Articles | Volume 25, issue 7
https://doi.org/10.5194/nhess-25-2271-2025
https://doi.org/10.5194/nhess-25-2271-2025
Research article
 | 
08 Jul 2025
Research article |  | 08 Jul 2025

Improving pluvial flood simulations with a multi-source digital elevation model super-resolution method

Yue Zhu, Paolo Burlando, Puay Yok Tan, Christian Geiß, and Simone Fatichi

Related authors

A synthesis of water, energy, and carbon fluxes sensitivity to climate variables in Southeast Asia
Jianning Ren, Zhaoyang Luo, Xiangzhong Luo, Stefano Galelli, Athanasios Paschalis, Valeriy Ivanov, Shanti Shwarup Mahto, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2025-4570,https://doi.org/10.5194/egusphere-2025-4570, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
A 1985–2023 time series dataset of absolute reservoir storage in Mainland Southeast Asia (MSEA-Res)
Shanti Shwarup Mahto, Simone Fatichi, and Stefano Galelli
Earth Syst. Sci. Data, 17, 2693–2712, https://doi.org/10.5194/essd-17-2693-2025,https://doi.org/10.5194/essd-17-2693-2025, 2025
Short summary
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025,https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Ecohydrological responses to solar radiation changes
Yiran Wang, Naika Meili, and Simone Fatichi
Hydrol. Earth Syst. Sci., 29, 381–396, https://doi.org/10.5194/hess-29-381-2025,https://doi.org/10.5194/hess-29-381-2025, 2025
Short summary
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024,https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary

Cited articles

Argudo, O., Chica, A., and Andujar, C.: Terrain Super-resolution through Aerial Imagery and Fully Convolutional Networks, Comput. Graph. Forum, 37, 101–110, https://doi.org/10.1111/cgf.13345, 2018. 
Arun, P. V.: A comparative analysis of different DEM interpolation methods, The Egyptian Journal of Remote Sensing and Space Science, 16, 133–139, https://doi.org/10.1016/j.ejrs.2013.09.001, 2013. 
Brock, J., Schratz, P., Petschko, H., Muenchow, J., Micu, M., and Brenning, A.: The performance of landslide susceptibility models critically depends on the quality of digital elevation models, Geomat. Nat. Haz. Risk, 11, 1075–1092, https://doi.org/10.1080/19475705.2020.1776403, 2020. 
Carrão, H., Gonçalves, P., and Caetano, M.: Contribution of multispectral and multitemporal information from MODIS images to land cover classification, Remote Sens. Environ., 112, 986–997, https://doi.org/10.1016/j.rse.2007.07.002, 2008. 
Download
Short summary
This study addresses the challenge of accurately predicting floods in regions with limited terrain data. By utilising a deep learning model, we developed a method that improves the resolution of digital elevation data by fusing low-resolution elevation data with high-resolution satellite imagery. This approach not only substantially enhances flood prediction accuracy, but also holds potential for broader applications in simulating natural hazards that require terrain information.
Share
Altmetrics
Final-revised paper
Preprint