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Abstract. Accurate flood simulation remains a significant
challenge in many flood-prone regions, particularly in de-
veloping countries and urban areas, where the availability of
high-resolution topographic data is especially limited. While
publicly available digital elevation model (DEM) datasets are
increasingly accessible, their spatial resolution is often in-
sufficient for reflecting fine-scaled elevation details, which
hinders the ability to simulate pluvial floods in built envi-
ronments. To address this issue, we implemented a deep-
learning-based method, which efficiently enhances the spa-
tial resolution of DEM data, and quantified the effect of the
improved DEM on flood simulation. The method employs a
tailored multi-source input module, enabling it to effectively
integrate and learn from diverse data sources. By utilising
publicly accessible global datasets, such as low-resolution
DEM datasets (i.e. 30 m Shuttle Radar Topography Mission,
SRTM) in conjunction with high-resolution multispectral im-
agery (e.g. Sentinel-2A), our approach allows us to produce a
super-resolution DEM, which exhibits superior performance
compared to conventional methods in reconstructing 10 m
DEM data based on 30 m DEM data and 10 m multispectral
satellite images. We evaluated the performance of the super-
resolution DEM in flood simulations. Compared to conven-
tional methods (e.g. bicubic interpolation), the simulation re-
sults demonstrated that our approach significantly improved
the accuracy of flood simulations, with a reduction in the
mean absolute error of floodwater depth of about 13.1 %
and an increase in the intersection over union (IoU) for in-

undation area predictions of about 46 %. Accordingly, this
study underscores the practical value of machine learning
techniques that leverage publicly available global datasets to
generate DEMs that allow for the enhancement of flood sim-
ulations.

1 Introduction

The occurrence of severe urban floods has been on the rise,
partly influenced by climate change, which contributes to
more frequent extreme-rainfall events (Tabari, 2020). To ad-
dress these challenges, high-resolution flood modelling is
essential for making informed flood management decisions
(Sanders et al., 2024; Wang et al., 2018). As one of the
key inputs for flood simulations, accurate digital elevation
model (DEM) data support reliable flood simulation, in turn
enabling the assessment of various flood mitigation strate-
gies. However, the fidelity of flood simulations is heavily
contingent upon the spatial resolution of DEM data (Hawker
et al., 2018). At present, open datasets of DEM data with
global coverage are predominantly available at raster reso-
lutions coarser than (or equal to) 30 m (Marsh et al., 2023),
failing to capture the fine-resolution local topography details
that are crucial for flood modelling (Hawker et al., 2018).
The lack of publicly accessible high-resolution DEMs par-
ticularly affects data-scarce regions of the developing world,
which are often the most vulnerable to the devastating im-
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pacts of floods (Malgwi et al., 2020). In response to these
challenges, this research examines the effect of implement-
ing a deep-learning-based image super-resolution model to
generate high-resolution DEM data and demonstrates the
performance of the enhanced DEM data in improving plu-
vial flood simulations.

1.1 Existing methods for improving the spatial
resolution of DEMs

Methods to enhance the spatial resolution of DEM data
have been widely adopted across geospatial applications
to improve risk estimates. These advancements have sig-
nificantly enhanced the accuracy and reliability of natu-
ral hazard mapping, including flood prediction (Löwe and
Arnbjerg-Nielsen, 2020; Tan et al., 2024), landslide mod-
elling (Brock et al., 2020), volcanic flow assessment (Deng
et al., 2019), and snow avalanche forecasting (Miller et
al., 2022). The most widely adopted approaches in existing
studies on DEM super-resolution methods can be categorised
into interpolation-based, data-fusion-based, and learning-
based methods (Zhou et al., 2023). Interpolation methods,
such as bilinear and bicubic interpolations (Rees, 2000), are
based on the concept of spatial autocorrelation, which posits
that points in closer proximity are more alike than those that
are more distant (Arun, 2013). While being straightforward
and computationally efficient, their performance is often lim-
ited by the simplicity of terrain continuity and smoothness,
potentially leading to over-smoothed terrain features (Zhang
and Yu, 2022). Data-fusion-based approaches combine the
strengths of data from different sources to create a more ac-
curate and comprehensive representation of terrain (Yue et
al., 2015). During the fusion process, tools such as elevation
error maps or weight maps are commonly used to assign im-
portance to each DEM source, ensuring that higher-quality
data have a greater influence on the final output. However,
these methods often introduce inaccuracies by altering ele-
vation values and failing to address edge effects (Okolie and
Smit, 2022), such as abrupt transitions or mismatches be-
tween overlapping DEM datasets.

Deep learning methods have significantly advanced the
field of single-image super-resolution, achieving superior
performance in reconstructing high-resolution images from
their low-resolution counterparts (Yang et al., 2019). The im-
plementations of deep-learning-based super-resolution meth-
ods have been shown to substantially improve the perfor-
mance of remote sensing applications (Ling and Foody,
2019; Shang et al., 2022; Xie et al., 2022) and promote the
utilisation of spatial data that had previously been under-
utilised due to limited spatial resolution (Zhu et al., 2021),
including the applications of enhancing low-resolution DEM
data (Demiray et al., 2021a, b; Jiang et al., 2023; Kubade et
al., 2020; Li et al., 2023; Yue et al., 2015; Zhou et al., 2023,
2021, 2021). For instance, Demiray et al. (2021) utilised
generative adversarial networks (GANs) to upscale low-

resolution DEMs (50 ft, i.e. ∼ 15.24 m) to high-resolution
DEMs (3 ft, i.e. ∼ 0.91 m). Although they demonstrated the
potential of adversarial training in spatial resolution enhance-
ment, GANs are known for instability in training, facing
challenges such as mode collapse and vanishing gradients
(Jabbar et al., 2021). Zhou et al. (2021) introduced a double-
filter deep residual neural network, leveraging residual learn-
ing to improve feature extraction and enhance the accuracy
of reconstructed DEMs. More recently, Li et al. (2023) pro-
posed a transformer-based deep learning network for upscal-
ing DEMs across multiple upsampling factors (e.g.× 2,× 4),
showcasing the effectiveness of attention mechanisms in
capturing long-range dependencies and spatial relationships.
Building on the advances of these existing methods, we re-
fine a DEM super-resolution method by employing a compu-
tationally efficient architecture with attention mechanisms to
achieve accuracy and robustness. In the previous studies, the
majority of the deep learning applications in the DEM super-
resolution methods employed only low-resolution DEM data
as input, without incorporating additional information. This
is a limitation to accurately capturing the unique terrain
features that characterise high-resolution DEMs (Zhou et
al., 2023) and that are required to support accurate flood
modelling.

