Articles | Volume 25, issue 7
https://doi.org/10.5194/nhess-25-2225-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-2225-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Verifying the relationships among the variabilities of summer rainfall extremes over Japan in the d4PDF climate ensemble, Pacific sea surface temperature, and monsoon activity
Shao-Yi Lee
Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
Sicheng He
Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
Tetsuya Takemi
CORRESPONDING AUTHOR
Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan
Related authors
Duofan Zheng, Shao-Yi Lee, Wenting Lin, Qi Ran, and Wenjie Dong
EGUsphere, https://doi.org/10.5194/egusphere-2024-2415, https://doi.org/10.5194/egusphere-2024-2415, 2024
Preprint archived
Short summary
Short summary
Three Asia-centric configurations of CAM-SE with different resolution were set up in Western Pacific region. A typhoon track algorithm was developed to extract the tracks of typhoons generated by the simulations. We found that the 0.25° regionally-refined configuration of CAM-SE could produce cost-efficient yet appropriate extreme typhoon statistics for the use of climate studies.
Vinay Kumar, Shigeo Yoden, Matthew H. Hitchman, Tetsuya Takemi, and Kosuke Ito
EGUsphere, https://doi.org/10.5194/egusphere-2025-3420, https://doi.org/10.5194/egusphere-2025-3420, 2025
Short summary
Short summary
This study provides an insightful view on possible teleconnections between the stratospheric QBO and global monsoon system which vary on a seasonal and regional basis. It is observed that the QBO has dynamical teleconnections with different regional monsoons where prominent dynamical circulations prevail, and primarily modulates these circulations, thereby influencing the associated precipitation patterns. The findings would enable us to improve long-range forecasting for global monsoon system.
Duofan Zheng, Shao-Yi Lee, Wenting Lin, Qi Ran, and Wenjie Dong
EGUsphere, https://doi.org/10.5194/egusphere-2024-2415, https://doi.org/10.5194/egusphere-2024-2415, 2024
Preprint archived
Short summary
Short summary
Three Asia-centric configurations of CAM-SE with different resolution were set up in Western Pacific region. A typhoon track algorithm was developed to extract the tracks of typhoons generated by the simulations. We found that the 0.25° regionally-refined configuration of CAM-SE could produce cost-efficient yet appropriate extreme typhoon statistics for the use of climate studies.
Haris Rahadianto, Hirokazu Tatano, Masato Iguchi, Hiroshi L. Tanaka, Tetsuya Takemi, and Sudip Roy
Earth Syst. Sci. Data, 14, 5309–5332, https://doi.org/10.5194/essd-14-5309-2022, https://doi.org/10.5194/essd-14-5309-2022, 2022
Short summary
Short summary
We simulated the Taisho (1914) eruption of Sakurajima volcano under various weather conditions to show how a similar eruption would affect contemporary Japan in a worst-case scenario. We provide the dataset of projected airborne ash concentration and deposit over all of Japan to support risk assessment and planning for disaster management. Our work extends previous analyses of local risks to cover distal locations in Japan where a large population could be exposed to devastating impacts.
Cited articles
Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N. C., and Scott, J. D.: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans, J. Climate, 15, 2205–2231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2, 2002.
Bernard, E., Naveau, P., Vrac, M., and Mestre, O.: Clustering of maxima: Spatial dependencies among heavy rainfall in France, J. Climate, 26, 7929–7937, https://doi.org/10.1175/JCLI-D-12-00836.1, 2013.
Bolton, D.: The computation of equivalent potential temperature, Mon. Weather Rev., 108, 1046–1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2, 1980.
Bracken, C., Rajagopalan, B., Alexander, M., and Gangopadhyay, S.: Spatial variability of seasonal extreme precipitation in the western United States, J. Geophys. Res.-Atmos., 120, 4522–4533, https://doi.org/10.1002/2015JD023205, 2015.
Campello, R. J. G. B., Moulavi, D., and Sander, J.: Density-Based Clustering Based on Hierarchical Density Estimates, in: Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science, vol. 7819, edited by: Pei, J., Tseng, V. S., Cao, L., Motoda, H., and Xu, G., Springer, Berlin, Heidelberg, Germany, 160–172, https://doi.org/10.1007/978-3-642-37456-2_14, 2013.
