Articles | Volume 25, issue 9
https://doi.org/10.5194/nhess-25-2963-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-2963-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief Communication: Drivers of the recent warming of the Mediterranean Sea, and its implications for hail risk
Stephen Cusack
CORRESPONDING AUTHOR
Stormwise Ltd, Luton, LU4 9DU, United Kingdom
Tyler Cox
Inigo Limited, London, EC3A 5AY, United Kingdom
Related authors
Stephen Cusack
Nat. Hazards Earth Syst. Sci., 23, 2841–2856, https://doi.org/10.5194/nhess-23-2841-2023, https://doi.org/10.5194/nhess-23-2841-2023, 2023
Short summary
Short summary
The link from European windstorm research findings to insurance applications is strengthened by a new storm loss history spanning 1950 to 2022. It is based on ERA5 winds, together with long-term trends from observed gusts for improved validation. Correlations between losses and climate indices are around 0.4 for interannual variations, rising to 0.7 for decadal variations. A significant divergence between standard climate indices and storm losses over the past 20 years needs further research.
Stephen Cusack
Nat. Hazards Earth Syst. Sci., 23, 2841–2856, https://doi.org/10.5194/nhess-23-2841-2023, https://doi.org/10.5194/nhess-23-2841-2023, 2023
Short summary
Short summary
The link from European windstorm research findings to insurance applications is strengthened by a new storm loss history spanning 1950 to 2022. It is based on ERA5 winds, together with long-term trends from observed gusts for improved validation. Correlations between losses and climate indices are around 0.4 for interannual variations, rising to 0.7 for decadal variations. A significant divergence between standard climate indices and storm losses over the past 20 years needs further research.
Cited articles
Ali, E., Cramer, W., Carnicer, J., Georgopoulou, E., Hilmi, N. J. M., Le Cozannet, G., and Lionello, P.: Cross-Chapter Paper 4: Mediterranean Region, in: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2233–2272, https://doi.org/10.1017/9781009325844.021, 2022.
Battaglioli, F., Groenemeijer, P., Púčik, T., Taszarek, M., Ulbrich, U., and Rust, H.: Modeled Multidecadal Trends of Lightning and (Very) Large Hail in Europe and North America (1950–2021), J. Appl. Meteorol. Clim., 62, 1627–1653, https://doi.org/10.1175/JAMC-D-22-0195.1, 2023.
Berthet, C., Dessens, J., and Sanchez, J. L.: Regional and yearly variations of hail frequency and intensity in France, Atmos. Res., 100, 391–400, https://doi.org/10.1016/j.atmosres.2010.10.008, 2011.
Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin, N.: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability, Nature, 484, 228–232, https://doi.org/10.1038/nature10946, 2012.
Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., and Zang, C.: dplR: Dendrochronology Program Library in R, R package version 1.7.4, https://CRAN.R-project.org/package=dplR (last access: 31 May 2024), 2022.
Butterworth, S.: On the Theory of Filter Amplifiers, Experimental Wireless and the Wireless Engineer, 7, 536–541, https://www.changpuak.ch/electronics/downloads/On_the_Theory_of_Filter_Amplifiers.pdf (last access: 30 October 2024), 1930.
Chen, J. and Dai, A.: The atmosphere has become increasingly unstable during 1979–2020 over the Northern Hemisphere, Geophys. Res. Lett., 50, e2023GL106125, https://doi.org/10.1029/2023GL106125, 2023.
CMIP: CMIP Model and Experiment Documentation, https://wcrp-cmip.org/cmip-model-and-experiment-documentation/ (last access: 15 October 2024), 2025.
Cusack, S: Code for “Drivers of the recent warming of the Mediterranean Sea, and its implications for hail risk”, Zenodo [code], https://doi.org/10.5281/zenodo.16738138, 2025.
de Pablo Dávila, F., Soriano, L. J. R., Alonso, C. J., García, M. M., and Martín, J. R.: Synoptic patterns of severe hailstorm events in Spain, Atmos. Res., 250, 105397, https://doi.org/10.1016/j.atmosres.2020.105397, 2021.
Dessens, J.: Severe convective weather in the context of a nighttime global warming, Geophys. Res. Lett., 22, 1241–1244, https://doi.org/10.1029/95GL00952, 1995.