1.2 Multi-source deep learning for remote sensing
applications

In general remote sensing applications, the benefits of in-
tegrating multi-source inputs have been increasingly recog-
nised, as the combination of complementary data sources en-
hances the robustness and reliability of model performance
(Li et al., 2022). For instance, Shen et al. (2019) devel-
oped a deep-learning-based model for drought monitoring,
which employed multi-source data as input, including DEM
data, meteorological data, and soil data. Lu et al. (2022) pro-
posed a deep learning framework that takes Google Earth
imagery and point-of-interest heatmaps as input data for ur-
ban functional zone extraction. Blöschl et al. (2024) inte-
grated riverbed geometry information into the DEM to en-
hance national-scale flood hazard mapping.

With respect to the input for the DEM super-resolution
method, it can be argued that solely relying on a single
source of low-resolution DEM input can be an ill-posed
task, as high-resolution details can hardly be accurately re-
constructed without additional reference information (Yue et
al., 2016). Studies have been made to include additional fea-
tures generated from low-resolution DEM data. For instance,
Zhang et al. (2023) calculated terrain gradient maps based on
DEM data to guide the optimisation process of convolutional
neural network (CNN)-based DEM super-resolution meth-
ods. Zhou et al. (2023) proposed a terrain-feature-based CNN
for DEM super-resolution methods, which extracts slope and
aspect from low-resolution DEM data and deploys them as
additional features for model inputs and loss functions.
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Besides generating additional features based on low-
resolution DEM, efforts have also been made to fuse differ-
ent data sources to offer fine-grained details related to terrain
features, which can improve performance. One example fol-
lowing this direction is found in Argudo et al. (2018), who
examined the feasibility of combining natural-colour aerial
images together with low-resolution DEM data as input to
train a CNN to produce high-resolution DEM, suggesting
improved performance compared with interpolation-based
methods. Tan et al. (2024) introduced a deep-learning-based
DEM upscaling network that uses high-resolution optical im-
ages to predict elevation differences and then fuses these pre-
dictions with the original DEM data through additional con-
volutional layers. It should be noted that these studies mainly
employed natural-colour images for feature fusion. In con-
trast, multispectral images can provide further features from
non-visible wavelengths, such as the near-infrared band, al-
lowing for more detailed and specialised analysis. This is
supported by Chen et al. (2013), showcasing the effects of
utilising multispectral bands of satellite images on improv-
ing the performance of an interpolation-based DEM den-
sification method. More recently, a few attempts have ex-
plored the effects of integrating low-resolution DEMs with
remote sensing imagery for DEM super-resolution methods.
Gao and Yue (2024) used the red band of Sentinel-2 images
to provide auxiliary high-frequency information for DEM
super-resolution training. Paul and Gupta (2024) incorpo-
rated three-band satellite images with a low-resolution DEM
to develop a GAN-based DEM super-resolution method.

1.3 Significance of this study

In this literature context, this study aims to improve plu-
vial flood simulations by investigating a deep-learning-based
DEM super-resolution construction method, which incorpo-
rates multispectral imagery as additional input, including
the near-infrared band. The study evaluates and quantifies
the effectiveness of the method in enhancing pluvial flood
simulations. Accordingly, we develop an integrated method-
ological framework to enhance input data quality for prac-
tical improvements in flood simulation performance, specif-
ically quantifying the extent to which the proposed method
of DEM resolution enhancement can contribute to improved
pluvial flood hazard simulations. Specifically, we provide
the following main contributions: (i) we develop an effi-
cient DEM super-resolution method that incorporates a tai-
lored input module for processing multi-source and multi-
scale input data, including both low-resolution DEM data
and high-resolution multispectral satellite images; (ii) by us-
ing publicly open datasets, we ensure the generalisability of
the method, especially for DEM-related applications in data-
scarce regions; and (iii) we provide a quantitative assessment
of the performance of the generated super-resolution DEM
maps with regard to pluvial flood simulations. The latter is
achieved by evaluating the flood inundation maps generated

based on different DEM super-resolution methods in terms of
both floodwater depth and inundated area. Overall, this study
represents a methodological advancement that showcases the
practical value of multi-sourced deep-learning-based meth-
ods for enhancing pluvial flood simulations, thus offering
an exemplary pathway to address the issue of lacking high-
resolution DEMs for reliable risk assessments in the context
of land use planning and disaster management.

2 Methodology

To improve the spatial resolution of DEM data for enhancing
flood simulations, we further develop a deep-learning-based
DEM super-resolution method. This method employs a resid-
ual channel attention network (RCAN) (Zhang et al., 2018)
as the backbone structure and incorporates a tailored multi-
source input block to leverage multi-sourced input data, con-
tributing to improved performance in reconstructing high-
resolution DEM data.

2.1 Residual channel attention network (RCAN)

RCAN is a widely recognised method for use in single-image
super-resolution (Zhang et al., 2018). One of the key features
employed in an RCAN is a deep residual network structure
that integrates residual in residual (RIR) blocks. The RIR
block combines long and short skip connections, enabling
the network to learn more high-dimensional features from
low-resolution to high-resolution images with a very deep
structure while avoiding the issue of vanishing gradients dur-
ing training processes. Another key feature of RCAN is its
use of channel attention mechanisms within each residual
block. The channel attention mechanism weighs the impor-
tance of each channel, thus allowing RCAN to adaptively
emphasise features from more important channels while sup-
pressing less useful ones, thereby optimising reconstruction
performance by focusing on the most significant features.
This channel attention mechanism can be particularly useful
for processing multi-source input data (Liu et al., 2021). By
integrating the RIR structure with channel attention mech-
anisms, RCAN can extract and exploit hierarchical features
from the input image effectively. However, since RCAN has
been developed for image super-resolution tasks on single
natural-colour images, we tailored the structure of its input
module to handle inputs from different data sources.

2.2 Multi-source and multi-scale input data fusion

The proposed method, referred to as RCAN-multispectral
(RCAN-MS), incorporates a tailored multi-source and multi-
scale input module, which is the key distinction from the
original RCAN. The input module enables the integration
of high-resolution multispectral satellite images with low-
resolution DEM data, leveraging the complementary in-
formation from both sources to reconstruct high-resolution
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DEMs with enhanced accuracy (Fig. 1). Multispectral satel-
lite images contain information captured across various spec-
tral bands, including both visible light and near-infrared
bands, which offer a wealth of information about surface
materials, vegetation coverage, water bodies, and other land-
scape features (Carrão et al., 2008), making them ideal for
compensating for the coarse information in low-resolution
DEMs. By combining high-resolution multispectral imagery
with low-resolution elevation data, deep learning models can
access a more comprehensive feature set, facilitating the re-
construction of detailed topographic information.