Data Integration and Analysis System (DIAS): d4PDF Data Download System, DIAS [data set], https://diasjp.net/en/service/d4pdf-data-download, last access: 27 June 2025.
Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chhak, K., Miller, A. J., McWilliams, J. C., Bograd, S. J., Arango, H., Curchitser, E., and Powell, T. M.: North Pacific Gyre Oscillation links ocean climate and ecosystem change, Geophys. Res. Lett., 35, L08607, https://doi.org/10.1029/2007GL032838, 2008.
Duan, W., He, B., Takara, K., Luo, P., Hu, M., Alias, N. E., and Nover, D.: Changes of precipitation amounts and extremes over Japan between 1901 and 2012 and their connection to climate indices, Clim. Dynam., 45, 2273–2292, https://doi.org/10.1007/s00382-015-2778-8, 2015.
Fujibe, F.: Annual variation of extreme precipitation intensity in Japan: Assessment of the validity of Clausius-Clapeyron scaling in seasonal change, SOLA, 12, 106–110, https://doi.org/10.2151/sola.2016-024, 2016.
GIMP: The GNU Image Manipulation Program (GIMP), Version 2.10.14, Free Software, GIMP [code], https://www.gimp.org (last access: 27 June 2025), 2019.
Guan, B. and Nigam, S.: Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend, J. Climate, 21, 2790–2809, https://doi.org/10.1175/2007JCLI2076.1, 2008.
Harada, Y., Endo, H., and Takemura, K.: Characteristics of large-scale atmospheric fields during heavy rainfall events in western Japan: Comparison with an extreme event in early July 2018, J. Meteorol. Soc. Jpn. Ser. II, 98, 1207–1229, https://doi.org/10.2151/jmsj.2020-062, 2020.
Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., and Kern, R.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.
Henley, B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., and Folland, C. K.: A Tripole Index for the Interdecadal Pacific Oscillation, Clim. Dynam., 45, 3077–3090, https://doi.org/10.1007/s00382-015-2525-1, 2015.
Hirahara, S., Ishii, M., and Fukuda, Y.: Centennial-scale sea surface temperature analysis and its uncertainty, J. Climate, 27, 57–75, https://doi.org/10.1175/JCLI-D-12-00837.1, 2014.
Horel, J. D. and Wallace, J. M.: Planetary-scale atmospheric phenomena associated with the interannual variability of sea surface temperature in the equatorial Pacific, Mon. Weather Rev., 109, 813–829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2, 1981.
Hoskins, B. J. and Karoly, D. J.: The steady linear response of a spherical atmosphere to thermal and orographic forcing, J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2, 1981.
Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays and Datasets in Python, Journal of Open Research Software, 5, 10, https://doi.org/10.5334/jors.148, 2017.
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Ishii, M. and Mori, N.: d4PDF: large-ensemble and high-resolution climate simulations for global warming risk assessment, Prog. Earth Planet. Sci., 7, 1–22, https://doi.org/10.1186/s40645-020-00367-7, 2020.
Ishii, M., Shouji, A., Sugimoto, S., and Matsumoto, T.: Objective Analyses of Sea-Surface Temperature and Marine Meteorological Variables for the 20th Century using ICOADS and the Kobe Collection, Int. J. Climatol., 25, 865–879, https://doi.org/10.1002/joc.1169, 2005.
Japan Meteorological Agency: Characteristics of Global Sea Surface Temperature Analysis Data (COBE-SST) for Climate Use, Monthly Report on Climate System Separated Volume No. 12, 116 pp., https://ds.data.jma.go.jp/tcc/tcc/library/MRCS_SV12/index_e.htm (last access: 27 June 2025), 2006.
Japan Meteorological Agency (JMA): Past Meteorological Data Download, JMA [data set], https://www.data.jma.go.jp/gmd/risk/obsdl/index.php, last access: 27 June 2025.
Jin, Y. H., Kawamura, A., Jinno, K., and Berndtsson, R.: Quantitative relationship between SOI and observed precipitation in southern Korea and Japan by nonparametric approaches, J. Hydrol., 301, 54–65, https://doi.org/10.1016/j.jhydrol.2004.06.026, 2005.
