Articles | Volume 25, issue 7
https://doi.org/10.5194/nhess-25-2503-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-2503-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring the interplay between observed warming, atmospheric circulation, and soil–atmosphere feedbacks on heatwaves in a temperate mountain region
Marc Lemus-Canovas
CORRESPONDING AUTHOR
Center for Climate Change and Transformation, Eurac Research, Bozen/Bolzano, 39100, Italy
Andorra Research + Innovation, Sant Julià De Lòria, AD600, Andorra
Sergi Gonzalez-Herrero
WSL Institute for Snow and Avalanche Research (SLF) Davos, 7260, Switzerland
Laura Trapero
Andorra Research + Innovation, Sant Julià De Lòria, AD600, Andorra
Anna Albalat
Andorra Research + Innovation, Sant Julià De Lòria, AD600, Andorra
Damian Insua-Costa
Hydro-Climate Extremes Lab (H-CEL), Ghent University, Ghent, 9000, Belgium
Center for Climate Change and Transformation, Eurac Research, Bozen/Bolzano, 39100, Italy
Martin Senande-Rivera
CRETUS, Non-linear Physics Group, Universidade de Santiago de Compostela, 15782, Spain
Gonzalo Miguez-Macho
CRETUS, Non-linear Physics Group, Universidade de Santiago de Compostela, 15782, Spain
Related authors
Marc Lemus-Canovas, Alice Crespi, Elena Maines, Stefano Terzi, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2025-1347, https://doi.org/10.5194/egusphere-2025-1347, 2025
Short summary
Short summary
We studied a severe compound drought and heatwave event in the Adige River basin in May 2022 and found that similar events are now hotter and drier due to current warming. These changes worsen water stress and river drying. We show that timing matters: events in June are now more critical than in April, as the snowmelt contribution to streamflow in June has become much lower than in the past. However, many climate models still fail to capture these changes.
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024, https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Short summary
This paper shows the first public and systematic dataset of flood episodes referring to the entire Pyrenees massif, at municipal scale, named PIRAGUA_flood. Of the 181 flood events (1981–2015) that produced 154 fatalities, 36 were transnational, with the eastern part of the massif most affected. Dominant weather types show a southern component flow, with a talweg on the Iberian Peninsula and a depression in the vicinity. A positive and significant trend was found in Nouvelle-Aquitaine.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
Marc Lemus-Canovas and Joan Albert Lopez-Bustins
Nat. Hazards Earth Syst. Sci., 21, 1721–1738, https://doi.org/10.5194/nhess-21-1721-2021, https://doi.org/10.5194/nhess-21-1721-2021, 2021
Short summary
Short summary
We present research that attempts to address recent and future changes in hot and dry compound events in the Pyrenees, which can induce severe environmental hazards in this area. The results show that during the last few decades, these kinds of compound events have only increased due to temperature increase. However, for the future, it is expected that the risk associated with these compound events will be raised by both the thermal increase and the longer duration of drought periods.
Carolina A. Bieri, Francina Dominguez, Gonzalo Miguez-Macho, and Ying Fan
Geosci. Model Dev., 18, 3755–3779, https://doi.org/10.5194/gmd-18-3755-2025, https://doi.org/10.5194/gmd-18-3755-2025, 2025
Short summary
Short summary
Access to deep moisture below the Earth's surface is important for vegetation in areas of the Amazon where there is little precipitation for part of the year. Most existing numerical models of the Earth system do not adequately capture where and when deep root water uptake occurs. We address this by adding deep soil layers and a root water uptake feature to an existing model. Out modifications lead to increased dry-month transpiration and improved simulation of the annual transpiration cycle.
Marc Lemus-Canovas, Alice Crespi, Elena Maines, Stefano Terzi, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2025-1347, https://doi.org/10.5194/egusphere-2025-1347, 2025
Short summary
Short summary
We studied a severe compound drought and heatwave event in the Adige River basin in May 2022 and found that similar events are now hotter and drier due to current warming. These changes worsen water stress and river drying. We show that timing matters: events in June are now more critical than in April, as the snowmelt contribution to streamflow in June has become much lower than in the past. However, many climate models still fail to capture these changes.