The tailored multi-source input module is integrated into
the model structure before the first layer of the RCAN back-
bone structure (Fig. 1). In particular, the 30 m DEM data are
fed into a 2D convolutional layer with a kernel size of 3× 3,
a stride of 1, and a padding size of 1. Meanwhile, the 10 m
multispectral satellite images are passed to another 2D con-
volutional layer that has a kernel size of 3× 3 but with a
stride of 3, which can effectively reduce the spatial dimen-
sions of the input by a factor of 3. A rectified linear unit
(ReLU) activation function follows the convolution, intro-
ducing non-linearity and enhancing feature representation.
As such, the information in the four-band multispectral in-
put is encoded to a four-channel tensor that has the same size
as the encoded low-resolution data flow. Once the two data
flows are of the same size, they can be concatenated along the
channel dimension and then processed by another 2D convo-
lutional layer for data fusion of spatial and spectral informa-
tion from multi-source inputs. After that, the concatenated
multi-source input is passed through the RCAN backbone
structure, which consists of RIR blocks and includes a 2D
convolutional layer at the end of the model structure to up-
scale the data flow to the size of the high-resolution DEM
map. The proposed method is tested with two datasets at dif-
ferent geographical locations by comparing it with a series of
baseline models in the following sections.

3 Experiment settings

3.1 Datasets

Although publicly available DEM datasets with global cov-
erage have limited spatial resolution (approximately 30 m or
coarser), the spatial resolution of publicly accessible multi-
spectral satellite imagery with global coverage can reach a
spatial resolution of 10 m, such as Sentinel-2A, which has
great potential to provide fine-grained features, adding com-
plementary information to DEM super-resolution methods.
Considering the availability of datasets and the generalis-
ability at global scales, we chose to work with a scale fac-
tor of × 3 to test DEM super-resolution methods, which is
also widely adopted in most existing studies on image super-
resolution (Wang et al., 2022).

Two datasets at different geographical locations were em-
ployed in this study for training and evaluation of super-
resolution DEMs, as well as for the simulation of plu-
vial floodwater distribution. The data are all collected from
publicly available sources, including the Shuttle Radar To-
pography Mission (SRTM), TanDEM-X, and Sentinel-2,
which have been widely adopted for remote sensing appli-
cations, e.g. in urban environments (Wu, et al., 2019; Geiß
et al., 2015; Li et al., 2021). SRTM utilised dual-radar an-
tennas to collect interferometric radar data, which were then
processed into digital topographic data with a resolution of
1 arcsec (Farr et al., 2007). The TanDEM-X mission uses a
single-pass interferometric synthetic aperture radar (InSAR)
system to produce 12 m resolution global digital surface
models. The Sentinel-2 satellites carry the Multi-Spectral
Instrument (MSI), which captures imagery in 13 spectral
bands, with the blue, green, red, and near-infrared bands hav-
ing a 10 m spatial resolution (Spoto et al., 2012).

The two selected locations cover the areas of (i) Eng-
land, the UK (Dataset 1), and (ii) Shenzhen and Hong Kong
SAR, China (Dataset 2). Each dataset contains three differ-
ent data sources (Table 1), including a 10 m high-resolution
DEM map, a 30 m low-resolution DEM map, and the cor-
responding 10 m multispectral satellite image composed of
four bands (i.e. red, blue, green, near infrared). It should
be noted that, although the spatial resolution of the high-
resolution DEM data in both datasets was pre-processed at
the same resolution of 10 m, the data were collected from
different sources due to data availability. However, such dif-
ferences in data sources can also be leveraged to test the ro-
bustness and generalisability of the proposed methods.

As shown in Fig. 2, each dataset for the test on DEM super-
resolution methods was split into three subsets, namely the
training set, validation set, and test set. There are no spatial
overlapping areas between the three subsets. In each dataset,
the three subsets were randomly subsampled into 2000, 200,
and 300 small patches for training, validation, and testing, re-
spectively. The size of the subsampled low-resolution DEM
patches is 80× 80 px, and the sizes of the subsampled high-
resolution DEM and multispectral images are 240× 240 px.
Correspondingly, the super-resolution DEMs are trained with
a target of upscaling the DEM data to 3 times its original size.

3.2 Experiment setup

The experiments were composed of two main stages (Fig. 3):
(i) the DEM super-resolution method and (ii) the pluvial
flood simulation. The first stage was centred on assessing the
performance of DEM super-resolution methods in enhancing
the resolution of the original DEM data, whereas the sec-
ond stage was to quantify the effects of adopting the super-
resolution DEM on enhancing pluvial flood simulations. This
quantification offers two main benefits: (i) it provides a more
comprehensive performance evaluation of how DEMs gen-
erated through different methods perform in impact applica-
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Figure 1. The structure of the proposed DEM super-resolution method, MS-RCAN. Low-resolution DEM data and four-band multispectral
satellite images are fused using a tailored multi-source and multi-scale input module to facilitate the reconstruction of high-resolution DEM
data.

Table 1. Information on the DEM data and multispectral satellite images used in the two datasets for testing DEM super-resolution methods.

Dataset 1 Dataset 2
England Shenzhen and Hong Kong SAR

Collection source Lidar composite DTM 2019, published by TanDEM-X, provided by the
UK Environment Agency (2023) German Aerospace Center (DLR)

10 m DEM Spatial resolution Resampled from 2 to 10 m resolution Resampled from 12 to 10 m resolution
using a bilinear interpolation using a bilinear interpolation

Acquisition date 1 September 2019 13 January 2016

30 m DEM

Collection source Shuttle Radar Topography Mission (SRTM), Shuttle Radar Topography Mission (SRTM),
published by NASA JPL (2013) published by NASA JPL (2013)

Spatial resolution 1 arcsec (∼ 30 m) resolution 1 arcsec (∼ 30 m) resolution

Acquisition date 23 September 2014 23 September 2014

10 m multispectral images

Collection source Sentinel-2A Sentinel-2A

Spatial resolution 10 m resolution 10 m resolution

Bands Band 2 – blue, Band 3 – green, Band 4 – red, Band 2 – blue, Band 3 – green, Band 4 – red,
Band 8 – near-infrared Band 8 – near-infrared

Acquisition date 25 November 2022, 21 January 25 December 2023
2023, 13 February 2023

tions, and (ii) it examines whether the proposed deep learn-
ing approach provides a cost-efficient solution for improving
flood simulations.

In the first stage, besides using the original high-resolution
DEM data for performance evaluation, four additional base-
line methods were employed for comparison with the perfor-
mance of the proposed method, RCAN-MS. These baseline
methods include a conventional bicubic interpolation method
and three other widely adopted neural-network-based super-
resolution methods, namely the super-resolution convolu-
tional neural network (SRCNN; Dong et al., 2016), very deep

convolutional network (VDSR; Kim et al., 2016), and resid-
ual channel attention network (RCAN; Zhang et al., 2018).
All the models were trained and validated separately in
the UK and China datasets, facilitating the evaluation of
model performance in learning terrain-specific representa-
tions across different geographical contexts.

