Articles | Volume 25, issue 7
https://doi.org/10.5194/nhess-25-2541-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-2541-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drought propagation in high-latitude catchments: insights from a 60-year analysis using standardized indices
Claudia Teutschbein
CORRESPONDING AUTHOR
Department of Earth Sciences, Program for Air, Water and Landscape Sciences, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
Thomas Grabs
Department of Earth Sciences, Program for Air, Water and Landscape Sciences, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
Markus Giese
Department of Earth Sciences, University of Gothenburg, Medicinaregatan 7B, 41390 Gothenburg, Sweden
Andrijana Todorović
Faculty of Civil Engineering, Institute of Hydraulic and Environmental Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11000 Belgrade, Republic of Serbia
Roland Barthel
Department of Earth Sciences, University of Gothenburg, Medicinaregatan 7B, 41390 Gothenburg, Sweden
Related authors
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
Nat. Hazards Earth Syst. Sci., 25, 3381–3395, https://doi.org/10.5194/nhess-25-3381-2025, https://doi.org/10.5194/nhess-25-3381-2025, 2025
Short summary
Short summary
Utilizing a survey that includes respondents from seven societal sectors, the role of water dependency in drought vulnerability was explored. Differences were found in the perceived impact of vulnerability factors on drought risk in relation to water dependency (i.e., dependency on either soil moisture or groundwater and surface water). The results highlight the importance of accounting for water dependency and clearly defining the drought hazard in drought vulnerability or risk assessments.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
Hydrol. Earth Syst. Sci., 29, 3809–3832, https://doi.org/10.5194/hess-29-3809-2025, https://doi.org/10.5194/hess-29-3809-2025, 2025
Short summary
Short summary
Through a survey involving six water-dependent sectors, the relevance and impact of drought vulnerability factors for sectors and societies in forested cold climates were studied. Results show that the relevance and impact of vulnerability factors differ across sectors and how governance processes and policies are important for drought risk. Results offer unique insights into the dynamics of drought vulnerability that are valuable for risk assessment, drought plans, and increasing resilience.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Chandni Thakur, Kasiapillai Sudalaimuthu Kasiviswanathan, Claudia Teutschbein, Bankaru-Swamy Soundharajan, M M Diwan Mohaideen, and Venkatesh Budamala
Proc. IAHS, 385, 203–209, https://doi.org/10.5194/piahs-385-203-2024, https://doi.org/10.5194/piahs-385-203-2024, 2024
Short summary
Short summary
This study focuses on advancing the current understanding of the impacts of the El Niño events on the hydrology of the Godavari River Basin (GRB). Variable Infiltration Capacity (VIC) hydrological model was employed to assess the hydrological changes and found a negative correlation of average precipitation, abstractions, and soil moisture with increasing magnitude of El Niño events for the period 1980–2008.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
Nat. Hazards Earth Syst. Sci., 25, 3381–3395, https://doi.org/10.5194/nhess-25-3381-2025, https://doi.org/10.5194/nhess-25-3381-2025, 2025
Short summary
Short summary
Utilizing a survey that includes respondents from seven societal sectors, the role of water dependency in drought vulnerability was explored. Differences were found in the perceived impact of vulnerability factors on drought risk in relation to water dependency (i.e., dependency on either soil moisture or groundwater and surface water). The results highlight the importance of accounting for water dependency and clearly defining the drought hazard in drought vulnerability or risk assessments.
Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, and Claudia Teutschbein
Hydrol. Earth Syst. Sci., 29, 3809–3832, https://doi.org/10.5194/hess-29-3809-2025, https://doi.org/10.5194/hess-29-3809-2025, 2025
Short summary
Short summary
Through a survey involving six water-dependent sectors, the relevance and impact of drought vulnerability factors for sectors and societies in forested cold climates were studied. Results show that the relevance and impact of vulnerability factors differ across sectors and how governance processes and policies are important for drought risk. Results offer unique insights into the dynamics of drought vulnerability that are valuable for risk assessment, drought plans, and increasing resilience.