Kamae, Y., Imada, Y., Kawase, H., and Mei, W.: Atmospheric rivers bring more frequent and intense extreme rainfall events over East Asia under global warming, Geophys. Res. Lett., 48, e2021GL096030, https://doi.org/10.1029/2021GL096030, 2021.
Kawamura, A., Eguchi, S., and Jinno, K.: Correlation between Southern Oscillation and monthly precipitation in Fukuoka, Journal of Japan Society of Civil Engineers, 2001, 153–158, https://doi.org/10.2208/jscej.2001.691_153, 2001.
Kawase, H., Nosaka, M., Watanabe, S. I., Yamamoto, K., Shimura, T., Naka, Y., Wu, Y. H., Okachi, H., Hoshino, T., Ito, R., and Sugimoto, S.: Identifying robust changes of extreme precipitation in Japan from large ensemble 5 km-grid regional experiments for 4 K warming scenario, J. Geophys. Res.-Atmos., 128, e2023JD038513, https://doi.org/10.1029/2023JD038513, 2023.
Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C., and Schreck, C. J.: International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4, NOAA National Centers for Environmental Information, https://doi.org/10.25921/82ty-9e16, 2018.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., and Miyaoka, K.: The JRA-55 reanalysis: General specifications and basic characteristics, J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Kosaka, Y., Xie, S. P., Lau, N. C., and Vecchi, G. A.: Origin of seasonal predictability for summer climate over the Northwestern Pacific, P. Natl. Acad. Sci. USA, 110, 7574–7579, https://doi.org/10.1073/pnas.1215582110, 2013.
Lee, G. R., Gommers, R., Wasilewski, F., Wohlfahrt, K., and O'Leary, A.: PyWavelets: A Python package for wavelet analysis, Journal of Open Source Software, 4, 1237, https://doi.org/10.21105/joss.01237, 2019.
Lee, S., L'Heureux, M., Wittenberg, A. T., Seager, R., O'Gorman, P. A., and Johnson, N. C.: On the future zonal contrasts of equatorial Pacific climate: Perspectives from Observations, Simulations, and Theories, npj Clim. Atmos. Sci., 5, 82, https://doi.org/10.1038/s41612-022-00301-2, 2022.
Li, Y., Deng, Y., Yang, S., and Zhang, H.: Multi-scale temporospatial variability of the East Asian Meiyu-Baiu fronts: characterization with a suite of new objective indices, Clim. Dynam., 51, 1659–1670, https://doi.org/10.1007/s00382-017-3975-4, 2018.
Livezey, R. E. and Chen, W. Y.: Statistical field significance and its determination by Monte Carlo techniques, Mon. Weather Rev., 111, 46–59, 1983.
Ma, Y., Lu, M., Bracken, C., and Chen, H.: Spatially coherent clusters of summer precipitation extremes in the Tibetan Plateau: Where is the moisture from?, Atmos. Res., 237, 104841, https://doi.org/10.1016/j.atmosres.2020.104841, 2020.
Matsumoto, S., Ninomiya, K., and Yoshizumi, S.: Characteristic features of “Baiu” front associated with heavy rainfall, J. Meteorol. Soc. Jpn. Ser. II, 49, 267–281, https://doi.org/10.2151/jmsj1965.49.4_267, 1971.
McKinney, W.: Data structures for statistical computing in python, in: Proceedings of the 9th Python in Science Conference, 51–56, https://doi.org/10.25080/Majora-92bf1922-00a, 2010.
Met Office: Cartopy: a cartographic python library with a Matplotlib interface, https://scitools.org.uk/cartopy/docs/latest (last access: 27 June 2025), 2010–2015.
Mizuta, R., Yoshimura, H., Murakami, H., Matsueda, M., Endo, H., Ose, T., Kamiguchi, K., Hosaka, M., Sugi, M., Yukimoto, S., and Kusunoki, S.: Climate simulations using MRI-AGCM3.2 with 20 km grid, J. Meteorol. Soc. Jpn. Ser. II, 90, 233–258, https://doi.org/10.2151/jmsj.2012-A12, 2012.