Eccel, E., Cau, P., Riemann-Campe, K., and Biasioli, F.: Quantitative hail monitoring in an alpine area: 35-year climatology and links with atmospheric variables, Int. J. Climatol., 32, 503–517, https://doi.org/10.1002/joc.2291, 2012.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
FFB: FFB Construction Cost Index, https://www.outils.ffbatiment.fr/federation-francaise-du-batiment/le-batiment-et-vous/en_chiffres/indices-index/Chiffres_Index_FFB_Construction.html (last access: 12 April 2025), 2025
France Assureurs: L'Assurance des Événements Naturels en 2022, Fédération Française de l'Assurance, https://www.franceassureurs.fr/wp-content/uploads/lassurance-des-evenements-naturels-en-2022.pdf (last access: 28 October 2024), 2023.
García-Monteiro, S., Sobrino, J., Julien, Y., Sòria, G., and Skokovic, D.: Surface Temperature trends in the Mediterranean Sea from MODIS data during years 2003–2019, Regional Studies in Marine Science, 49, 102086, https://doi.org/10.1016/j.rsma.2021.102086, 2022.
GDV: Data service for the natural hazards report, https://www.gdv.de/gdv/statistik/datenservice-zum-naturgefahrenreport (last access: 29 October 2024), 2024.
Gillett, N. P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R., Matthes, K., Santer, B. D., Stone, D., and Tebaldi, C.: The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6, Geosci. Model Dev., 9, 3685–3697, https://doi.org/10.5194/gmd-9-3685-2016, 2016.
Heimann, D. and Kurz, M.: The Munich hailstorm of July 12, 1984. A discussion of the synoptic situation, Beitr. Phys. Atmos., 58, 528–544, https://elib.dlr.de/64721/1/85-heimann.pdf (last access: 13 April 2025), 1985
James, P., Stohl, A., Spichtinger, N., Eckhardt, S., and Forster, C.: Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions, Nat. Hazards Earth Syst. Sci., 4, 733–746, https://doi.org/10.5194/nhess-4-733-2004, 2004.
Jones, G.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 DAMIP hist-GHG, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6051, 2019.
Kopp, J., Schröer, K., Schwierz, C., Hering, A., Germann, U., and Martius, O.: The summer 2021 Switzerland hailstorms: weather situation, major impacts and unique observational data, Weather, 78, 184–191, https://doi.org/10.1002/wea.4306, 2023.
Krug, A., Aemisegger, F., Sprenger, M., and Ahrens, B.: Moisture sources of heavy precipitation in Central Europe in synoptic situations with Vb-cyclones, Clim. Dynam., 59, 3227–3245, https://doi.org/10.1007/s00382-022-06256-7, 2022.
Kunz, M., Sander, J., and Kottmeier, C.: Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany, Int. J. Climatol., 29, 2283–2297, https://doi.org/10.1002/joc.1865, 2009.
Kunz, M., Blahak, U., Handwerker, J., Schmidberger, M., Punge, H. J., Mohr, S., Fluck, E., and Bedka, K. M.: The severe hailstorm in southwest Germany on 28 July 2013: characteristics, impacts and meteorological conditions, Q. J. Roy. Meteorol. Soc., 144, 231–250, https://doi.org/10.1002/qj.3197, 2018.
Kunz, M., Wandel, J., Fluck, E., Baumstark, S., Mohr, S., and Schemm, S.: Ambient conditions prevailing during hail events in central Europe, Nat. Hazards Earth Syst. Sci., 20, 1867–1887, https://doi.org/10.5194/nhess-20-1867-2020, 2020.
Lionello, P. and Scarascia, L.: The relation between climate change in the Mediterranean region and global warming, Reg. Environ. Change, 18, 1481–1493, https://doi.org/10.1007/s10113-018-1290-1, 2018.
Lund, M. T., Myhre, G., and Samset, B. H.: Anthropogenic aerosol forcing under the Shared Socioeconomic Pathways, Atmos. Chem. Phys., 19, 13827–13839, https://doi.org/10.5194/acp-19-13827-2019, 2019.
MedECC: Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future. First Mediterranean Assessment Report, edited by: Cramer, W., Guiot, J., and Marini, K., Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, 632 pp., ISBN 978-2-9577416-0-1, https://doi.org/10.5281/zenodo.7224821, 2020.
Mohr, S. and Kunz, M.: Recent trends and variabilities of convective parameters relevant for hail events in Germany and Europe, Atmos. Res., 123, 211–228, https://doi.org/10.1016/j.atmosres.2012.05.016, 2013.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set, J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187, 2012.
