Articles | Volume 25, issue 6
https://doi.org/10.5194/nhess-25-1943-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-1943-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating the mass of tephra accumulated on roads to best manage the impact of volcanic eruptions: the example of Mt Etna, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, 40100 Bologna, Italy
CETEMPS, University of L'Aquila, 67100 L'Aquila, Italy
Manuel Stocchi
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, 40100 Bologna, Italy
now at: Department of Earth and Geoenvironmental Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
Alexander Garcia
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, 40100 Bologna, Italy
Michele Prestifilippo
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania, 95015 Catania, Italy
Laura Sandri
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, 40100 Bologna, Italy
Costanza Bonadonna
Department of Earth Sciences, University of Geneva, 1205 Geneva, Switzerland
Simona Scollo
Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania, 95015 Catania, Italy
Related authors
No articles found.
Anna Kampouri, Vassilis Amiridis, Thanasis Georgiou, Stavros Solomos, Anna Gialitaki, Maria Tsichla, Michael Rennie, Simona Scollo, and Prodromos Zanis
Atmos. Chem. Phys., 25, 7343–7368, https://doi.org/10.5194/acp-25-7343-2025, https://doi.org/10.5194/acp-25-7343-2025, 2025
Short summary
Short summary
This study proposes a novel inverse modeling framework coupled with remote sensing data for improving volcanic ash dispersion forecasts, essential for aviation safety. By integrating FLEXPART dispersion model outputs with ground-based ACTRIS lidar observations, the approach estimates Etna's volcanic particle emissions and highlights a significant enhancement in the forecast accuracy.
Simon Thivet, Gholamhossein Bagheri, Przemyslaw M. Kornatowski, Allan Fries, Jonathan Lemus, Riccardo Simionato, Carolina Díaz-Vecino, Eduardo Rossi, Taishi Yamada, Simona Scollo, and Costanza Bonadonna
Atmos. Meas. Tech., 18, 2803–2824, https://doi.org/10.5194/amt-18-2803-2025, https://doi.org/10.5194/amt-18-2803-2025, 2025
Short summary
Short summary
This work presents an innovative way of sampling and analyzing volcanic clouds using an unoccupied aircraft system (UAS). The UAS can reach hazardous environments to sample volcanic particles and measure in situ key parameters, such as the atmospheric concentration of volcanic aerosols and gases. Acquired data bridge the gap between the existing approaches of ground sampling and remote sensing, thereby contributing to the understanding of volcanic cloud dispersion and impact.
Lucia Dominguez, Sébastien Biass, Corine Frischknecht, Alana Weir, Maria Paz Reyes-Hardy, Luigia Sara Di Maio, Nemesio Pérez, and Costanza Bonadonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-986, https://doi.org/10.5194/egusphere-2025-986, 2025
Short summary
Short summary
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By combining forensic techniques with network analysis, this research quantifies the effects of physical damage on the road network as well as the cascading loss of functionality and systemic disruptions to emergency services, health centers, agriculture and education. Result show the relevance of redundant infrastructure and landuse on effective risk management and mitigation of future volcanic impacts.
Laura Sandri, Alexander Garcia, Cristina Proietti, Stefano Branca, Gaetana Ganci, and Annalisa Cappello
Nat. Hazards Earth Syst. Sci., 24, 4431–4455, https://doi.org/10.5194/nhess-24-4431-2024, https://doi.org/10.5194/nhess-24-4431-2024, 2024
Short summary
Short summary
In this paper we propose a probability map that shows where most likely future flank eruptions will occur at Etna volcano (in Sicily, Italy). The map updates previous studies since it is based on a much longer record of past flank eruption fissures that opened in the last 4000 years on Etna. We also propose sensitivity tests to evaluate how much the assumptions made change the final probability evaluation.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Costanza Bonadonna, Ali Asgary, Franco Romerio, Tais Zulemyan, Corine Frischknecht, Chiara Cristiani, Mauro Rosi, Chris E. Gregg, Sebastien Biass, Marco Pistolesi, Scira Menoni, and Antonio Ricciardi
Nat. Hazards Earth Syst. Sci., 22, 1083–1108, https://doi.org/10.5194/nhess-22-1083-2022, https://doi.org/10.5194/nhess-22-1083-2022, 2022
Short summary
Short summary
Evacuation planning and management represent a key aspect of volcanic crises because they can increase people's protection as well as minimize the potential impacts on the economy, properties and infrastructure of the affected area. We present a simulation tool that assesses the effectiveness of different evacuation scenarios as well as a model to assess the economic impact of evacuation as a function of evacuation duration and starting period using the island of Vulcano (Italy) as a case study.