Markus Giese, Yvan Caballero, Andreas Hartmann, and Jean-Baptiste Charlier
Hydrol. Earth Syst. Sci., 29, 3037–3054, https://doi.org/10.5194/hess-29-3037-2025, https://doi.org/10.5194/hess-29-3037-2025, 2025
Short summary
Short summary
Karst springs respond quickly to environmental changes, making them crucial to understanding climate impacts on groundwater. This study analyses long-term trends in precipitation, temperature, and discharge from more than 50 springs across Europe. Results show that while historical discharge trends align with those of rivers, recent changes are driven by rising temperatures rather than precipitation. These findings highlight climate-driven shifts in groundwater recharge and storage processes.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Chandni Thakur, Kasiapillai Sudalaimuthu Kasiviswanathan, Claudia Teutschbein, Bankaru-Swamy Soundharajan, M M Diwan Mohaideen, and Venkatesh Budamala
Proc. IAHS, 385, 203–209, https://doi.org/10.5194/piahs-385-203-2024, https://doi.org/10.5194/piahs-385-203-2024, 2024
Short summary
Short summary
This study focuses on advancing the current understanding of the impacts of the El Niño events on the hydrology of the Godavari River Basin (GRB). Variable Infiltration Capacity (VIC) hydrological model was employed to assess the hydrological changes and found a negative correlation of average precipitation, abstractions, and soil moisture with increasing magnitude of El Niño events for the period 1980–2008.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Cited articles
AghaKouchak, A., Cheng, L., Mazdiyasni, O., and Farahmand, A.: Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought, Geophys. Res. Lett., 8847–8852, https://doi.org/10.1002/2014GL062308, 2015.
Ahopelto, L., Kallio, M., Veijalainen, N., Kouki, R., and Keskinen, M.: Drought hazard and annual precipitation predicted to increase in the Sirppujoki river basin, Finland, Clim. Serv., 31, 100400, https://doi.org/10.1016/j.cliser.2023.100400, 2023.
Alam, S., Gebremichael, M., Ban, Z., Scanlon, B. R., Senay, G., and Lettenmaier, D. P.: Post-Drought Groundwater Storage Recovery in California's Central Valley, Water Resour. Res., 57, e2021WR030352, https://doi.org/10.1029/2021WR030352, 2021.
Andersson, L.: Soil Moisture Deficits in South-Central Sweden: I – Seasonal and Regional Distributions, Hydrol. Res., 20, 109–122, https://doi.org/10.2166/nh.1989.0009, 1989.
Arheimer, B. and Lindström, G.: Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100), Hydrol. Earth Syst. Sci., 19, 771–784, https://doi.org/10.5194/hess-19-771-2015, 2015.
Asadzadeh, M., Tolson, B. A., and Burn, D. H.: A new selection metric for multiobjective hydrologic model calibration, Water Resour. Res., 50, 7082–7099, https://doi.org/10.1002/2013WR014970, 2014.
Bae, H., Ji, H., Lim, Y.-J., Ryu, Y., Kim, M.-H., and Kim, B.-J.: Characteristics of drought propagation in South Korea: relationship between meteorological, agricultural, and hydrological droughts, Nat. Hazards, 99, 1–16, https://doi.org/10.1007/s11069-019-03676-3, 2019.
Bakke, S. J., Ionita, M., and Tallaksen, L. M.: The 2018 northern European hydrological drought and its drivers in a historical perspective, Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, 2020.
Bales, R. C., Goulden, M. L., Hunsaker, C. T., Conklin, M. H., Hartsough, P. C., O'Geen, A. T., Hopmans, J. W., and Safeeq, M.: Mechanisms controlling the impact of multi-year drought on mountain hydrology, Sci. Rep., 8, 690, https://doi.org/10.1038/s41598-017-19007-0, 2018.
Barthel, R., Stangefelt, M., Giese, M., Nygren, M., Seftigen, K., and Chen, D.: Current understanding of groundwater recharge and groundwater drought in Sweden compared to countries with similar geology and climate, Geogr. Ann. A, 103, 323–345, https://doi.org/10.1080/04353676.2021.1969130, 2021.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Bevacqua, A. G., Chaffe, P. L. B., Chagas, V. B. P., and AghaKouchak, A.: Spatial and temporal patterns of propagation from meteorological to hydrological droughts in Brazil, J. Hydrol., 603, 126902, https://doi.org/10.1016/j.jhydrol.2021.126902, 2021.