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024, https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Short summary
This paper shows the first public and systematic dataset of flood episodes referring to the entire Pyrenees massif, at municipal scale, named PIRAGUA_flood. Of the 181 flood events (1981–2015) that produced 154 fatalities, 36 were transnational, with the eastern part of the massif most affected. Dominant weather types show a southern component flow, with a talweg on the Iberian Peninsula and a depression in the vicinity. A positive and significant trend was found in Nouvelle-Aquitaine.
Alfredo Crespo-Otero, Damián Insua-Costa, Emilio Hernández-García, Cristóbal López, and Gonzalo Míguez-Macho
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-18, https://doi.org/10.5194/esd-2024-18, 2024
Revised manuscript accepted for ESD
Short summary
Short summary
We evaluated two Lagrangian moisture tracking tools, WaterSip and UTrack, and compared them against the WRF model with Water Vapor Tracers. Our results show that UTrack, which relies on evaporation and precipitable water data, has a slightly better agreement with WRF-WVTs than WaterSip, based on specific humidity data. Implementing simple physics-based changes substantially improved both methodologies, reducing discrepancies by about 50 % and narrowing the the disparities among all approaches.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
Xavier Fonseca, Gonzalo Miguez-Macho, José A. Cortes-Vazquez, and Antonio Vaamonde
Geosci. Commun., 5, 177–188, https://doi.org/10.5194/gc-5-177-2022, https://doi.org/10.5194/gc-5-177-2022, 2022
Short summary
Short summary
In this paper, we discuss the instrumental role of the press in informing and educating the public on the subject of climate science and climate change. We illustrate this using an example of a dissemination format called Weather Stories, published daily in one of the most read newspapers in Spain. The particularities of this journalistic format are described using a practical example of a relatively complex physical concept: the jet stream.
Sara Cloux, Daniel Garaboa-Paz, Damián Insua-Costa, Gonzalo Miguez-Macho, and Vicente Pérez-Muñuzuri
Hydrol. Earth Syst. Sci., 25, 6465–6477, https://doi.org/10.5194/hess-25-6465-2021, https://doi.org/10.5194/hess-25-6465-2021, 2021
Short summary
Short summary
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing it with a highly accurate Eulerian tool, both operating on the same WRF atmospheric model fields. Although the Lagrangian approach is very useful for a qualitative analysis of moisture sources, it has important limitations in quantifying the contribution of individual sources to precipitation. These drawbacks should be considered by other authors in the future so as to not draw erroneous conclusions.
Marc Lemus-Canovas and Joan Albert Lopez-Bustins
Nat. Hazards Earth Syst. Sci., 21, 1721–1738, https://doi.org/10.5194/nhess-21-1721-2021, https://doi.org/10.5194/nhess-21-1721-2021, 2021
Short summary
Short summary
We present research that attempts to address recent and future changes in hot and dry compound events in the Pyrenees, which can induce severe environmental hazards in this area. The results show that during the last few decades, these kinds of compound events have only increased due to temperature increase. However, for the future, it is expected that the risk associated with these compound events will be raised by both the thermal increase and the longer duration of drought periods.
Breogán Gómez and Gonzalo Miguez-Macho
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-71, https://doi.org/10.5194/esd-2020-71, 2020
Publication in ESD not foreseen
Short summary
Short summary
Spectral nudging imposes the large scale fields from a global model into a regional model. We study which are the best scales on a tropical setting and how long is needed to run the model before it is in balance with the nudging force. Optimal results are obtained when nudging is applied in the Rossby Radius scales for at least 72 h to 96 h. We also propose a new method where a different scale is used for each nudged variable, which bests other configurations when applied in 4 hurricanes cases.
Sergi Gonzalez, Alfons Callado, Mauricia Martínez, and Benito Elvira
Adv. Sci. Res., 17, 209–217, https://doi.org/10.5194/asr-17-209-2020, https://doi.org/10.5194/asr-17-209-2020, 2020
Short summary
Short summary
This article describes the high-resolution Ensemble Prediction System (EPS) AEMET-γSREPS. This is the first convection-permitting EPS that operationally provide forecasts for a region of Antarctica. Kilometric-resolution EPSs, such γSREPS, will improve the short-range prediction in Antarctica in the following years. This will have a positive impact on safety and logistic activities at Antarctic research stations.