Frances Beckett, Eduardo Rossi, Benjamin Devenish, Claire Witham, and Costanza Bonadonna
Atmos. Chem. Phys., 22, 3409–3431, https://doi.org/10.5194/acp-22-3409-2022, https://doi.org/10.5194/acp-22-3409-2022, 2022
Short summary
Short summary
As volcanic ash is transported through the atmosphere, it may collide and stick together to form aggregates. Neglecting the process of aggregation in atmospheric dispersion models could lead to inaccurate forecasts used by civil aviation for hazard assessment. We developed an aggregation scheme for use with the model NAME, which is used by the London Volcanic Ash Advisory Centre. Using our scheme, we investigate the impact of aggregation on simulations of the 2010 Eyjafjallajökull ash cloud.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Eduardo Rossi and Costanza Bonadonna
Geosci. Model Dev., 14, 4379–4400, https://doi.org/10.5194/gmd-14-4379-2021, https://doi.org/10.5194/gmd-14-4379-2021, 2021
Short summary
Short summary
SCARLET-1.0 is a MATLAB package that creates virtual aggregates starting from a population of irregular shapes. Shapes are described in terms of the Standard Triangulation Language (STL) format, and this allows importing a great variety of shapes, such as from 3D scanning. The package produces a new STL file as an output and different analytical information about the packing, such as the porosity. It has been specifically designed for use in volcanology and scientific education.
Cited articles
Ágústsdóttir, A. M.: Ecosystem approach for natural hazard mitigation of volcanic tephra in Iceland: building resilience and sustainability, Nat. Hazards, 78, 1669–1691, https://doi.org/10.1007/s11069-015-1795-6, 2015.
Alparone, S., Andronico, D., Lodato, L., and Sgroi, T.: Relationship between tremor and volcanic activity during the Southeast Crater eruption on Mount Etna in early 2000, J. Geophys. Res., 108, 2241, https://doi.org/10.1029/2002JB001866, 2003.
Andronico, D., Cannata, A., Di Grazia, G., and Ferrari, F.: The 1986–2021 paroxysmal episodes at the summit craters of Mt. Etna: Insights into volcano dynamics and hazard, Earth-Sci. Rev., 220, 103686, https://doi.org/10.1016/j.earscirev.2021.103686, 2021.
Aravena, A., Carparelli, G., Cioni, R., Prestifilippo, M., and Scollo, S.: Toward a real-time analysis of column height by visible cameras: an example from Mt. Etna, in Italy, Remote Sensing, 15, 2595, https://doi.org/10.3390/rs15102595, 2023.
Barsotti, S., Andronico, D., Neri, A., Del Carlo, P., Baxter, P. J., Aspinall, W. P., and Hincks, T.: Quantitative assessment of volcanic ash hazards for health and infrastructure at Mt. Etna (Italy) by numerical simulation, J. Volcanol. Geoth. Res., 192, 85–96, 2010.
Barsotti, S., Di Rienzo, D. I., Thordarson, T., Björnsson, B. B., and Karlsdóttir, S.: Assessing Impact to Infrastructures Due to Tephra Fallout From Öræfajökull Volcano (Iceland) by Using a Scenario-Based Approach and a Numerical Model, Front. Earth Sci., 6, 196, https://doi.org/10.3389/feart.2018.00196, 2018.