Blauhut, V., Stoelzle, M., Ahopelto, L., Brunner, M. I., Teutschbein, C., Wendt, D. E., Akstinas, V., Bakke, S. J., Barker, L. J., Bartošová, L., Briede, A., Cammalleri, C., Kalin, K. C., De Stefano, L., Fendeková, M., Finger, D. C., Huysmans, M., Ivanov, M., Jaagus, J., Jakubínský, J., Krakovska, S., Laaha, G., Lakatos, M., Manevski, K., Neumann Andersen, M., Nikolova, N., Osuch, M., van Oel, P., Radeva, K., Romanowicz, R. J., Toth, E., Trnka, M., Urošev, M., Urquijo Reguera, J., Sauquet, E., Stevkov, A., Tallaksen, L. M., Trofimova, I., Van Loon, A. F., van Vliet, M. T. H., Vidal, J.-P., Wanders, N., Werner, M., Willems, P., and Živković, N.: Lessons from the 2018–2019 European droughts: a collective need for unifying drought risk management, Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, 2022.
Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013.
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B., Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger, M., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Viglione, A., Volpi, E., Wilson, D., Zaimi, K., and Živković, N.: Changing climate shifts timing of European floods, Science, 357, 588–590, https://doi.org/10.1126/science.aan2506, 2017.
Bodner, G., Nakhforoosh, A., and Kaul, H.-P.: Management of crop water under drought: a review, Agron. Sustain. Dev., 35, 401–442, https://doi.org/10.1007/s13593-015-0283-4, 2015.
Brunner, M. I. and Chartier-Rescan, C.: Drought Spatial Extent and Dependence Increase During Drought Propagation From the Atmosphere to the Hydrosphere, Geophys. Res. Lett., 51, e2023GL107918, https://doi.org/10.1029/2023GL107918, 2024.
Chai, Q., Gan, Y., Zhao, C., Xu, H.-L., Waskom, R. M., Niu, Y., and Siddique, K. H. M.: Regulated deficit irrigation for crop production under drought stress. A review, Agron. Sustain. Dev., 36, 3, https://doi.org/10.1007/s13593-015-0338-6, 2015.
Chan, W. C. H., Shepherd, T. G., Facer-Childs, K., Darch, G., and Arnell, N. W.: Storylines of UK drought based on the 2010–2012 event, Hydrol. Earth Syst. Sci., 26, 1755–1777, https://doi.org/10.5194/hess-26-1755-2022, 2022.
Changnon, S. A.: Detecting Drought Conditions in Illinois (No. 169), Circular, Illinois State Water Survey, Champaign, Illinois, https://www.isws.illinois.edu/pubdoc/C/ISWSC-169.pdf (last access: 21 July 2025), 1987.
Chen, D., Zhang, P., Seftigen, K., Ou, T., Giese, M., and Barthel, R.: Hydroclimate changes over Sweden in the twentieth and twenty-first centuries: a millennium perspective, Geogr. Ann. A, 103, 103–131, https://doi.org/10.1080/04353676.2020.1841410, 2020.
Cienciala, E., Kučera, J., and Lindroth, A.: Long-term measurements of stand water uptake in Swedish boreal forest, Agr. Forest Meteorol., 98–99, 547–554, https://doi.org/10.1016/S0168-1923(99)00122-7, 1999.
Cochand, M., Molson, J., Barth, J. A. C., van Geldern, R., Lemieux, J.-M., Fortier, R., and Therrien, R.: Rapid groundwater recharge dynamics determined from hydrogeochemical and isotope data in a small permafrost watershed near Umiujaq (Nunavik, Canada), Hydrogeol. J., 28, 853–868, https://doi.org/10.1007/s10040-020-02109-x, 2020.
Entekhabi, D.: Propagation in the Drought Cascade: Observational Analysis Over the Continental US, Water Resour. Res., 59, e2022WR032608, https://doi.org/10.1029/2022WR032608, 2023.