The super-resolution DEMs were established and trained
with PyTorch on two NVIDIA GeForce RTX 4090 GPUs
on high-performance computing (HPC) clusters. All base-
line models were implemented using the default parameter
settings for hidden layers as specified in their original pa-
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Figure 2. Overview of the two datasets for the DEM super-resolution method. (a) The training, validation, and test sets of Dataset 1. (b) The
training, validation, and test sets of Dataset 2 (see Table 1 for data source).

Figure 3. Workflow of the experiments, including (i) establishing a DEM super-resolution method to reconstruct a high-resolution DEM and
then (ii) using the high-resolution DEM for pluvial flood simulations.
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pers. The input and output layer configurations were adapted
to suit the task of DEM super-resolution methods. The base-
line methods used as benchmarks utilised single-band input
and output layers, except for RCAN-MS, which was config-
ured with five input bands (i.e. single-band DEM and four-
band multispectral image). All the test methods adopted the
same training configuration – they were all trained with a
batch size of eight and a learning rate of 1× 10−4. With an
adaptive learning rate scheduler, the learning rate decreases
to a fraction of 0.8 when the validation loss stops decreas-
ing for 50 epochs. The optimiser adopted for all the methods
is Adam with default momentum parameters. The loss func-
tion is the mean absolute error (MAE). Regarding the stop-
ping criteria for mode performance evaluation, all the models
were trained for 200 epochs with the data in the training set,
after which the epoch yielding the smallest MAE values on
the validation set was selected for further performance eval-
uation on the test sets.

The MAE, mean square error (MSE), peak signal-to-
noise ratio (PSNR), and structural similarity index measure
(SSIM) were employed to evaluate the performance of super-
resolution DEMs. PSNR and SSIM are two widely used
evaluation metrics in image super-resolution tasks (Dong et
al., 2016; Kim et al., 2016; Yang et al., 2019). The PSNR
measures the quality of the reconstruction of a lossy trans-
formation (e.g. image compression) (Wang et al., 2021), with
higher values indicating a smaller difference. The SSIM mea-
sures the similarity between two images, specifically target-
ing changes in brightness, contrast, and structure (Wang et
al., 2021).

For both the UK and China datasets, the DEM data gener-
ated by all the downscaling methods in the super-resolution
test were adopted as input for flood simulation. In each
dataset, a subarea of 450× 600 px was cropped for plu-
vial flood simulation. The simulation was conducted using
a cellular automaton model, Caddies (Guidolin et al., 2016),
which is known for efficient pluvial flood simulation in urban
environments (Liu et al., 2018; Wang et al., 2019, 2023; Zhu
et al., 2024).

The pluvial flood simulation was based on a 100-year re-
turn period and 30 min duration rainfall as a forcing scenario.
Since the two geographical locations feature different climate
conditions, the rainfall intensity corresponding to the 100-
year return period rainfall was set based on the intensity–
duration–frequency (IDF) curves for the UK and Hong Kong
SAR regions, respectively. The IDF curve for the UK area
is computed using the hourly rainfall data recorded at the
rain gauge station of Seathwaite, northern England, and is
downloaded from the MIDAS UK sub-hourly rainfall ob-
servation dataset (MIDAS, 2024). The adopted IDF curve
for Hong Kong SAR is based on a report published by the
Civil Engineering and Development Department of the Gov-
ernment of the Hong Kong Special Administrative Region
(Tang and Cheung, 2011). Specifically, the 100-year return
period rainfall intensity for a 30 min duration is 42 mm h−1

for Dataset 1 and 190 mm h−1 for Dataset 2. The simulated
flood maps were evaluated by comparing their similarity to
the flood map generated based on reference high-resolution
DEM data. Both flood depth values and flood area coverage
were assessed. The evaluation metrics used to measure flood
depth values are MAE and MSE, and the metric for evaluat-
ing the flood areas is intersection over union (IoU), which is
a widely adopted method for assessing the accuracy of a pre-
dicted area in comparison to the target area found in ground
truth data (Rahman and Wang, 2016).

4 Results

4.1 DEM super-resolution method

The experimental results of the comparison between the pro-
posed DEM super-resolution method and the baseline meth-
ods are presented in Table 2, including the comparisons in
both datasets. For Dataset 1, the RCAN-MS method demon-
strates a marked improvement over the bicubic method,
reducing the MAE from 3.0 to 2.2 m (−26.7 %) and the
MSE from 19.0 to 8.7 m2 (−54.2 %). This enhancement is
also reflected in the values of PSNR (+9.9 %) and SSIM
(+34.8 %), suggesting a substantially improved fit to the tar-
get high-resolution DEM. Similarly, Dataset 2 results reveal
that RCAN-MS significantly outperforms the bicubic inter-
polation method, with the MAE sharply decreasing from 9.9
to 5.9 m (−40.4 %) and the MSE from 186.0 to 67.6 m2

(−63.7 %). The RCAN method, serving as the backbone
method for RCAN-MS, shows better results than the other
deep-learning-based methods, SRCNN and VDSR, across
both datasets, underscoring the superior performance of the
RCAN-based architecture in the task of DEM resolution en-
hancement. Specifically, for Dataset 1, RCAN has an MAE
of 2.60 m and an MSE of 12.9 m2, which are better than
those for SRCNN and VDSR. In Dataset 2, RCAN achieves
an MAE of 6.4 m and an MSE of 83.5 m2, further confirm-
ing its robustness. The performance superiority of the pro-
posed RCAN-MS method is evident across all metrics in both
datasets, demonstrating its enhanced capability in generating
high-fidelity super-resolution DEM data. This is exemplified
by the significant reductions in MAE and MSE and the cor-
responding increase in PNSR and SSIM values.

Figures 5 and 6 present the two selected patches from the
test sets of Datasets 1 and 2 for visual assessment of the
performance of the super-resolution DEM maps, in which
a subarea of exemplary patches is additionally enlarged for
further visual comparison of details. The corresponding ref-
erence low-resolution DEM and high-resolution DEM maps
are also presented for comparison. The ranking of the perfor-
mance of all the tested methods is aligned with the overall
evaluation of the test sets reported in Table 2, suggesting that
RCAN offers a larger magnitude of enhancement than SR-
CNN and VDSR, and RCAN-MS stands out among all the
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Table 2. Evaluation results of all the tested DEM resolution enhancement methods on two test sets with different geographical locations. The
values in bold represent the best value for each evaluation metric.