Baxter, P. J.: Medical effects of volcanic eruptions, B. Volcanol., 52, 532, https://doi.org/10.1007/BF00301534, 1990.
Bebbington, M., Cronin, S. J., Chapman, I., and Turnera, M. B.: Quantifying volcanic ash fall hazard to electricity infrastructure, J. Volcanol. Geoth. Res., 177, 4, https://doi.org/10.1016/j.jvolgeores.2008.07.023, 2008.
Biass, S., Bonadonna, C., Traglia, F., Pistolesi, M., Rosi, M., and Lestuzzi, P.: Probabilistic evaluation of the physical impact of future tephra fallout events for the Island of Vulcano, Italy, B. Volcanol., 78, 1–22, https://doi.org/10.1007/s00445-016-1028-1, 2016.
Biass, S., Todde, A., Cioni, R., Pistolesi, M., Geshi, N., and Bonadonna, C.: Potential impacts of tephra fallout from a large-scale explosive eruption at Sakurajima volcano, Japan, B. Volcanol., 79, 73, https://doi.org/10.1007/s00445-017-1153-5, 2017.
Blake, D. M., Wilson, T. M., and Gomez, C.: Road marking coverage by volcanic ash, Environ. Earth Sci. 75, 1–12, 2016.
Blake, D. M., Wilson, T. M., Cole, J. W., Deligne, N. I., and Lindsay, J. M.: Impact of Volcanic Ash on Road and Airfield Surface Skid Resistance, Sustainability, 9, 1389, https://doi.org/10.3390/su9081389, 2017.
Blong, R. J.: Volcanic Hazards: A Sourcebook on the Effects of Eruptions, Sydney, Australia, Academic Press Inc., 79–94, ISBN: 9780121071806, 1984.
Blong, R. J.: Volcanic hazards risk assessment, in: Monitoring and Mitigation of Volcano Hazards, edited by: Scarpa, R. and Tilling, R. I., Springer, Berlin, 675–698, ISBN: 978-3540607137, 1996.
Bonadonna, C.: Probabilistic modelling of tephra dispersal, in: Statistics in Volcanology, edited by: Mader, H., Cole, S., and Connor, C. B., IAVCEI Series, Vol. 1, Geological Society of London, https://doi.org/10.1029/2003JB002896, 2006.
Bonadonna, C., Connor, C. B., Houghton, B. F., Connor, L., Byrne, M., Laing, A., and Hincks, T. K.: Probabilistic modeling of tephra dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand, J. Geophys. Res., 110, B03203, https://doi.org/10.1029/2003JB002896, 2005.
Bonadonna, C., Frischknecht, C., Menoni, S., Romerio, F., Gregg, C. E., Rosi, M., Biass, S., Asgary, A., Pistolesi, M., Guobadia, D., Gattuso, A., Ricciardi, A., and Cristiani, C.: Integrating hazard, exposure, vulnerability and resilience for risk and emergency management in a volcanic context: the ADVISE model, Journal of Applied Volcanology, 10, 7, https://doi.org/10.1186/s13617-021-00108-5, 2021a.
Bonadonna, C., Biass, S., Menoni, S., and Chris, E. G.: Assessment of risk associated with tephra-related hazards, in: Forecasting and Planning for Volcanic Hazards, Risks, and Disasters, edited by: Papale, P., Elsevier, Chap. 8, 329–378, 2021b.
Calvari, S. and Nunnari, G.: Comparison between Automated and Manual Detection of Lava Fountains from Fixed Monitoring Thermal Cameras at Etna Volcano, Italy, Remote Sens., 14, 2392, https://doi.org/10.3390/rs14102392, 2022.
Calvari, S., Cannavò, F., Bonaccorso, A., Spampinato, L., and Pellegrino, A. G.: Paroxysmal Explosions, Lava Fountains and Ash Plumes at Etna Volcano: Eruptive Processes and Hazard Implications, Front. Earth Sci., 6, 107, https://doi.org/10.3389/feart.2018.00107, 2018.