Garrido-Perez, J. M., Vicente-Serrano, S. M., Barriopedro, D., García-Herrera, R., Trigo, R., and Beguería, S.: Examining the outstanding Euro-Mediterranean drought of 2021–2022 and its historical context, J. Hydrol., 630, 130653, https://doi.org/10.1016/j.jhydrol.2024.130653, 2024.
Geng, G., Zhang, B., Gu, Q., He, Z., and Zheng, R.: Drought propagation characteristics across China: Time, probability, and threshold, J. Hydrol., 631, 130805, https://doi.org/10.1016/j.jhydrol.2024.130805, 2024.
Geris, J., Tetzlaff, D., McDonnell, J., and Soulsby, C.: The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments, Hydrol. Process., 29, 1844–1860, https://doi.org/10.1002/hyp.10289, 2015.
Gessner, C., Fischer, E. M., Beyerle, U., and Knutti, R.: Multi-year drought storylines for Europe and North America from an iteratively perturbed global climate model, Weather Clim. Extrem., 38, 100512, https://doi.org/10.1016/j.wace.2022.100512, 2022.
Gong, R., Chen, J., Liang, Z., Wu, C., Tian, D., Wu, J., Li, S., and Zeng, G.: Characterization and propagation from meteorological to groundwater drought in different aquifers with multiple timescales, J. Hydrol. Reg. Stud., 45, 101317, https://doi.org/10.1016/j.ejrh.2023.101317, 2023.
Grobicki, A., MacLeod, F., and Pischke, F.: Integrated policies and practices for flood and drought risk management, Water Policy, 17, 180–194, https://doi.org/10.2166/wp.2015.009, 2015.
Hellwig, J., Stoelzle, M., and Stahl, K.: Groundwater and baseflow drought responses to synthetic recharge stress tests, Hydrol. Earth Syst. Sci., 25, 1053–1068, https://doi.org/10.5194/hess-25-1053-2021, 2021.
Hellwig, J., Liu, Y., Stahl, K., and Hartmann, A.: Drought propagation in space and time: the role of groundwater flows, Environ. Res. Lett., 17, 094008, https://doi.org/10.1088/1748-9326/ac8693, 2022.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/CDS.F17050D7, 2023.
Heudorfer, B. and Stahl, K.: Comparison of different threshold level methods for drought propagation analysis in Germany, Hydrol. Res., 48, 1311–1326, https://doi.org/10.2166/nh.2016.258, 2016.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. https://doi.org/10.1017/9781009157896, 2021.
Irannezhad, M., Ronkanen, A.-K., and Kløve, B.: Effects of climate variability and change on snowpack hydrological processes in Finland, Cold Reg. Sci. Technol., 118, 14–29, https://doi.org/10.1016/j.coldregions.2015.06.009, 2015.
Johansson, B.: Estimation of areal precipitation for hydrological modelling in Sweden, Doctoral dissertation, Report A76, Earth Science Centre, Göteborg University, Göteborg, Sweden, https://gupea.ub.gu.se/handle/2077/15575?show=full (last access: 24 July 2025), 2002.
Kchouk, S., Melsen, L. A., Walker, D. W., and van Oel, P. R.: A geography of drought indices: mismatch between indicators of drought and its impacts on water and food securities, Nat. Hazards Earth Syst. Sci., 22, 323–344, https://doi.org/10.5194/nhess-22-323-2022, 2022.
Koster, R. D., Schubert, S. D., Wang, H., Mahanama, S. P., and DeAngelis, A. M.: Flash Drought as Captured by Reanalysis Data: Disentangling the Contributions of Precipitation Deficit and Excess Evapotranspiration, J. Hydrometeorol., 20, 1241–1258, https://doi.org/10.1175/JHM-D-18-0242.1, 2019.
Kuiper, N. H.: Tests concerning random points on a circle, Indag. Math. Proc., 63, 38–47, https://doi.org/10.1016/S1385-7258(60)50006-0, 1960.
Kumar, R., Musuuza, J. L., Van Loon, A. F., Teuling, A. J., Barthel, R., Ten Broek, J., Mai, J., Samaniego, L., and Attinger, S.: Multiscale evaluation of the Standardized Precipitation Index as a groundwater drought indicator, Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, 2016.