Test set of Dataset 1 Test set of Dataset 2

MAE (m) MSE (m2) PNSR SSIM MAE (m) MSE (m2) PNSR SSIM

Bicubic 3.0078 19.0206 33.4055 0.4621 9.2924 163.0170 35.4505 0.6091
SRCNN 2.7665 15.5027 34.2901 0.5776 6.8153 94.1950 37.8500 0.6794
VDSR 2.6530 13.4866 34.8653 0.5737 6.6412 88.7638 38.1110 0.6811
RCAN 2.5967 12.9453 35.0460 0.5975 6.4150 83.5288 38.3950 0.6838
RCAN-MS 2.1952 8.7102 36.7605 0.6205 5.8181 66.6251 39.3543 0.7411

Figure 4. Changes in the MAE values of all the tested models as training epochs increase for Dataset 1 (a) and Dataset 2 (b).

tested methods, recording the lowest MAE and MSE values.
These two exemplary patches of the test sets are employed
for pluvial flood simulation in the following section.

We note that the enlarged area of Dataset 2 is situated
at a relatively higher elevation in the patch (Fig. 6). De-
spite the different geographical locations of the exemplary
patches in the two datasets, the results of the DEM super-
resolution test on Dataset 2 align with the results of Dataset
1. RCAN showed the second-best performance, with the pro-
posed RCAN-MS showing the best performance among the
models tested, highlighting its effectiveness in reconstructing
fine-grained information and also capturing the complexity
of terrain elevations.

In contrast to the exemplary patch from Dataset 2 (Fig. 6),
the patch from Dataset 1 is characterised by a relatively flat-
ter terrain (Fig. 5). Arguably, flatter areas could pose a greater
challenge due to smaller variations in elevation, which are
closer in magnitude to the vertical accuracy of the DEM,
potentially increasing the likelihood of error. Given the su-
perior overall performance of RCAN-MS in Dataset 1, this
suggests its potential effectiveness in handling subtler eleva-
tion changes. However, as we examined only two geograph-
ical regions, the method’s performance in a wider range of
terrain characteristics remains to be tested.

The conventional image interpolation method, bicubic,
presents the worst performance in the exemplary patches

from both Dataset 1 and Dataset 2, with pixelated DEM maps
that lack fine-grained features. Regarding the deep-learning-
based super-resolution methods in Dataset 1 (Fig. 5), the
super-resolution DEM images generated by SRCNN and
VDSR exhibit over-smoothing effects, which lead to a loss
of details. In contrast, the super-resolution DEM images
produced by RCAN and RCAN-MS presented substantially
less blurring effects than those of the other baseline meth-
ods. Furthermore, by incorporating multispectral satellite im-
ages as part of the input, RCAN-MS generated a super-
resolution DEM image with finer details in elevation differ-
ence compared with RCAN, which showed the best perfor-
mance among all the baseline methods.

To assess the extent to which the improved DEM data can
facilitate pluvial flood simulation, the exemplary patches of
the two test sets were adopted as the input data in the pluvial
flood simulations.

4.2 Pluvial flood simulation

Pluvial flood simulations were conducted using the super-
resolution DEM data of the two exemplary patches presented
in Figs. 5 and 6, including the DEM data produced by all the
tested methods. As mentioned above, the rainfall scenario for
pluvial flood simulation was set to have a 30 min duration for
a 100-year return period for both datasets, with intensities set
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Figure 5. Comparison of DEM maps in the test set of Dataset 1, generated by the proposed method (RCAN-MS), other baseline methods,
and the original high-resolution DEM map in Dataset 1. The values of the evaluation metrics (i.e. MAE, MSE, PSNR, SSIM) for each method
are presented.

according to the geographical location: 42 mm h−1 for Eng-
land in Dataset 1 and 190 mm h−1 for Hong Kong SAR in
Dataset 2.

Figure 7 demonstrates the simulated pluvial floodwater in-
undation maps using super-resolution DEM maps of the ex-
emplary patch of Dataset 1, which are illustrated in Fig. 5.
Comparing the various flood inundation maps in Fig. 7, it can
be observed that the flood inundation map generated based
on RCAN-MS more closely replicates the floodwater dis-
tribution obtained using the high-resolution DEM compared
to the other super-resolution-generating methods considered
(i.e. bicubic, SRCNN, VDSR, RCAN), thus reflecting the ef-
fects of smaller elevation errors in DEMs on flood simula-
tion. This can be particularly observed in the enlarged areas
in Fig. 7. The inundated area predicted based on the RCAN-
MS method exhibits greater consistency with the inundated
area obtained using the high-resolution DEM, with the dis-
tribution of floodwater appearing more contiguous, while the
other methods display more abrupt changes in water levels,
which can be inferred from the scattered dark-blue shading
within the maps.

The performance in terms of floodwater depth and flood
inundation area using super-resolution DEM data in the ex-
emplary patch of Dataset 1 was also quantitatively evalu-
ated and compared with the values obtained from simulations
that used the reference high-resolution DEMs (Fig. 8). The
errors in floodwater depth were evaluated using MAE and
MSE. The RCAN-MS method outperforms the other meth-
ods, with the lowest MAE of 0.0247 m and the lowest MSE
of 0.0095 m2, scoring an approximately 30 % improvement
compared with conventional bicubic methods in both MAE
and MSE. The accuracy of flood areas, defined using varying
thresholds (i.e. 5, 10, 20, 30, and 40 cm), was assessed using
IoU, which measures the overlapping areas between the pre-
dicted flood areas defined using these thresholds. Here, the
RCAN-MS method generally shows higher IoU values at dif-
ferent depth thresholds compared to other methods, suggest-
ing better precision in predicting the actual flood-affected
area that will emerge from using the original DEM. For the
flooded area with thresholds of 5 and 10 cm in particular, the
RCAN-MS method exhibits the highest IoU values, with an
improvement of 146 % and 202 %, compared with bicubic
interpolation.
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Figure 6. Comparison of DEM maps in the test set of Dataset 2, generated by the proposed method (RCAN-MS), other baseline methods,
and the original high-resolution DEM map in Dataset 2. The values of the evaluation metrics (i.e. MAE, MSE, PSNR, SSIM) for each method
are presented.

Figure 7. Maps of pluvial flood inundation depth simulated using super-resolution DEM data and compared with the flood inundation depth
simulated using the original high-resolution DEM data in an exemplary patch of Dataset 1.
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Figure 8. Performance evaluation of pluvial flood simulations based on super-resolution DEM data compared with the original high-
resolution DEM data in the exemplary patch of Dataset 1. (a) MAE and MSE comparison of flood depth values and (b) IoU evaluation
of the spatial coverage of flood area delineated by different depth thresholds from 5 to 40 cm.