Calvari, S., Bonaccorso, A., and Ganci, G.: Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021, Episode, Remote Sensing, 13, 3052, https://doi.org/10.3390/rs13153052, 2021.
Calvari, S., Biale, E., Bonaccorso, A., Cannata, A., Carleo, L., Currenti, G., Di Grazia, G., Ganci, G., Iozzia, A., Pecora, E., Prestifilippo, M., Sciotto, M., and Scollo, S.: Explosive Paroxysmal Events at Etna Volcano of Different Magnitude and Intensity Explored through a Multidisciplinary Monitoring System, Remote Sensing, 14, 4006, https://doi.org/10.3390/rs14164006, 2022.
Casadevall, T. J.: The 1989–1990 eruption of redoubt volcano, Alaska: impacts on aircraft operations, J. Volcanol. Geoth. Res., 62, 301–316, https://doi.org/10.1016/0377-0273(94)90038-8, 1994.
Connor, L. G. and Connor, C. B.: Inversion is the key to dispersion: Understanding eruption dynamics by inverting tephra fallout, in: Statistics in Volcanology, edited by: Mader, H., Cole, S., and Connor, C. B., Geological Society, London, 1, 231–242, https://doi.org/10.1144/IAVCEI001.18, 2006.
Corradini, S., Guerrieri, L., Lombardo, V., Merucci, L., Musacchio, M., Prestifilippo, M., Scollo, S., Silvestri, M., Spata, G., and Stelitano, D.: Proximal monitoring of the 2011–2015 Etna lava fountains using MSG-SEVIRI data, Geosciences, 8, 140, https://doi.org/10.3390/geosciences8040140, 2018.
Costa, A., Macedonio, G., and Folch, A.: A three-dimensional Eulerian model for transport and deposition of volcanic ashes, Earth Planet. Sc. Lett., 241, 634–647, 2006.
Costa, A., Folch, A., Macedonio, G., Giaccio, B., Isaia, R., and Smith, V. C.: Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption, Geophys. Res. Lett., 39, L10310, https://doi.org/10.1029/2012GL051605, 2012.
Dominguez, L., Bonadonna, C., Frischknecht, C., Menoni, S., and Garcia, A.: Integrative Post-event Impact Assessment Framework for Volcanic Eruptions: A Disaster Forensic Investigation of the 2011–2012 Eruption of the Cordoìn Caulle Volcano (Chile), Front. Earth Sci., 9, 645945, https://doi.org/10.3389/feart.2021.645945, 2021.
Folch, A., Costa A. and Macedonio, G.: FALL3D: A computational model for transport and deposition of volcanic ash. Computers and Geosciences 35, 1334–1342, 2009.
Folch, A., Costa, A. and Basart, S.: Validation of the FALL3D ash dispersion model using observations of the 2010 Eyjafjallajökull volcanic ash clouds, Atmospheric environment volume 48, Pages 165-183, 2012.
Folch, A., Costa, A., and Macedonio, G.: FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation, Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-431-2016, 2016.
Folch, A., Mingari, L., Gutierrez, N., Hanzich, M., Macedonio, G., and Costa, A.: FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numerics, Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, 2020.
Freret-Lorgeril, V., Bonadonna, C., Corradini, S., Donnadieu, F., Guerrieri, L., Lacanna, G., Marzano, F. S., Mereu, L., Merucci, L., Ripepe, M., Scollo, S., and Stelitano, D.: Examples of Multi-Sensor Determination of Eruptive Source Parameters of Explosive Events at Mount Etna, Remote Sensing, 13, 2097, https://doi.org/10.3390/rs13112097, 2021.
Gordon, K. D., Cole, J. W., Rosenberg, M. D., and Johnston, D. M.: Effects of volcanic ash on computers and electronic equipment, Nat. Hazards, 34, 231–262, 2005.