Cited articles
Andorran Meteorological Service: Encamp meteorological time series, https://www.meteo.ad/, last access: 20 December 2024.
Barriopedro, D., Sousa, P. M., Trigo, R. M., García-Herrera, R., and Ramos, A. M.: The Exceptional Iberian Heatwave of Summer 2018, B. Am. Meteorol. Soc., 101, S29–S34, https://doi.org/10.1175/BAMS-D-19-0159.1, 2020.
Bartusek, S., Kornhuber, K., and Ting, M.: 2021 North American heatwave amplified by climate change-driven nonlinear interactions, Nat. Clim. Change, 12, 1143–1150, https://doi.org/10.1038/s41558-022-01520-4, 2022.
Camarero, J. J.: The Multiple Factors Explaining Decline in Mountain Forests: Historical Logging and Warming-Related Drought Stress is Causing Silver-Fir Dieback in the Aragón Pyrenees, in: High Mountain Conservation in a Changing World, edited by: Catalan, J., Ninot, J. M., and Aniz, M. M., Springer Int. Publ., Cham, 131–154, https://doi.org/10.1007/978-3-319-55982-7_6, 2017.
Cremona, A., Huss, M., Landmann, J. M., Borner, J., and Farinotti, D.: European heat waves 2022: contribution to extreme glacier melt in Switzerland inferred from automated ablation readings, The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023, 2023.
Cuadrat, J. M., Serrano-Notivoli, R., Prohom, M., Cunillera, J., Tejedor, E., Saz, M. Á., de Luis, M., Llabrés, A., and Soubeyroux, J.-M.: Climate of the Pyrenees, Version v3, Zenodo [data set], https://doi.org/10.5281/zenodo.10972236, 2024.
Della-Marta, P. M., Haylock, M. R., Luterbacher, J., and Wanner, H.: Doubled length of western European summer heat waves since 1880, J. Geophys. Res., 112, D15103, https://doi.org/10.1029/2007JD008510, 2007.
ECA&D (European Climate Assessment & Dataset): Huesca and Tarbes meteorological time series, https://www.ecad.eu/, last access: 20 December 2024.
Ek, M. B. and Holtslag, A. A. M.: Influence of Soil Moisture on Boundary Layer Cloud Development, J. Hydrometeorol., 5, 86–99, https://doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2, 2004.
Faranda, D., Bourdin, S., Ginesta, M., Krouma, M., Noyelle, R., Pons, F., Yiou, P., and Messori, G.: A climate-change attribution retrospective of some impactful weather extremes of 2021, Weather Clim. Dynam., 3, 1311–1340, https://doi.org/10.5194/wcd-3-1311-2022, 2022.
Felsche, E., Böhnisch, A., and Ludwig, R.: Inter-seasonal connection of typical European heatwave patterns to soil moisture, npj Clim. Atmos. Sci., 6, 1–11, https://doi.org/10.1038/s41612-023-00330-5, 2023.
Fischer, E. M., Seneviratne, S. I., Lüthi, D., and Schär, C.: Contribution of land-atmosphere coupling to recent European summer heat waves, Geophys. Res. Lett., 34, 2006GL029068, https://doi.org/10.1029/2006GL029068, 2007.
García-Herrera, R., Díaz, J., Trigo, R. M., and Hernández, E.: Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions, Ann. Geophys., 23, 239–251, https://doi.org/10.5194/angeo-23-239-2005, 2005.
Gazol, A., Sangüesa-Barreda, G., and Camarero, J. J.: Forecasting Forest Vulnerability to Drought in Pyrenean Silver Fir Forests Showing Dieback, Front. For. Glob. Change, 3, 36, https://doi.org/10.3389/ffgc.2020.00036, 2020.
Gentine, P., D'Odorico, P., Lintner, B. R., Sivandran, G., and Salvucci, G.: Interdependence of climate, soil, and vegetation as constrained by the Budyko curve, Geophys. Res. Lett., 39, 2012GL053492, https://doi.org/10.1029/2012GL053492, 2012.
González-Herrero, S., Barriopedro, D., Trigo, R. M., López-Bustins, J. A., and Oliva, M.: Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula, Communications Earth & Environment, 3, 122, https://doi.org/10.1038/s43247-022-00450-5, 2022.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Hirschi, M., Seneviratne, S. I., Alexandrov, V., Boberg, F., Boroneant, C., Christensen, O. B., Formayer, H., Orlowsky, B., and Stepanek, P.: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe, Nature, 4, 17–21, https://doi.org/10.1038/ngeo1032, 2011.