The comparisons of flood simulation results generated
based on super-resolution DEM data from Dataset 2 are pre-
sented in Figs. 9 and 10. Visual inspection of flood inun-
dation maps and quantitative evaluation suggest that results
generally align with the performance obtained for Dataset 1.
In particular, the flood inundation map generated based on
RCAN-MS shows more fine-resolution details, matching the
floodwater distribution generated with the reference high-
resolution DEM. Furthermore, the RCAN-MS-based flood
inundation map yields the smallest MAE (0.1193 m) and
MSE values (0.3009 m2), indicating an improvement of ap-
proximately 13 % and 15 % in flood depth errors compared
with the bicubic-based flood inundation map.

It can be observed in Figs. 8 and 10 that, although the pro-
portional increase in IoU indicates that the proposed meth-
ods correctly identify more flood-prone areas compared to
baseline methods, the IoU for high water depth thresholds is
much lower than that for lower water depth thresholds. This
can be attributed to the significantly smaller spatial extent
of deep-floodwater areas. At higher thresholds, even small
misalignments between the predicted and actual flood zones
can result in a substantial reduction in IoU. While it be-
comes more challenging to simulate deep-flood levels in their
exact locations, flood simulation based on RCAN-MS still
achieved the best performance in simulating deep-floodwater
areas compared to all baseline methods in both datasets.

5 Discussion

Among the investigated techniques for generating super-
resolution DEMs, RCAN-MS developed here showed su-
perior performance compared to the other baseline meth-
ods, not only in terms of accuracy with respect to the high-
resolution DEM, but also in the impact that its use has on
flood simulation. Such superior performance is a result of
learning from multi-source inputs, particularly incorporating
high-resolution multispectral satellite images, which enables
RCAN-MS to achieve fine-resolution details while mitigat-

ing the pepper-and-salt noises in the super-resolution DEM
generated by RCAN. Concurrently, it avoids over-smoothing
observed in SRCNN and VDSR. Arguably, in RCAN-MS,
the improvement effect of the multi-source input on the DEM
super-resolution method is due to the input from multispec-
tral information that contributes to a better understanding of
how land cover features interact with different terrains, thus
leading to more detailed and accurate terrain reconstructions
(Chen et al., 2013). Specifically, the differentiation between
vegetated areas and bare soil in multispectral data can in-
crease the performance of the model in accurately predicting
elevation changes and surface contours. The variety of spec-
tral bands helps in distinguishing between features that may
have similar elevation profiles but different spectral charac-
teristics, such as the different inter-class variations between
urban areas and rocky terrain.

Most importantly, the RCAN-MS method, used to build
a high-resolution DEM, substantially enhances the accuracy
of flood simulations by producing DEM data with sufficient
spatial resolution and improved terrain reconstructions. It is
important to note that, in principle, better performance in
DEM super-resolution methods does not necessarily guar-
antee an improvement in flood simulation accuracy. This
is evident in the experimental results, which show that al-
though the RCAN backbone method achieved the second-
best performance in the evaluation of DEM super-resolution
tests in both datasets, it fell short in pluvial flood simulation
when compared to SRCNN and VDSR. This inferior per-
formance can likely be attributed to the presence of pepper-
and-salt noise within the flood inundation maps simulated
from RCAN, where shallow-depth flooded pixels appear
scattered. In contrast, SRCNN and VDSR, known for pro-
ducing smoother ground surfaces, result in DEMs that lead
to fewer instances of scattered floodwater pixels. Therefore,
despite the fact that RCAN yields fewer errors in the DEM
super-resolution method compared to SRCNN and VDSR,
the latter models achieve higher scores in simulated flood
inundation maps due to the reduced occurrence of pepper-
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Figure 9. Maps of pluvial flood inundation depth simulated using super-resolution DEM data and compared with the flood inundation depth
simulated using the original high-resolution DEM data in an exemplary patch of Dataset 2.

Figure 10. Performance evaluation of flood simulation maps produced based on super-resolution DEM data compared with the original
high-resolution DEM data in the exemplary patch of Dataset 2. (a) MAE and MSE comparison of flood depth values and (b) IoU evaluation
of the spatial coverage of flood area delineated by different depth thresholds from 5 to 40 cm.

and-salt noise. This issue was substantially alleviated in the
results of RCAN-MS due to the integration of multi-spectral
satellite images. Such integration has proven to be effective
in reducing noise and improving flood simulation accuracy.
Incorporating additional data sources enables the model to
better represent complex terrain features, which play crucial
roles in flood simulation performance.

The terrain characteristics can influence the effectiveness
of interpolation and super-resolution methods in flood sim-
ulation. Specifically, the improvement in flood simulation
maps achieved by RCAN-MS is more evident in Dataset 1
than in Dataset 2. A key factor contributing to this discrep-
ancy is the difference in terrain between the two datasets.
As shown in Figs. 5 and 6, Dataset 1 features a relatively flat
landscape, while Dataset 2 is characterised by hillier topogra-
phy. In the flatter terrain of Dataset 1, floodwater tends to be
distributed in a wider area, resulting in less distinct patterns

and greater noise in the simulation results generated by base-
line methods (e.g. bicubic interpolation). In contrast, the hilly
terrain of Dataset 2 naturally promotes more concentrated
flow accumulation, leading to visually coherent flood pat-
terns across different methods, even using the DEM gener-
ated with bicubic interpolation. Therefore, the improvement
provided by the proposed super-resolution method tends to
be more significant in regions with less pronounced topogra-
phy.

While the present study shows the significantly better-
performing nature of the RCAN-MS technique compared
to other well-established methods, one should note that the
study is also characterised by some limitations. First, for the
two datasets tested in this study, as we intend to examine
the performance of proposed models with a direct and effi-
cient workflow, we did not apply data pre-processing tech-
niques (e.g. noise reduction) on the high-resolution DEM
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data. There may still be room for improvement in flood
simulations using super-resolution DEM data that have pre-
processed high-resolution DEMs as training datasets. More-
over, it should be acknowledged that variations in acquisition
dates of data from diverse sources can lead to minor inconsis-
tencies in datasets. These temporal discrepancies, especially
between multispectral satellite imagery and between low-
resolution and high-resolution images, may affect the effi-
cacy of DEM super-resolution generation, potentially reduc-
ing its performance. In addition, one should take into account
that the model was trained and evaluated in two specific geo-
graphic areas. Thus, its straightforward transferability with-
out minor adjustments (e.g. fine-tuning of parameterisation)
may not be guaranteed in other regions, particularly those
with significantly different terrain characteristics. However,
retraining or fine-tuning the model, which is generally pos-
sible, is expected to allow for effective implementation in
many different regions.