Guffanti, M., Mayberry, G. C., and Casadevall, T. J.: Volcanic hazards to airports, Nat. Hazards, 51, 287–302, https://doi.org/10.1007/s11069-008-9254-2, 2009.
Hayes, J. L., Wilson, T. M., and Magill, C.: Tephra fall clean-up in urban environments, J. Volcanol. Geoth. Res., 304, 359–377, 2015.
Hayes, J., Wilson, T. M., Deligne, N. I., Cole, J., and Hughes, M.: A model to assess tephra clean-up requirements in urban environments, Journal of Applied Volcanology, 6, 1, https://doi.org/10.1186/s13617-016-0052-3, 2017.
Hayes, J. L., Wilson, T. M., Carol Stewart, C., Villarosa, G., Salgado, P., Beigt, D., Outes, V., Deligne, N. I., and Leonard, G. S.: Tephra clean-up after the 2015 eruption of Calbuco volcano, Chile: a quantitative geospatial assessment in four communities, Journal of Applied Volcanology, 8, 7, https://doi.org/10.1186/s13617-019-0087-3, 2019.
Hayes, J. L., Biass, S., Jenkins, S. F., Meredith, E. S., and Williams, G. T.: Integrating criticality concepts into road network disruption assessments for volcanic eruptions, Journal of Applied Volcanology, 11, 8, https://doi.org/10.1186/s13617-022-00118-x, 2022.
Heiken, G., Murphy, M., Hackett, W., and Scott, W.: Volcanic hazards to energy infrastructure – ash fallout hazards and their mitigation: Proceedings, World Geothermal Congress, Florence, Italy, 18–31 May 1995, 4, 2795–2798, 1995.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Horwell, C. J. and Baxter, P. J.: The Respiratory Health Hazards of Volcanic Ash: A Review for Volcanic Risk Mitigation, B. Volcanol., 69, 1–24, https://doi.org/10.1007/s00445-006-0052-y, 2006.
Jenkins, S. F., Spence, R. J. S., Fonseca, J. F. B. D., Solidum, R. U., and Wilson, T. M.: Volcanic risk assessment: quantifying physical vulnerability in the built environ ment, J. Volcanol. Geoth. Res., 276 105–120, 2014.
Jenkins, S., Barsotti, S., Hincks, T. K., Neri, A., Phillips, J. C., Sparks, R. S. J., Sheldrake, T., and Vougioukalakis, G.: Rapid emergency assessment of ash and gas hazard for future eruptions at Santorini Volcano, Greece, Journal of Applied Volcanology, 4, 16, https://doi.org/10.1186/s13617-015-0033-y, 2015.
Johnston, D. M. and Daly, M.: Auckland erupts!!!, New Zealand Science Monthly, 8, 6–7, 1995.
Johnston, D. M.: Physical and Social Impacts of Past and Future Volcanic Eruptions in New Zealand, PhD thesis, Massey University, Palmerston North, New Zealand, https://mro.massey.ac.nz/items/74dd7a9f-3024-4270-8fec-867c40444706 (last access: 20 March 2025), 1997.
Labadie, J. R.: Volcanic Ash Effects and Mitigation, Adapted from a Report Prepared in 1983 for the Air Force Office of Scientific Research and the Defence Advanced Research Projects Agency, https://www.nrc.gov/docs/ML0913/ML091330800.pdf (last access: 20 March 2025), 1994.
Magill, C., Blong, R., and McAneney, J.: VolcaNZ – A volcanic loss model for Auckland, New Zealand, J. Volcanol. Geoth. Res., 149, 329–345, 2006.
Marzano, F. S., Picciotti, E., Vulpiani, G. and Montopoli, M.: Synthetic signatures of volcanic ash cloud particles from X-band dual-polarization radar, IEEE T. Geosci. Remote, 50, 193–211, https://doi.org/10.1109/TGRS.2011.2159225, 2012.