Jézéquel, A., Yiou, P., and Radanovics, S.: Role of circulation in European heatwaves using flow analogues, Clim. Dynam., 50, 1145–1159, https://doi.org/10.1007/s00382-017-3667-0, 2018.
Jiménez, P. A., de Arellano, J. V.-G., González-Rouco, J. F., Navarro, J., Montávez, J. P., García-Bustamante, E., and Dudhia, J.: The Effect of Heat Waves and Drought on Surface Wind Circulations in the Northeast of the Iberian Peninsula during the Summer of 2003, J. Climate, 24, 5416–5422, https://doi.org/10.1175/2011JCLI4061.1, 2011.
Lemus-Canovas, M. and Lopez-Bustins, J. A.: Assessing internal changes in the future structure of dry–hot compound events: the case of the Pyrenees, Nat. Hazards Earth Syst. Sci., 21, 1721–1738, https://doi.org/10.5194/nhess-21-1721-2021, 2021.
Lemus-Canovas, M., Lopez-Bustins, J. A., Trapero, L., and Martin-Vide, J.: Combining circulation weather types and daily precipitation modelling to derive climatic precipitation regions in the Pyrenees, Atmos. Res., 220, 181–193, https://doi.org/10.1016/j.atmosres.2019.01.018, 2019.
Lemus-Canovas, M.: coupling, Version 0.1.0, Zenodo [code], https://doi.org/10.5281/zenodo.11047472, 2024.
Lemus-Canovas, M.: lemuscanovas/climattR: 0.1.1, https://doi.org/10.5281/zenodo.15772290, Zenodo [code], 2025.
López-Moreno, J. I., Revuelto, J., Rico, I., Chueca-Cía, J., Julián, A., Serreta, A., Serrano, E., Vicente-Serrano, S. M., Azorin-Molina, C., Alonso-González, E., and García-Ruiz, J. M.: Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981, The Cryosphere, 10, 681–694, https://doi.org/10.5194/tc-10-681-2016, 2016.
López-Moreno, J. I., Soubeyroux, J. M., Gascoin, S., Alonso-Gonzalez, E., Durán-Gómez, N., Lafaysse, M., Vernay, M., Carmagnola, C., and Morin, S.: Long-term trends (1958–2017) in snow cover duration and depth in the Pyrenees, Int. J. Climatol., 40, 6122–6136, https://doi.org/10.1002/joc.6571, 2020.
Mastrotheodoros, T., Pappas, C., Molnar, P., Burlando, P., Manoli, G., Parajka, J., Rigon, R., Szeles, B., Bottazzi, M., Hadjidoukas, P., and Fatichi, S.: More green and less blue water in the Alps during warmer summers, Nat. Clim. Change, 10, 155–161, https://doi.org/10.1038/s41558-019-0676-5, 2020.
Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C., and Vilà-Guerau de Arellano, J.: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation, Nature, 7, 345–349, https://doi.org/10.1038/ngeo2141, 2014.
Miralles, D. G., van den Berg, M. J., Teuling, A. J., and de Jeu, R. A. M.: Soil moisture-temperature coupling: A multiscale observational analysis, Geophys. Res. Lett., 39, L21707, https://doi.org/10.1029/2012GL053703, 2012.
Moreno, A., Valero-Garcés, B. L., Verfaillie, D., Galop, D., Rodríguez Camino, E., Tejedor, E., Barreiro Lostres, F., Soubeyroux, J.-M., Cunillera, J., Cuadrat, J. M., García Ruiz, J. M., López Moreno, J. I., Trapero, L., Pons, M., Prohom Duran, M., Saz Sánchez, M.Á., González Sampériz, P., Ramos Calzado, P., Amblar, M. P., Copons, R., Serrano Notivoli, R., Gascoin, S., and Luna Rico, Y.: Clima y variabilidad climática en los Pirineos, OPCC-CTP, ISBN: 978-84-09-06268-3, 2018.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Pérez-Zanón, N., Sigró, J., and Ashcroft, L.: Temperature and precipitation regional climate series over the central Pyrenees during 1910–2013, Int. J. Climatol., 37, 1922–1937, https://doi.org/10.1002/joc.4823, 2017.
