Articles | Volume 25, issue 6
https://doi.org/10.5194/nhess-25-1975-2025
https://doi.org/10.5194/nhess-25-1975-2025
Research article
 | 
17 Jun 2025
Research article |  | 17 Jun 2025

The effect of slab touchdown on anticrack arrest in propagation saw tests

Philipp L. Rosendahl, Johannes Schneider, Grégoire Bobillier, Florian Rheinschmidt, Bastian Bergfeld, Alec van Herwijnen, and Philipp Weißgraeber

Related authors

The effect of propagation saw test geometries on critical cut length
Bastian Bergfeld, Karl W. Birkeland, Valentin Adam, Philipp L. Rosendahl, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 321–334, https://doi.org/10.5194/nhess-25-321-2025,https://doi.org/10.5194/nhess-25-321-2025, 2025
Short summary
A closed-form model for layered snow slabs
Philipp Weißgraeber and Philipp L. Rosendahl
The Cryosphere, 17, 1475–1496, https://doi.org/10.5194/tc-17-1475-2023,https://doi.org/10.5194/tc-17-1475-2023, 2023
Short summary
Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023,https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Proglacial lake development and outburst flood hazard at Fjallsjökull glacier, southeast Iceland
Greta H. Wells, Þorsteinn Sæmundsson, Finnur Pálsson, Guðfinna Aðalgeirsdóttir, Eyjólfur Magnússon, Reginald L. Hermanns, and Snævarr Guðmundsson
Nat. Hazards Earth Syst. Sci., 25, 1913–1936, https://doi.org/10.5194/nhess-25-1913-2025,https://doi.org/10.5194/nhess-25-1913-2025, 2025
Short summary
Assessing the performance and explainability of an avalanche danger forecast model
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025,https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary
Development of operational decision support tools for mechanized ski guiding using avalanche terrain modeling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1255–1292, https://doi.org/10.5194/nhess-25-1255-2025,https://doi.org/10.5194/nhess-25-1255-2025, 2025
Short summary
Causes, consequences and implications of the 2023 landslide-induced Lake Rasac glacial lake outburst flood (GLOF), Cordillera Huayhuash, Peru
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
Nat. Hazards Earth Syst. Sci., 25, 1207–1228, https://doi.org/10.5194/nhess-25-1207-2025,https://doi.org/10.5194/nhess-25-1207-2025, 2025
Short summary
The Avalanche Terrain Exposure Scale (ATES) v.2
Grant Statham and Cam Campbell
Nat. Hazards Earth Syst. Sci., 25, 1113–1137, https://doi.org/10.5194/nhess-25-1113-2025,https://doi.org/10.5194/nhess-25-1113-2025, 2025
Short summary

Cited articles

Adam, V., Bergfeld, B., Weißgraeber, P., van Herwijnen, A., and Rosendahl, P. L.: Fracture toughness of mixed-mode anticracks in highly porous materials, Nat. Commun., 15, 7379, https://doi.org/10.1038/s41467-024-51491-7, 2024. a
Bair, E. H., Simenhois, R., van Herwijnen, A., and Birkeland, K.: The influence of edge effects on crack propagation in snow stability tests, The Cryosphere, 8, 1407–1418, https://doi.org/10.5194/tc-8-1407-2014, 2014. a, b, c, d
Benedetti, L., Gaume, J., and Fischer, J.-T.: A mechanically-based model of snow slab and weak layer fracture in the Propagation Saw Test, Int. J. Solids Struct., 158, 1–20, https://doi.org/10.1016/j.ijsolstr.2017.12.033, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Bergfeld, B., van Herwijnen, A., Reuter, B., Bobillier, G., Dual, J., and Schweizer, J.: Dynamic crack propagation in weak snowpack layers: insights from high-resolution, high-speed photography, The Cryosphere, 15, 3539–3553, https://doi.org/10.5194/tc-15-3539-2021, 2021. a
Bergfeld, B., van Herwijnen, A., Bobillier, G., Rosendahl, P. L., Weißgraeber, P., Adam, V., Dual, J., and Schweizer, J.: Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation, Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023, 2023a. a, b, c, d, e, f, g, h
Download
Short summary
Avalanche formation depends on crack propagation in weak snow layers, but the conditions that stop a crack remain unclear. We show that slab touchdown reduces the energy driving crack growth, which can halt propagation even under static conditions. This suggests that crack arrest is influenced not only by snowpack variability or dynamics but also by mechanical interactions within the snowpack. Our findings refine avalanche prediction models and improve hazard assessment.
Share
Altmetrics
Final-revised paper
Preprint