Mulet, S., Buongiorno Nardelli, B., Good, S., Pisano, A., Greiner, E., Monier, M., Autret, E., Axell, L., Boberg, F., Ciliberti, S., Drévillon, M., Droghei, R., Embury, O., Gourrion, J., Høyer, J., Juza, M., Kennedy, J., Lemieux-Dudon, B., Peneva, E., Reid, R., Simoncelli, S., Storto, A., Tinker, J., Von Schuckmann, K., and Wakelin, S. L.: Ocean temperature and salinity, Copernicus Marine Service Ocean State Report, Journal of Operational Oceanography, 11, s5–s13, https://doi.org/10.1080/1755876X.2018.1489208, 2018.
Müller, W., Ilyina, T., Li, H., Timmreck, C., Gayler, V., Wieners, K.-H., Botzet, M., Brovkin, V., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 DAMIP hist-GHG, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.15022, 2019.
NASA Goddard Institute for Space Studies (NASA/GISS): NASA-GISS GISS-E2.1G model output prepared for CMIP6 CMIP historical, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.7127, 2018a.
NASA Goddard Institute for Space Studies (NASA/GISS): NASA-GISS GISS-E2.1G model output prepared for CMIP6 DAMIP hist-GHG, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.7079, 2018b.
Partner Re: The Contribution of Climate Change to Europe's Increasing Hail Losses, https://www.partnerre.com/perspectives/the-contribution-of-climate-change-to-europes-increasing-hail-losses/ (last access: 28 October 2024), 2024
Piper, D. A., Kunz, M., Allen, J. T., and Mohr, S.: Investigation of the temporal variability of thunderstorms in Central and Western Europe and the relation to large-scale flow and teleconnection patterns, Q. J. Roy. Meteor. Soc., 145, 3644–3666, https://doi.org/10.1002/qj.3647, 2019.
Púčik, T., Castellano, C., Groenemeijer, P., Kuhne, T., Rädler, A. T., Antonescu, B., and Faust, E.: Large hail incidence and its economic and societal impacts across Europe, Mon. Weather Rev., 147, 3901–3916, https://doi.org/10.1175/MWR-D-19-0204.1, 2019.
R Core Team: R: A language and environment for statistical computing [code], R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 4 March 2023), 2022.
Rädler, A. T., Groenemeijer, P., Faust, E., and Sausen, R.: Detecting severe weather trends using an additive regressive convective hazard model (AR-CHaMo), J. Appl. Meteorol. Clim., 57, 569–587, https://doi.org/10.1175/JAMC-D-17-0132.1, 2018.
Rädler, A. T., Groenemeijer, P. H., Faust, E., Sausen, R., and Púcik, T.: Frequency of severe thunderstorms across Europe expected to increase in the 21st century due to rising instability, npj Clim. Atmos. Sci., 2, 30, https://doi.org/10.1038/s41612-019-0083-7, 2019.
Raupach, T. H., Martius, O., Allen, J. T., Kunz, M., Lasher-Trapp, S., Mohr, S., Rasmussen, K. L., Trapp, R. J., and Zhang, Q.: The effects of climate change on hailstorms, Nat. Rev. Earth Environ., 2, 213–226, https://doi.org/10.1038/s43017-020-00133-9, 2021.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Ridley, J., Menary, M., Kuhlbrodt, T., Andrews, M., and Andrews, T.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP historical, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6109, 2019.
Roquet, H., Pisano, A., and Embury, O.: Sea surface temperature. In: von Schuckmann et al. 2016, The Copernicus Marine Environment Monitoring Service Ocean State Report, J. Operational Ocean., 9, https://doi.org/10.1080/1755876X.2016.1273446, 2016.
Rubino, A., Zanchettin, D., De Rovere, F., and McPhaden, M. J.: On the interchangeability of sea-surface and near-surface air temperature anomalies in climatologies, Sci. Rep. 10, 7433, https://doi.org/10.1038/s41598-020-64167-1, 2020.
Schemm, S., Sprenger M., Martius O., Wernli H., and Zimmer, M.: Increase in the number of extremely strong fronts over Europe? A study based on ERA-Interim reanalysis (1979–2014), Geophys. Res. Lett., 44, 553–561, https://doi.org/10.1002/2016GL071451, 2017.
Seneviratne, S., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Luca, A. D., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S., Wehner, M., and Zhou, B.: Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, https://doi.org/10.1017/9781009157896.013, 2021.
Shiogama, H.: MIROC MIROC6 model output prepared for CMIP6 DAMIP hist-GHG, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5578, 2019.
Stormwise Ltd.: Climate Change impacts on hail, https://stormwise.co.uk/climate-change-and-hail (last access: 12 April 2025), 2024.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for CMIP6 CMIP historical, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3610, 2019a.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5 model output prepared for CMIP6 DAMIP hist-GHG, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.3596, 2019b.