Langridge, R. and Daniels, B.: Accounting for Climate Change and Drought in Implementing Sustainable Groundwater Management, Water Resour. Manag., 31, 3287–3298, https://doi.org/10.1007/s11269-017-1607-8, 2017.
Li, W., Reichstein, M., O, S., May, C., Destouni, G., Migliavacca, M., Kraft, B., Weber, U., and Orth, R.: Contrasting Drought Propagation Into the Terrestrial Water Cycle Between Dry and Wet Regions, Earth's Future, 11, e2022EF003441, https://doi.org/10.1029/2022EF003441, 2023.
Ma, L., Huang, Q., Huang, S., Liu, D., Leng, G., Wang, L., and Li, P.: Propagation dynamics and causes of hydrological drought in response to meteorological drought at seasonal timescales, Hydrol. Res., 53, 193–205, https://doi.org/10.2166/nh.2021.006, 2021.
Maxwell, C. M., Fernald, A. G., Cadol, D., Faist, A. M., and King, J. P.: Managing flood flow connectivity to landscapes to build buffering capacity to disturbances: An ecohydrologic modeling framework for drylands, J. Environ. Manage., 278, 111486, https://doi.org/10.1016/j.jenvman.2020.111486, 2021.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, in: Proceedings of the 8th Conference on Applied Climatology, Conference on Applied Climatology, Anaheim, California, USA, 17–22 January 1993, American Meteorological Society Boston, MA, 179–183, 1993.
Meresa, H., Zhang, Y., Tian, J., and Abrar Faiz, M.: Understanding the role of catchment and climate characteristics in the propagation of meteorological to hydrological drought, J. Hydrol., 617, 128967, https://doi.org/10.1016/j.jhydrol.2022.128967, 2023.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol., 391, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.01, 2010.
Montgomery, D. C. and Runger, G. C.: Applied Statistics and Probability for Engineers, John Wiley & Sons, 791 pp., ISBN 978-0-470-05304-1, 2010.
Mukherjee, S., Mishra, A., and Trenberth, K. E.: Climate Change and Drought: a Perspective on Drought Indices, Curr. Clim. Change Rep., 4, 145–163, https://doi.org/10.1007/s40641-018-0098-x, 2018.
Nygren, M., Giese, M., Kløve, B., Haaf, E., Rossi, P. M., and Barthel, R.: Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone, Journal of Hydrology X, 8, 100062, https://doi.org/10.1016/j.hydroa.2020.100062, 2020.
Nygren, M., Giese, M., and Barthel, R.: Recent trends in hydroclimate and groundwater levels in a region with seasonal frost cover, J. Hydrol., 602, 126732, https://doi.org/10.1016/j.jhydrol.2021.126732, 2021.
Nygren, M., Barthel, R., Allen, D. M., and Giese, M.: Exploring groundwater drought responsiveness in lowland post-glacial environments, Hydrogeol. J., 30, 1937–1961, https://doi.org/10.1007/s10040-022-02521-5, 2022.
Odongo, R. A., De Moel, H., and Van Loon, A. F.: Propagation from meteorological to hydrological drought in the Horn of Africa using both standardized and threshold-based indices, Nat. Hazards Earth Syst. Sci., 23, 2365–2386, https://doi.org/10.5194/nhess-23-2365-2023, 2023.
Orth, R. and Destouni, G.: Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe, Nat. Commun., 9, 3602, https://doi.org/10.1038/s41467-018-06013-7, 2018.
Pearson, K.: Notes on the History of Correlation, Biometrika, 13, 25–45, https://doi.org/10.2307/2331722, 1920.
Pereira, L. S., Louro, V., do Rosário, L., and Almeida, A.: Desertification, territory and people, a holistic approach in the Portuguese context, in: Desertification in the Mediterranean Region. A Security Issue, Dordrecht, 269–289, https://doi.org/10.1007/1-4020-3760-0_11, 2006.
Petersen-Perlman, J. D., Aguilar-Barajas, I., and Megdal, S. B.: Drought and groundwater management: Interconnections, challenges, and policyresponses, Curr. Opin. Environ. Sci. Health, 28, 100364, https://doi.org/10.1016/j.coesh.2022.100364, 2022.
