194/nhess-24-4609-2024,https://doi.org/10.5194/nhess-24-4609-2024, 2024
Short summary
Integrating susceptibility maps of multiple hazards and building exposure distribution: a case study of wildfires and floods for the province of Quang Nam, Vietnam
Chinh Luu, Giuseppe Forino, Lynda Yorke, Hang Ha, Quynh Duy Bui, Hanh Hong Tran, Dinh Quoc Nguyen, Hieu Cong Duong, and Matthieu Kervyn
Nat. Hazards Earth Syst. Sci., 24, 4385–4408, https://doi.org/10.5194/nhess-24-4385-2024,https://doi.org/10.5194/nhess-24-4385-2024, 2024
Short summary
Tangible and intangible ex post assessment of flood-induced damage to cultural heritage
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci., 24, 4317–4339, https://doi.org/10.5194/nhess-24-4317-2024,https://doi.org/10.5194/nhess-24-4317-2024, 2024
Short summary
A multivariate statistical framework for mixed storm types in compound flood analysis
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
Nat. Hazards Earth Syst. Sci., 24, 4091–4107, https://doi.org/10.5194/nhess-24-4091-2024,https://doi.org/10.5194/nhess-24-4091-2024, 2024
Short summary

Cited articles

Bentivoglio, R.: Raw datasets for paper “Multi-scale hydraulic graph neural networks for flood modelling”, Zenodo [data set], https://doi.org/10.5281/zenodo.13326595, 2024. a
Bentivoglio, R.: Code Repository for paper ”Multi-scale hydraulic graph neural networks for flood modelling”, GitHub [code], https://github.com/RBTV1/mSWE-GNN, last access: 28 November 2024. a
Bentivoglio, R.: RBTV1/mSWE-GNN: Published version (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.14673842, 2025. a
Bentivoglio, R., Isufi, E., Jonkman, S. N., and Taormina, R.: Deep learning methods for flood mapping: a review of existing applications and future research directions, Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022, 2022. a
Bentivoglio, R., Isufi, E., Jonkman, S. N., and Taormina, R.: Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks, Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023, 2023. a, b, c, d, e, f, g, h, i, j, k, l
Download
Short summary
Deep learning methods are increasingly used as surrogates for spatio-temporal flood models but struggle with generalization and speed. Here, we propose a multi-resolution approach using graph neural networks that predicts dike breach floods across different meshes, topographies, and boundary conditions with high accuracy and up to 1000× speed-ups. The model also generalizes to larger more complex case studies with just one additional simulation for fine-tuning.
Altmetrics
Final-revised paper
Preprint