Marzano, F. S., Mereu, L., Scollo, S., Donnadieu, F., and Bonadonna, C.: Tephra mass eruption rate from ground-based X-band and L-band microwave radars during the November 23, 2013 Etna Paroxysm, IEEE T. Geosci. Remote, 58, 3314–3327, https://doi.org/10.1109/tgrs.2019.2953167, 2020.
Mastin, L. G., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean, K., Durant, A., Ewert, J. W., Neri, A., Rose, W. I., Schneider, D., Siebert, D., Stunder, B., Swanson, G., Tupper, A., Volentik, A., and Waythomas, C. F.: A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, J. Volcanol. Geoth. Res., 186, 10–21, https://doi.org/10.1016/j.jvolgeores.2009.01.008, 2009.
Mereu, L., Marzano, F. S., Montopoli, M., and Bonadonna, C.: Retrieval of tephra size spectra and mass flow rate from C-band radar during the 2010 Eyjafjallajökull eruption, Iceland, IEEE T. Geosci. Remote, 53, 5644–5660, https://doi.org/10.1109/tgrs.2015.2427032, 2015.
Mereu, L., Scollo, S., Bonadonna, C., Freret-Lorgeril, V., and Marzano, F. S.: Multisensor characterization of the incandescent jet region of lava fountain-fed tephra plumes, Remote Sensing, 12, 3629, https://doi.org/10.3390/rs12213629, 2020.
Mereu, L., Scollo, S., Bonadonna, C., Donnadieu, F., Freret Lorgeril, V., and Marzano, F. S.: Ground-based remote sensing of volcanic mass flow: Retrieval techniques and uncertainty analysis of Mt. Etna eruptions in 2015, IEEE J. Sel. Top. Appl., 15, 504–518, https://doi.org/10.1109/jstars.2021.3133946, 2022.
Mereu, L., Scollo, S., Garcia, A., Sandri, L., Bonadonna, C., and Marzano, F. S.: A new radar-based statistical model to quantify mass eruption rate of volcanic plumes, Geophys. Res. Lett., 50, e2022GL100596, https://doi.org/10.1029/2022GL100596, 2023.
Miller, T. P. and Casadevall, T. J.: Volcanic ash hazards to aviation, in: Encyclopedia of Volcanoes, 1st edn., edited by: Sigurdsson, H., Houghton, B., Rymer, H., Stix, J., and McNutt, S., Academic Press, San Diego, CA, USA, 915–930, https://doi.org/10.1016/C2015-0-00175-7, 1999.
Montopoli, M.: Velocity profiles inside volcanic clouds from three-dimensional scanning microwave dual-polarization Doppler radars, J. Geophys. Res.-Atmos., 121, 7881–7900, https://doi.org/10.1002/2015JD023464, 2016.
Pardini, F., De' Michieli Vitturi, M., Andronico, D., Esposti Ongaro, T., Cristaldi, A., and Neri, A.: Real-time probabilistic assessment of volcanic hazard for tephra dispersal and fallout at Mt. Etna: the 2021 lava fountain episodes, B. Volcanol., 85, 6, https://doi.org/10.1007/s00445-022-01614-z, 2023.
Romeo, F., Mereu, L., Scollo, S., Papa, M., Corradini, S., Merucci, L., and Marzano, F. S.: Volcanic Cloud Detection and Retrieval Using Satellite Multisensor Observations, Remote Sens., 15, 888, https://doi.org/10.3390/rs15040888, 2023.
Sarna-Wojcicki, A. M., Shipley, S., Waitt, R. B., Dzurisin, D., and Wood, S. H.: Areal distribution, thickness, mass, volume, and grain size of air-fall ash from the six major eruptions of 1980, in: The 1980 Eruptions of Mount Saint Helens, USGS Numbered Series 1250, edited by: Lipman, P. W. and Mullineaux, D. R., U.S. Government Publishing Office, Washington, DC, USA, 577–600, https://scholarworks.boisestate.edu/geo_facpubs/161 (last access: 20 March 2025), 1981.