Potopová, V., Boroneanţ, C., Možný, M., and Soukup, J.: Driving role of snow cover on soil moisture and drought development during the growing season in the Czech Republic, Int. J. Climatol., 36, 3741–3758, https://doi.org/10.1002/joc.4588, 2016.
Rajsekhar, D., Singh, Vijay. P., and Mishra, Ashok. K.: Multivariate drought index: An information theory based approach for integrated drought assessment, J. Hydrol., 526, 164–182, https://doi.org/10.1016/j.jhydrol.2014.11.031, 2015.
Robinson, J. S., Sivapalan, M., and Snell, J. D.: On the relative roles of hillslope processes, channel routing, and network geomorphology in the hydrologic response of natural catchments, Water Resour. Res., 31, 3089–3101, https://doi.org/10.1029/95WR01948, 1995.
Saito, L., Christian, B., Diffley, J., Richter, H., Rohde, M. M., and Morrison, S. A.: Managing Groundwater to Ensure Ecosystem Function, Groundwater, 59, 322–333, https://doi.org/10.1111/gwat.13089, 2021.
Sattar, M. N., Lee, J.-Y., Shin, J.-Y., and Kim, T.-W.: Probabilistic Characteristics of Drought Propagation from Meteorological to Hydrological Drought in South Korea, Water Resour. Manag., 33, 2439–2452, https://doi.org/10.1007/s11269-019-02278-9, 2019.
Sheffield, J. and Wood, E. F.: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle, J. Geophys. Res.-Atmos., 112, D17115, https://doi.org/10.1029/2006JD008288, 2007.
Singh, N. K., Emanuel, R. E., McGlynn, B. L., and Miniat, C. F.: Soil Moisture Responses to Rainfall: Implications for Runoff Generation, Water Resour. Res., 57, e2020WR028827, https://doi.org/10.1029/2020WR028827, 2021.
Skålevåg, A. and Vormoor, K.: Daily streamflow trends in Western versus Eastern Norway and their attribution to hydro-meteorological drivers, Hydrol. Process., 35, e14329, https://doi.org/10.1002/hyp.14329, 2021.
SMHI: Nedladdning av griddad nederbörd- och temperaturdata (en: Download of gridded precipitation and temperature data), PTHBV, https://www.smhi.se/data/ladda-ner-data/griddade-nederbord-och-temperaturdata-pthbv (last access: 21 July 2025), 2023.
Soulsby, C., Scheliga, B., Neill, A., Comte, J.-C., and Tetzlaff, D.: A longer-term perspective on soil moisture, groundwater and stream flow response to the 2018 drought in an experimental catchment in the Scottish Highlands, Hydrol. Process., 35, e14206, https://doi.org/10.1002/hyp.14206, 2021.
Spearman, C.: The Proof and Measurement of Association between Two Things, Am. J. Psychol., 15, 72–101, https://doi.org/10.1093/ije/dyq191, 1904.
Spinoni, J., Naumann, G., Vogt, J. V., and Barbosa, P.: The biggest drought events in Europe from 1950 to 2012, J. Hydrol. Reg. Stud., 3, 509–524, https://doi.org/10.1016/j.ejrh.2015.01.001, 2015.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.: Will drought events become more frequent and severe in Europe?, Int. J. Climatol., 38, 1718–1736, https://doi.org/10.1002/joc.5291, 2018.
Srivastav, A. L., Dhyani, R., Ranjan, M., Madhav, S., and Sillanpää, M.: Climate-resilient strategies for sustainable management of water resources and agriculture, Environ. Sci. Pollut. R., 28, 41576–41595, https://doi.org/10.1007/s11356-021-14332-4, 2021.
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., and Stahl, K.: Candidate Distributions for Climatological Drought Indices (SPI and SPEI), Int. J. Climatol., 35, 4027–4040, https://doi.org/10.1002/joc.4267, 2015.
Staudinger, M., Stahl, K., and Seibert, J.: A drought index accounting for snow, Water Resour. Res., 50, 7861–7872, https://doi.org/10.1002/2013WR015143, 2014.