Mizuta, R., Murata, A., Ishii, M., Shiogama, H., Hibino, K., Mori, N., Arakawa, O., Imada, Y., Yoshida, K., Aoyagi, T., and Kawase, H.: Over 5000 years of ensemble future climate simulations by 60 km global and 20 km regional atmospheric models, B. Am. Meteorol. Soc., 98, 1383–1398, https://doi.org/10.1175/BAMS-D-16-0099.1, 2017.
Mori, N. and Takemi, T.: Impact assessment of coastal hazards due to future changes of tropical cyclones in the North Pacific Ocean, Weather Clim. Extremes, 11, 53–69, https://doi.org/10.1016/j.wace.2015.09.002, 2016.
Mori, N., Takemi, T., Tachikawa, Y., Tatano, H., Shimura, T., Tanaka, T., Fujimi, T., Osakada, Y., Webb, A., and Nakakita, E.: Recent nationwide climate change impact assessments of natural hazards in Japan and East Asia, Weather Clim. Extremes, 32, 100309, https://doi.org/10.1016/j.wace.2021.100309, 2021.
Naka, N. and Takemi, T.: Characteristics of the environmental conditions for the occurrence of recent extreme rainfall events in northern Kyushu, Japan, Sci. Online Lett. Atmos., 19A, 9–16, https://doi.org/10.2151/sola.19A-002, 2023.
Naoi, M., Kamae, Y., Ueda, H., and Mei, W.: Impacts of seasonal transitions of ENSO on atmospheric river activity over East Asia, J. Meteorol. Soc. Jpn., 98, 655–668, https://doi.org/10.2151/jmsj.2020-027, 2020.
National Oceanic and Atmospheric Administration (NOAA): Climate Indices: Monthly Atmospheric and Ocean time Series, NOAA Physical Sciences Laboratory (PSL) [data set], https://psl.noaa.gov/data/climateindices/list, last access: 27 June 2025.
Nayak, S. and Takemi, T.: Dependence of extreme precipitable water events on temperature, Atmósfera, 32, 159–165, https://doi.org/10.20937/atm.2019.32.02.06, 2019.
Nayak, S. and Takemi, T.: Atmospheric driving mechanisms of extreme precipitation events in July of 2017 and 2018 in western Japan, Dynam. Atmos. Oceans, 93, 101186, https://doi.org/10.1016/j.dynatmoce.2020.101186, 2021.
NCL: The NCAR Command Language (NCL), Version 6.6.2, UCAR/NCAR/CISL/TDD [code], Boulder, Colorado, https://doi.org/10.5065/D6WD3XH5, 2019.
Ninomiya, K. and Mizuno, H.: Variations of Baiu precipitation over Japan in 1951–1980 and large-scale characteristics of wet and dry Baiu, J. Meteorol. Soc. Jpn. Ser. II, 65, 115–127, https://doi.org/10.2151/jmsj1965.65.1_115, 1987.
Nitta, T.: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation, J. Meteorol. Soc. Jpn. Ser. II, 65, 373–390, https://doi.org/10.2151/jmsj1965.65.3_373, 1987.
Ohba, M., Kadokura, S., Yoshida, Y., Nohara, D., and Toyoda, Y.: Anomalous weather patterns in relation to heavy precipitation events in Japan during the Baiu season, J. Hydrometeorol., 16, 688–701, https://doi.org/10.1175/JHM-D-14-0124.1, 2015.
Ropelewski, C. F. and Jones, P. D.: An extension of the Tahiti-Darwin Southern Oscillation Index, Mon. Weather Rev., 115, 2161–2165, https://doi.org/10.1175/1520-0493(1987)115<2161:AEOTTS>2.0.CO;2, 1987.
Sakashita, W., Yokoyama, Y., Miyahara, H., Yamaguchi, Y. T., Aze, T., Obrochta, S. P., and Nakatsuka, T.: Relationship between early summer precipitation in Japan and the El Niño-Southern and Pacific Decadal Oscillations over the past 400 years, Quatern. Int., 397, 300–306, https://doi.org/10.1016/j.quaint.2015.05.054, 2016.