In future work, further tests could focus on investigat-
ing the impact of including additional inputs on model per-
formance. This study takes advantage of multi-scale and
multi-source input data for DEM super-resolution methods
but only incorporates four-band multispectral satellite im-
ages as additional features. Other terrain-related features
(e.g. slope, aspect) may potentially improve model perfor-
mance and were not tested. Thus, future work can explore the
impact of terrain-related features on enhancing model per-
formance, as well as examine the performance of the pro-
posed methods with different downscaling factors, where
higher-resolution DEM data are available as training tar-
gets. Moreover, this study trained and evaluated models sepa-
rately for two different regions characterised by different ge-
ographical and terrain contexts. Future work could explore
different approaches to improve model generalisability and
support broader applicability in regions with limited high-
resolution DEM data, such as pretraining on diverse global
DEM datasets and fine-tuning for specific local applications.
Furthermore, this study performed pluvial flood simulations
using a cellular-automaton-based model forced with a rain-
fall scenario of a 1-in-100-year return period. Further tests
could assess the effects of super-resolution DEMs under al-
ternative rainfall scenarios and with additional flood simu-
lation models to assess whether the DEM input quality has
some level of model dependency. While many flood mod-
els share the same fundamental equations to solve for flow
processes (Guo et al., 2021), such extended analyses would
likely broaden the scope of the study and enhance the gener-
alisability of the results.

6 Conclusion

This study addresses the critical challenge of accurate
flood simulation in regions where high-resolution DEM data
are unavailable or of limited extent. We developed and

implemented a deep-learning-based DEM super-resolution
method, incorporating multi-source input data, including
low-resolution DEM and high-resolution multispectral im-
agery. The experiment suggests that the enhanced multi-
source DEM super-resolution method, RCAN-MS, signifi-
cantly improves the accuracy of the DEM for pluvial flood
simulations, particularly in terms of floodwater depth and
inundation area predictions. The integration of Sentinel-2A
multispectral data with the 30 m SRTM DEM allows for the
reconstruction of 10 m DEM data with higher fidelity com-
pared to conventional methods. The improved performance
of RCAN-MS in flood simulation, compared to its backbone
method RCAN, underscores the value of incorporating mul-
tispectral images as they enhance terrain representation and
reduce noise in the super-resolution DEM, thus leading to
more accurate flood simulation results.

By leveraging publicly available global datasets, this ap-
proach offers a promising solution for regions with limited
access to high-resolution topographic data. It enables not
only more precise flood simulations, but also the potential
to generate large-scale high-resolution DEMs from existing
publicly available coarse DEMs, opening new possibilities
for resilience development and resource allocation and, in
turn, potentially contributing not only to flood risk reduction,
but also to broader applications in simulating other natural
hazards where accurate terrain representation is essential.
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S., and Savić, D. A.: A weighted cellular automata 2D inundation
model for rapid flood analysis, Environ. Modell. Softw., 84, 378–
394, https://doi.org/10.1016/j.envsoft.2016.07.008, 2016.

Guo, K., Guan, M., and Yu, D.: Urban surface water flood
modelling – a comprehensive review of current models and
future challenges, Hydrol. Earth Syst. Sci., 25, 2843–2860,
https://doi.org/10.5194/hess-25-2843-2021, 2021.

Hawker, L., Bates, P., Neal, J., and Rougier, J.: Perspec-
tives on Digital Elevation Model (DEM) Simulation for
Flood Modeling in the Absence of a High-Accuracy Open
Access Global DEM, Frontiers in Earth Science, 6, 233,
https://doi.org/10.3389/feart.2018.00233, 2018.

Jabbar, A., Li, X., and Omar, B.: A Survey on Generative Adversar-
ial Networks: Variants, Applications, and Training, ACM Com-
put. Surv., 54, 157, https://doi.org/10.1145/3463475, 2021.

Jiang, Y., Xiong, L., Hua ng, X., Li, S., and Shen, W.:
Super-resolution for terrain modeling using deep learning in
high mountain Asia, Int. J. Appl. Earth Obs., 118, 103296,
https://doi.org/10.1016/j.jag.2023.103296, 2023.

Kim, J., Lee, J. K., and Lee, K. M.: Accurate Image Super-
Resolution Using Very Deep Convolutional Networks, in: 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 27–30 June 2016, IEEE, 1646–
1654, https://doi.org/10.1109/CVPR.2016.182, 2016.

Kubade, A. A., Sharma, A., and Rajan, K. S.: Feedback Neu-
ral Network Based Super-Resolution of DEM for Generating
High Fidelity Features, in: IGARSS 2020 - 2020 IEEE Interna-

Nat. Hazards Earth Syst. Sci., 25, 2271–2286, 2025 https://doi.org/10.5194/nhess-25-2271-2025

https://doi.org/10.1111/cgf.13345
https://doi.org/10.1016/j.ejrs.2013.09.001
https://doi.org/10.5194/nhess-24-2071-2024
https://doi.org/10.1080/19475705.2020.1776403
https://doi.org/10.1016/j.rse.2007.07.002
https://doi.org/10.1109/LGRS.2012.2195471
https://doi.org/10.48550/arXiv.2109.09661
https://doi.org/10.1007/s42979-020-00442-2
https://doi.org/10.1016/j.rse.2019.111348
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1109/ICGMRS62107.2024.10581275
https://doi.org/10.1109/TGRS.2015.2396195
https://doi.org/10.1016/j.envsoft.2016.07.008
https://doi.org/10.5194/hess-25-2843-2021
https://doi.org/10.3389/feart.2018.00233
https://doi.org/10.1145/3463475
https://doi.org/10.1016/j.jag.2023.103296
https://doi.org/10.1109/CVPR.2016.182


Y. Zhu et al.: Improving pluvial flood simulations with a multi-source DEM super-resolution method 2285

tional Geoscience and Remote Sensing Symposium, Waikoloa,
HI, USA, 26 September–2 October 2020, IEEE, 1671–1674,
https://doi.org/10.1109/IGARSS39084.2020.9323310, 2020.

Li, C., Shao, Z., Zhang, L., Huang, X., and Zhang, M.:
A comparative analysis of index-based methods for im-
pervious surface mapping using multiseasonal Sentinel-2
satellite data, IEEE J. Sel. Top. Appl., 14, 3682–3694,
https://doi.org/10.1109/JSTARS.2021.3067325, 2021.

Li, J., Hong, D., Gao, L., Yao, J., Zheng, K., Zhang, B., and Chanus-
sot, J.: Deep learning in multimodal remote sensing data fusion:
A comprehensive review, Int. J. Appl. Earth Obs., 112, 102926,
https://doi.org/10.1016/j.jag.2022.102926, 2022.