Stenfors, E., Blicharska, M., Grabs, T., and Teutschbein, C.: Sectoral Vulnerability to Drought: Exploring the Role of Blue and Green Water Dependency in Mid and High-Latitudes, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2726, 2024a.
Stenfors, E., Blicharska, M., Grabs, T., and Teutschbein, C.: User-Validated Drought Vulnerability Factors in Forested Cold Climates: Multi-Sectoral Perspectives from Sweden, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-1988, 2024b.
Stoelzle, M., Stahl, K., Morhard, A., and Weiler, M.: Streamflow sensitivity to drought scenarios in catchments with different geology, Geophys. Res. Lett., 41, 6174–6183, https://doi.org/10.1002/2014GL061344, 2014.
Teutschbein, C.: CAMELS-SE: Long-term hydroclimatic observations (1961–2020) across 50 catchments in Sweden as a resource for modelling, education, and collaboration, Geosci. Data J., 11, 655–668, https://doi.org/10.1002/gdj3.239, 2024a.
Teutschbein, C.: Swedish Hydroclimatic Data 1961–2020 – Precipitation, Temperature and Streamflow Observations across 50 Catchments (CAMELS-SE), Version 1, Swedish National Data Service (researchdata.se) [data set], https://doi.org/10.57804/t3rm-v029, 2024b.
Teutschbein, C., Grabs, T., Karlsen, R. H., Laudon, H., and Bishop, K.: Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region, Water Resour. Res., 51, 9425–9446, https://doi.org/10.1002/2015WR017337, 2015.
Teutschbein, C., Quesada Montano, B., Todorović, A., and Grabs, T.: Streamflow droughts in Sweden: Spatiotemporal patterns emerging from six decades of observations, J. Hydrol. Reg. Stud., 42, 101171, https://doi.org/10.1016/j.ejrh.2022.101171, 2022.
Teutschbein, C., Albrecht, F., Blicharska, M., Tootoonchi, F., Stenfors, E., and Grabs, T.: Drought hazards and stakeholder perception: Unraveling the interlinkages between drought severity, perceived impacts, preparedness, and management, Ambio, 52, 1262–1281, https://doi.org/10.1007/s13280-023-01849-w, 2023a.
Teutschbein, C., Jonsson, E., Todorović, A., Tootoonchi, F., Stenfors, E., and Grabs, T.: Future drought propagation through the water-energy-food-ecosystem nexus – A Nordic perspective, J. Hydrol., 617, 128963, https://doi.org/10.1016/j.jhydrol.2022.128963, 2023b.
Thomann, J. A., Werner, A. D., and Irvine, D. J.: Developing adaptive management guidance for groundwater planning and development, J. Environ. Manage., 322, 116052, https://doi.org/10.1016/j.jenvman.2022.116052, 2022.
Todorović, A., Grabs, T., and Teutschbein, C.: Advancing traditional strategies for testing hydrological model fitness in a changing climate, Hydrolog. Sci. J., 67, 1790–1811, https://doi.org/10.1080/02626667.2022.2104646, 2022.
Todorović, A., Grabs, T., and Teutschbein, C.: Improving performance of bucket-type hydrological models in high latitudes with multi-model combination methods: Can we wring water from a stone?, J. Hydrol., 632, 130829, https://doi.org/10.1016/j.jhydrol.2024.130829, 2024.
Tootoonchi, F., Todorović, A., Grabs, T., and Teutschbein, C.: Uni- and multivariate bias adjustment of climate model simulations in Nordic catchments: Effects on hydrological signatures relevant for water resources management in a changing climate, J. Hydrol., 623, 129807, https://doi.org/10.1016/j.jhydrol.2023.129807, 2023.
Tripathy, K. P. and Mishra, A. K.: How Unusual Is the 2022 European Compound Drought and Heatwave Event?, Geophys. Res. Lett., 50, e2023GL105453, https://doi.org/10.1029/2023GL105453, 2023.
UNDRR: GAR Special report on drought 2021, United Nations Office for Disaster Risk Reduction, Geneva, Switzerland, 173 pp., ISBN 9789212320274, 2021.