Pérez-Zanón, N., Sigró, J., and Ashcroft, L.: Temperature and precipitation regional climate series over the central Pyrenees during 1910–2013, Int. J. Climatol., 37, 1922–1937, https://doi.org/10.1002/joc.4823, 2017.
Philandras, C. M., Nastos, P. T., Kapsomenakis, J., Douvis, K. C., Tselioudis, G., and Zerefos, C. S.: Long term precipitation trends and variability within the Mediterranean region, Nat. Hazards Earth Syst. Sci., 11, 3235–3250, https://doi.org/10.5194/nhess-11-3235-2011, 2011.
Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100, 81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Rasmijn, L. M., van der Schrier, G., Bintanja, R., Barkmeijer, J., Sterl, A., and Hazeleger, W.: Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints, Nature, 8, 381–385, https://doi.org/10.1038/s41558-018-0114-0, 2018.
Rodrigues, M., Cunill Camprubí, À., Balaguer-Romano, R., Coco Megía, C. J., Castañares, F., Ruffault, J., Fernandes, P. M., and Resco de Dios, V.: Drivers and implications of the extreme 2022 wildfire season in Southwest Europe, Sci. Total Environ., 859, 160320, https://doi.org/10.1016/j.scitotenv.2022.160320, 2023.
Röthlisberger, M. and Papritz, L.: Quantifying the physical processes leading to atmospheric hot extremes at a global scale, Nat. Geosci., 16, 210–216, https://doi.org/10.1038/s41561-023-01126-1, 2023.
Russo, S., Dosio, A., Graversen, R. G., Sillmann, J., Carrao, H., Dunbar, M. B., Singleton, A., Montagna, P., Barbola, P., and Vogt, J. V.: Magnitude of extreme heat waves in present climate and their projection in a warming world, J. Geophys. Res.-Atmos., 119, 12500–12512, https://doi.org/10.1002/2014JD022098, 2014.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming exacerbates European soil moisture droughts, Nat. Clim. Change, 8, 421–426, https://doi.org/10.1038/s41558-018-0138-5, 2018.
Schumacher, D. L., Keune, J., van Heerwaarden, C. C., Vilà-Guerau de Arellano, J., Teuling, A. J., and Miralles, D. G.: Amplification of mega-heatwaves through heat torrents fuelled by upwind drought, Nat. Geosci., 12, 712–717, https://doi.org/10.1038/s41561-019-0431-6, 2019.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture–climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Serrano-Notivoli, R., Beguería, S., Saz, M. Á., Longares, L. A., and de Luis, M.: SPREAD: a high-resolution daily gridded precipitation dataset for Spain – an extreme events frequency and intensity overview, Earth Syst. Sci. Data, 9, 721–738, https://doi.org/10.5194/essd-9-721-2017, 2017.
Serrano-Notivoli, R., Beguería, S., and de Luis, M.: STEAD: a high-resolution daily gridded temperature dataset for Spain, Earth Syst. Sci. Data, 11, 1171–1188, https://doi.org/10.5194/essd-11-1171-2019, 2019.
Serrano-Notivoli, R., Tejedor, E., Sarricolea, P., Meseguer-Ruiz, O., de Luis, M., Saz, M. Á., Longares, L. A., and Olcina, J.: Unprecedented warmth: A look at Spain's exceptional summer of 2022, Atmos. Res., 293, 106931, https://doi.org/10.1016/j.atmosres.2023.106931, 2023.
Sousa, P. M., Trigo, R. M., Barriopedro, D., Soares, P. M. M., and Santos, J. A.: European temperature responses to blocking and ridge regional patterns, Clim. Dynam., 50, 457–477, https://doi.org/10.1007/s00382-017-3620-2, 2018.
Sousa, P. M., Barriopedro, D., Ramos, A. M., García-Herrera, R., Espírito-Santo, F., and Trigo, R. M.: Saharan air intrusions as a relevant mechanism for Iberian heatwaves: The record breaking events of August 2018 and June 2019, Weather and Climate Extremes, 26, 100224, https://doi.org/10.1016/j.wace.2019.100224, 2019.