Swiss Re: Natural catastrophes and man-made disasters in 2013, Swiss Re Institute, Sigma No.1/2014, https://www.swissre.com/dam/jcr:97c8cee3-82ae-43a1-b2c8-f7a38d49ab82/sigma1_2014_en.pdf (last access: 10 October 2024), 2014.
Swiss Re: Natural catastrophes and man-made disasters in 2014, Swiss Re Institute, Sigma No.2/2015, https://www.actuarialpost.co.uk/downloads/cat_1/sigma2_2015_en.pdf (last access: 10 October 2024), 2015.
Swiss Re: Global insured catastrophe losses rise to USD 112 billion in 2021, the fourth highest on record, Swiss Re Institute estimates, https://www.swissre.com/media/press-release/nr-20211214-sigma-full-year-2021-preliminary-natcat-loss-estimates.html (last access: 10 October 2024), 2021.
Swiss Re: Natural catastrophes in 2023: gearing up for today's and tomorrow's weather risks, Swiss Re Institute, Sigma No.1/2024, https://www.swissre.com/dam/jcr:c9385357-6b86-486a-9ad8-78679037c10e/2024-03-sigma1-natural-catastrophes.pdf (last access: 10 October 2024), 2024.
Taszarek, M., Allen, J. T., Brooks, H. E., Pilguj, N., and Czernecki, B.: Differing trends in United States and European severe thunderstorm environments in a warming climate, B. Am. Meteor. Soc., 102, E296–E322, https://doi.org/10.1175/BAMS-D-20-0004.1, 2021.
Tatebe, H. and Watanabe, M.: MIROC MIROC6 model output prepared for CMIP6 CMIP historical, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.5603, 2018.
Tradowsky, J. S., Philip, S. Y., Kreienkamp, F., Kew, S. F., Lorenz, P., Arrighi, J., Bettmann, T., Caluwaerts, S., Chan, S. C., De Cruz, L., De Vries, H., Demuth, N., Ferrone, A., Fischer, E. M., Fowler, H. J., Goergen, K., Heinrich, D., Henrichs, Y., Kaspar, F., Lenderink, G., Nilson, E., Otto, F. E. L., Ragone, F., Seneviratne, S. I., Singh, R. K., Skålevåg, A., Termonia, P., Thalheimer, L., Van Aalst, M., Van Den Bergh, J., Van De Vyver, H., Vannitsem, S., Van Oldenborgh, G. J., Van Schaeybroeck, B., Vautard, R., Vonk, D., and Wanders, N.: Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021, Clim. Change, 176, 90, https://doi.org/10.1007/s10584-023-03502-7, 2023.
VKG: Analyse langfristiger Gebäudeschadendaten, published by Vereinigung Kantonaler Gebäudeversicherungen VKG, https://cms.vkg.ch/media/at1kb01p/vkf_analyse-schadendaten_de.pdf (last access: 11 April 2025), 2022.
VKG: Elementar: Übersicht 2004–2023 – Elementarschäden an Gebäuden (20-Jahresvergleich) https://cms.vkg.ch/media/tutg0vgg/elementarschaeden-an-gebaeuden-2004-2023_de.pdf (last access: 11 April 2025), 2024.
Voldoire, A.: CMIP6 simulations of the CNRM-CERFACS based on CNRM-CM6-1 model for CMIP experiment historical, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4066, 2018.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 DAMIP hist-GHG, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4043, 2019.
Volosciuk, C., Maraun, D., Semenov, V., Tilinina, N., Gulev, S. K., and Latif, M.: Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe, Sci. Rep., 6, 32450, https://doi.org/10.1038/srep32450, 2016.
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., Legutke, S., Schupfner, M., Wachsmann, F., Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch, J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I., Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H., Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner, E.: MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 CMIP historical, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.6595, 2019.
Wilhelm, L., Schwierz, C., Schröer, K., Taszarek, M., and Martius, O.: Reconstructing hail days in Switzerland with statistical models (1959–2022), Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024, 2024.
Short summary
The Mediterranean Sea has been warming rapidly since 1980, and its basic thermodynamic effect acts to boost hail in the higher-risk parts of Europe. Climate model experiments indicate the Mediterranean warming is mainly caused by rising greenhouse gases, with reduced anthropogenic aerosols contributing too. A review of research and data revealed hail losses rising at around 2 % per year over the same period. Moreover, the trajectory of anthropogenic forcings suggests hail risk will keep rising.
The Mediterranean Sea has been warming rapidly since 1980, and its basic thermodynamic effect...
Altmetrics
Final-revised paper
Preprint