Li, Z., Zhu, X., Yao, S., Yue, Y., García-Fernández, Á. F., Lim, E.
G., and Levers, A.: A large scale Digital Elevation Model super-
resolution Transformer, Int. J. Appl. Earth Obs., 124, 103496,
https://doi.org/10.1016/j.jag.2023.103496, 2023.

Ling, F. and Foody, G. M.: Super-resolution land cover map-
ping by deep learning, Remote Sens. Lett., 10, 598–606,
https://doi.org/10.1080/2150704X.2019.1587196, 2019.

Liu, H., Wang, Y., Zhang, C., Chen, A. S., and Fu, G.: As-
sessing real options in urban surface water flood risk man-
agement under climate change, Nat. Hazards, 94, 1–18,
https://doi.org/10.1007/s11069-018-3349-1, 2018.

Liu, X., Jiao, L., Li, L., Tang, X., and Guo, Y.: Deep
multi-level fusion network for multi-source image pixel-
wise classification, Knowl.-Based Syst., 221, 106921,
https://doi.org/10.1016/j.knosys.2021.106921, 2021.

Löwe, R. and Arnbjerg-Nielsen, K.: Urban pluvial flood risk assess-
ment – data resolution and spatial scale when developing screen-
ing approaches on the microscale, Nat. Hazards Earth Syst. Sci.,
20, 981–997, https://doi.org/10.5194/nhess-20-981-2020, 2020.

Lu, W., Tao, C., Li, H., Qi, J., and Li, Y.: A unified deep learning
framework for urban functional zone extraction based on multi-
source heterogeneous data, Remote Sens. Environ., 270, 112830,
https://doi.org/10.1016/j.rse.2021.112830, 2022.

Malgwi, M. B., Fuchs, S., and Keiler, M.: A generic physical
vulnerability model for floods: review and concept for data-
scarce regions, Nat. Hazards Earth Syst. Sci., 20, 2067–2090,
https://doi.org/10.5194/nhess-20-2067-2020, 2020.

Marsh, C. B., Harder, P., and Pomeroy, J. W.: Validation of FAB-
DEM, a global bare-earth elevation model, against UAV-lidar de-
rived elevation in a complex forested mountain catchment, En-
viron. Res. Commun., 5, 031009, https://doi.org/10.1088/2515-
7620/acc56d, 2023.

MIDAS: UK Sub-hourly Rainfall Data, NCAS British Atmo-
spheric Data Centre [data set], https://catalogue.ceda.ac.uk/
uuid/455f0dd48613dada7bfb0ccfcb7a7d41, last access: 6 March
2024.

Miller, A., Sirguey, P., Morris, S., Bartelt, P., Cullen, N., Redpath,
T., Thompson, K., and Bühler, Y.: The impact of terrain model
source and resolution on snow avalanche modeling, Nat. Hazards
Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-
22-2673-2022, 2022.

NASA JPL: NASA Shuttle Radar Topography Mis-
sion Global 30 Arc Second, NASA Land Pro-
cesses Distributed Active Archive Center [data set],
https://doi.org/10.5067/MEASURES/SRTM/SRTMGL30.002,
2013.

Okolie, C. J. and Smit, J. L.: A systematic review and meta-analysis
of Digital elevation model (DEM) fusion: pre-processing, meth-
ods and applications, ISPRS J. Photogramm., 188, 1–29,
https://doi.org/10.1016/j.isprsjprs.2022.03.016, 2022.

Paul, S. and Gupta, A.: High-resolution Multi-spectral
Image Guided DEM Super-resolution using Sinkhorn
Regularized Adversarial Network, arXiv [preprint],
https://doi.org/10.48550/arXiv.2311.16490, 20 September
2024.

Rahman, M. A. and Wang, Y.: Optimizing Intersection-Over-
Union in Deep Neural Networks for Image Segmenta-
tion, in: Advances in Visual Computing, Cham, 234–244,
https://doi.org/10.1007/978-3-319-50835-1_22, 2016.

Rees, W. G.: The accuracy of Digital Elevation Models inter-
polated to higher resolutions, Int. J. Remote Sens., 21, 7–20,
https://doi.org/10.1080/014311600210957, 2000.

Sanders, B. F., Wing, O. E. J., and Bates, P. D.: Flooding is
Not Like Filling a Bath, Earth’s Future, 12, e2024EF005164,
https://doi.org/10.1029/2024EF005164, 2024.

Shang, C., Li, X., Foody, G. M., Du, Y., and Ling, F.:
Superresolution Land Cover Mapping Using a Generative
Adversarial Network, IEEE Geosci. Remote S., 19, 1–5,
https://doi.org/10.1109/LGRS.2020.3020395, 2022.

Shen, R., Huang, A., Li, B., and Guo, J.: Construction of a
drought monitoring model using deep learning based on multi-
source remote sensing data, Int. J. Appl. Earth Obs., 79, 48–57,
https://doi.org/10.1016/j.jag.2019.03.006, 2019.

Spoto, F., Sy, O., Laberinti, P., Martimort, P., Fernandez, V., Colin,
O., Hoersch, B., and Meygret, A.: Overview Of Sentinel-2, in:
2012 IEEE International Geoscience and Remote Sensing Sym-
posium, Munich, Germany, 22–27 July 2012, IEEE, 1707–1710,
https://doi.org/10.1109/IGARSS.2012.6351195, 2012.

Tabari, H.: Climate change impact on flood and extreme precip-
itation increases with water availability, Sci. Rep., 10, 13768,
https://doi.org/10.1038/s41598-020-70816-2, 2020.

Tan, W., Qin, N., Zhang, Y., McGrath, H., Fortin, M., and Li, J.: A
rapid high-resolution multi-sensory urban flood mapping frame-
work via DEM upscaling, Remote Sens. Environ., 301, 113956,
https://doi.org/10.1016/j.rse.2023.113956, 2024.

Tang, C. S. C. and Cheung, S. P. Y.: Frequency Analysis of Extreme
Rainfall Values (GEO Report No. 261), Geotechnical Engineer-
ing Office, Hong Kong, 2011.

UK Environment Agency: LIDAR Composite DTM
2019 – 10 m, https://environment.data.gov.uk/dataset/
ce8fe7e7-bed0-4889-8825-19b042e128d2 (last access:
7 July 2025), 2023.

Wang, P., Bayram, B., and Sertel, E.: A comprehensive
review on deep learning based remote sensing image
super-resolution methods, Earth-Sci. Rev., 232, 104110,
https://doi.org/10.1016/j.earscirev.2022.104110, 2022.

Wang, Y., Chen, A. S., Fu, G., Djordjević, S., Zhang, C., and
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