Santos, C. A., Galvão, C. D. O., Suzuki, K., and Trigo, R. M.: Matsuyama city rainfall data analysis using wavelet transform, Proceedings of Hydraulic Engineering, 45, 211–216, https://doi.org/10.2208/prohe.45.211, 2001.
Schulzweida, U.: CDO User Guide (2.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.7112925, 2022.
Takaya, Y., Ishikawa, I., Kobayashi, C., Endo, H., and Ose, T.: Enhanced Meiyu-Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event, Geophys. Res. Lett., 47, e2020GL090671, https://doi.org/10.1029/2020GL090671, 2020.
Takemura, K. and Mukougawa, H.: A new perspective of Pacific–Japan pattern: Estimated percentage of the cases triggered by Rossby wave breaking, J. Meteorol. Soc. Jpn. Ser. II, 100, 115–139, https://doi.org/10.2151/jmsj.2022-006, 2022.
Takemura, K., Mukougawa, H., and Maeda, S.: large-scale atmospheric circulation related to frequent rossby wave breaking near Japan in boreal summer, J. Climate, 33, 6731–6744, https://doi.org/10.1175/JCLI-D-19-0958.1, 2020.
Tanaka, M.: Interannual and interdecadal variations of the western North Pacific monsoon and Baiu rainfall and their relationship to the ENSO cycles, J. Meteorol. Soc. Jpn. Ser. II, 75, 1109–1123, https://doi.org/10.2151/jmsj1965.75.6_1109, 1997.
Tokyo Climate Center: Global Sea Surface Temperature Data Sets, Tokyo Climate Center [data set], https://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst/cobe-sst.html, last access: 27 June 2025.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Unuma, T. and Takemi, T.: Rainfall characteristics and their environmental conditions during the heavy rainfall events over Japan in July of 2017 and 2018, J. Meteorol. Soc. Jpn. Ser. II, 99, 165–180, https://doi.org/10.2151/jmsj.2021-009, 2021.
Vecchi, G. A., Clement, A., and Soden, B. J.: Examining the tropical Pacific's response to global warming, Eos T. Am. Geophys. Un., 89, 81–83, https://doi.org/10.1029/2008EO090002, 2008.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., and van der Walt, S. J.: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
Wang, B., Wu, R., and Fu, X.: Pacific–East Asian teleconnection: how does ENSO affect East Asian climate?, J. Climate, 13, 1517–1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2, 2000.
Weare, B. C. and Nasstrom, J. S.: Examples of extended empirical orthogonal function analyses, Mon. Weather Rev., 110, 481–485, https://doi.org/10.1175/1520-0493(1982)110<0481:EOEEOF>2.0.CO;2, 1982.
Webb, A., Shimura, T., and Mori, N.: Global tropical cyclone track detection and analysis of the d4PDF mega-ensemble projection, Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 75, I_1207–I_1212, https://doi.org/10.2208/kaigan.75.I_1207, 2019.
Xie, S. P., Kosaka, Y., Du, Y., Hu, K., Chowdary, J. S., and Huang, G.: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review, Adv. Atmos. Sci., 33, 411–432, https://doi.org/10.1007/s00376-015-5192-6, 2016.
Yokoyama, C., Tsuji, H., and Takayabu, Y. N.: The effects of an upper-tropospheric trough on the heavy rainfall event in July 2018 over Japan, J. Meteorol. Soc. Jpn. Ser. II, 98, 235–255, https://doi.org/10.2151/jmsj.2020-013, 2020.
Zhang, W., Huang, Z., Jiang, F., Stuecker, M. F., Chen, G., and Jin, F.-F.: Exceptionally persistent Madden-Julian Oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall, Geophys. Res. Lett., 48, e2020GL091588, https://doi.org/10.1029/2020GL091588, 2021.
Short summary
The authors performed verification on the relationships between extreme monsoon rainfall over Japan and Pacific sea surface temperature variability in the “database for Policy Decision-making for Future climate changes” (d4PDF). Observations showed widespread weak relationships between hourly extremes and the warming mode but reversed relationships between daily extremes and the decadal variability mode. Biases in d4PDF could be explained by the monsoon's slower movement over Japan in the model.
The authors performed verification on the relationships between extreme monsoon rainfall over...
Altmetrics
Final-revised paper
Preprint