Sousa, P. M., Barriopedro, D., García-Herrera, R., Ordóñez, C., Soares, P. M. M., and Trigo, R. M.: Distinct influences of large-scale circulation and regional feedbacks in two exceptional 2019 European Communications Earth & Environment, 1, 1–13, https://doi.org/10.1038/s43247-020-00048-9, 2020.
Stefanon, M., D'Andrea, F., and Drobinski, P.: Heatwave classification over Europe and the Mediterranean region, Environ. Res. Lett., 7, 014023, https://doi.org/10.1088/1748-9326/7/1/014023, 2012.
Stéfanon, M., Drobinski, P., D'Andrea, F., Lebeaupin-Brossier, C., and Bastin, S.: Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe, Clim. Dynam., 42, 1309–1324, https://doi.org/10.1007/s00382-013-1794-9, 2014.
Thompson, V., Kennedy-Asser, A. T., Vosper, E., Lo, Y. T. E., Huntingford, C., Andrews, O., Collins, M., Hegerl, G. C., and Mitchell, D.: The 2021 western North America heat wave among the most extreme events ever recorded globally, Sci. Adv., 8, eabm6860, https://doi.org/10.1126/sciadv.abm6860, 2022.
Vidal, J., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.: A 50-year high-resolution atmospheric reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010.
Vidaller, I., Revuelto, J., Izagirre, E., Rojas-Heredia, F., Alonso-González, E., Gascoin, S., René, P., Berthier, E., Rico, I., Moreno, A., Serrano, E., Serreta, A., and López-Moreno, J. I.: Toward an Ice-Free Mountain Range: Demise of Pyrenean Glaciers During 2011–2020, Geophys. Res. Lett., 48, e2021GL094339, https://doi.org/10.1029/2021GL094339, 2021.
Whan, K., Zscheischler, J., Orth, R., Shongwe, M., Rahimi, M., Asare, E. O., and Seneviratne, S. I.: Impact of soil moisture on extreme maximum temperatures in Europe, Weather and Climate Extremes 9, 57–67, https://doi.org/10.1016/j.wace.2015.05.001, 2015.
White, R. H., Anderson, S., Booth, J. F., Braich, G., Draeger, C., Fei, C., Harley, C. D. G., Henderson, S. B., Jakob, M., Lau, C.-A., Mareshet Admasu, L., Narinesingh, V., Rodell, C., Roocroft, E., Weinberger, K. R., and West, G.: The unprecedented Pacific Northwest heatwave of June 2021, Nat. Commun., 14, 727, https://doi.org/10.1038/s41467-023-36289-3, 2023.
Witze, A.: Extreme heatwaves: surprising lessons from the record warmth, Nature, 608, 464–465, https://doi.org/10.1038/d41586-022-02114-y, 2022.
Xu, P., Wang, L., Huang, P., and Chen, W.: Disentangling dynamical and thermodynamical contributions to the record-breaking heatwave over Central Europe in June 2019, Atmos. Res., 252, 105446, https://doi.org/10.1016/j.atmosres.2020.105446, 2021.
Yiou, P. and Jézéquel, A.: Simulation of extreme heat waves with empirical importance sampling, Geosci. Model Dev., 13, 763–781, https://doi.org/10.5194/gmd-13-763-2020, 2020.
Yule, E. L., Hegerl, G., Schurer, A., and Hawkins, E.: Using early extremes to place the 2022 UK heat waves into historical context, Atmos. Sci. Lett., 24, e1159, https://doi.org/10.1002/asl.1159, 2023.
Zschenderlein, P., Fink, A. H., Pfahl, S., and Wernli, H.: Processes determining heat waves across different European climates, Q. J. Roy. Meteor. Soc., 145, 2973–2989, https://doi.org/10.1002/qj.3599, 2019.
Short summary
This study investigates the intense heatwaves of 2022 in the Pyrenees. The interplay of the synoptic circulation with the complex topography and the pre-existing soil moisture deficits played an important role in driving the spatial variability of their temperature anomalies. Moreover, human-driven climate change has made these heatwaves more severe compared to the past. This research helps us better understand how climate change affects extreme weather in mountainous regions.
This study investigates the intense heatwaves of 2022 in the Pyrenees. The interplay of the...
Altmetrics
Final-revised paper
Preprint