Van Loon, A. F.: Hydrological drought explained, WIREs Water, 2, 359–392, https://doi.org/10.1002/wat2.1085, 2015.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F., Ploum, S. W., Parajka, J., Fleig, A. K., Garnier, E., Laaha, G., and Van Lanen, H. A. J.: Hydrological drought types in cold climates: quantitative analysis of causing factors and qualitative survey of impacts, Hydrol. Earth Syst. Sci., 19, 1993–2016, https://doi.org/10.5194/hess-19-1993-2015, 2015.
Vaux, H.: Groundwater under stress: the importance of management, Environ. Earth Sci., 62, 19–23, https://doi.org/10.1007/s12665-010-0490-x, 2011.
Vicente-Serrano, S. M., López-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C., and Morán-Tejeda, E.: Accurate computation of a streamflow drought index, J. Hydrol. Eng., 17, 318–332, https://doi.org/10.1061/(ASCE)HE.1943-5584.000043, 2011.
Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E., and Sanchez-Lorenzo, A.: Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applications, Earth Interact., 16, 1–27, https://doi.org/10.1175/2012EI000434.1, 2012.
Wang, H., Zhu, Y., Qin, T., and Zhang, X.: Study on the propagation probability characteristics and prediction model of meteorological drought to hydrological drought in basin based on copula function, Front. Earth Sci., 10, 961871, https://doi.org/10.3389/feart.2022.961871, 2022.
Weider, K. and Boutt, D. F.: Heterogeneous water table response to climate revealed by 60 years of ground water data, Geophys. Res. Lett., 37, L24405, https://doi.org/10.1029/2010GL045561, 2010.
Wendt, D. E., Bloomfield, J. P., Van Loon, A. F., Garcia, M., Heudorfer, B., Larsen, J., and Hannah, D. M.: Evaluating integrated water management strategies to inform hydrological drought mitigation, Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, 2021.
Wilhite, D. A.: A methodology for drought preparedness, Nat. Hazards, 13, 229–252, https://doi.org/10.1007/BF00215817, 1996.
Wilson, D., Hisdal, H., and Lawrence, D.: Has streamflow changed in the Nordic countries? – Recent trends and comparisons to hydrological projections, J. Hydrol., 394, 334–346, https://doi.org/10.1016/j.jhydrol.2010.09.010, 2010.
WMO and GWP: Handbook of Drought Indicators and Indices, edited by: Svoboda, M. and Fuchs, B. A., Integrated Drought Management Programme (IDMP), Geneva, Switzerland, ISBN 978-91-87823-24-4, 2016.
WMO Climatological Normals: https://community.wmo.int/wmo-climatological-normals, last access: 16 December 2021.
Wu, H., Hayes, M. J., Wilhite, D. A., and Svoboda, M. D.: The effect of the length of record on the standardized precipitation index calculation, Int. J. Climatol., 25, 505–520, https://doi.org/10.1002/joc.1142, 2005.
Zhang, Q., Miao, C., Gou, J., Wu, J., Jiao, W., Song, Y., and Xu, D.: Spatiotemporal characteristics of meteorological to hydrological drought propagation under natural conditions in China, Weather Clim. Extrem., 38, 100505, https://doi.org/10.1016/j.wace.2022.100505, 2022a.
Zhang, X., Hao, Z., Singh, V. P., Zhang, Y., Feng, S., Xu, Y., and Hao, F.: Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors, Sci. Total Environ., 838, 156021, https://doi.org/10.1016/j.scitotenv.2022.156021, 2022b.
Zhu, Y., Liu, Y., Wang, W., Singh, V. P., and Ren, L.: A global perspective on the probability of propagation of drought: From meteorological to soil moisture, J. Hydrol., 603, 126907, https://doi.org/10.1016/j.jhydrol.2021.126907, 2021.
Short summary
This study is an exploration of how droughts develop and spread in high-latitude regions, focusing on the unique conditions found in areas like Scandinavia. It reveals that droughts affect soil, rivers, and groundwater differently, depending on such factors as land cover, water availability, and soil properties. The findings highlight the importance of tailored water management strategies to protect resources and ecosystems in these regions, especially as climate change continues to affect weather patterns.
This study is an exploration of how droughts develop and spread in high-latitude regions,...
Altmetrics
Final-revised paper
Preprint