Scollo, S., Del Carlo, P., and Coltelli, M.: Tephra fallout of 2001 Etna flank eruption: Analysis of the deposit and plume dispersion, J. Volcanol. Geoth. Res., 160, 147–164, https://doi.org/10.1016/j.jvolgeores.2006.09.007, 2007.
Scollo, S., Tarantola, S., Bonadonna, C., Coltelli, M., and Saltelli, A.: Sensitivity analysis and uncertainty estimation for tephra dispersal models, J. Geophys. Res., 113, B06202, https://doi.org/10.1029/2006JB004864, 2008a.
Scollo, S., Folch, A., and Costa, A.: A parametric and comparative study of different tephra fallout models, J. Volcanol. Geoth. Res., 176, 199–211, 2008b.
Scollo, S., Prestifilippo, M., Spata, G., D'Agostino, M., and Coltelli, M.: Monitoring and forecasting Etna volcanic plumes, Nat. Hazards Earth Syst. Sci., 9, 1573–1585, https://doi.org/10.5194/nhess-9-1573-2009, 2009.
Scollo, S., Coltelli, M., Bonadonna, C., and Del Carlo, P.: Tephra hazard assessment at Mt. Etna (Italy), Nat. Hazards Earth Syst. Sci., 13, 3221–3233, https://doi.org/10.5194/nhess-13-3221-2013, 2013.
Scollo, S., Prestifilippo, M., Bonadonna, C., Cioni, R., Corradini, S., Degruyter, W., Rossi, E., Silvestri, M., Biale, E., Carparelli, G., Cassisi, C., Merucci, L., Musacchio, M., and Pecora, E.: Near-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy, Remote Sens., 11, 2987, https://doi.org/10.3390/rs11242987, 2019.
Spence, R. J. S., Kelman, I., Baxter, P. J., Zuccaro, G., and Petrazzuoli, S.: Residential building and occupant vulnerability to tephra fall, Nat. Hazards Earth Syst. Sci., 5, 477–494, https://doi.org/10.5194/nhess-5-477-2005, 2005.
Taddeucci, J., Edmonds, M., Houghton, B., James, M. R., and Vergniolle, S.: Hawaiian and Strombolian Eruptions, in: The Encyclopedia of Volcanoes, Elsevier Inc., Amsterdam, The Netherland, University of Rhode Island, Narragansett, RI, USA, 485–503, https://doi.org/10.1016/B978-0-12-385938-9.00027-4, 2015.
Tadini, A., Gouhier, M., Donnadieu, F., de'Michieli Vitturi, M., and Pardini, F.: Particle sedimentation in numerical modelling: a case study from the Puyehue-Cordón Caulle 2011 eruption with the PLUME-MoM/HYSPLIT models, Atmosphere, 13, 784, https://doi.org/10.3390/atmos13050784, 2022.
Takishita, K., Poulidis, A. P. and Iguchi, M.: Tephra4D: a python-based model for high-resolution tephra transport and deposition simulations–applications at Sakurajima volcano, Japan, Atmosphere, 12, 331, https://doi.org/10.3390/atmos12030331, 2021.
Volentik, A. C. M., Connor, C. B., Connor, L. J., and Bonadonna, C.: Aspects of volcanic hazards assessment for the Bataan nuclear power plant, Luzon Peninsula, Philippines, in: Volcanic and tectonic hazard assessment for nuclear facilities, edited by: Connor, C., Chapman, N. A., and Connor, L., Cambridge University Press, Cambridge, https://digitalcommons.usf.edu/geo_facpub/1038 (last access: 20 March 2025), 2009.
Vulpiani, G., Ripepe, M., and Valade, S.: Mass discharge rate retrieval combining weather radar and thermal camera observations, J. Geophys. Res.-Sol. Ea., 121, 5679–5695, https://doi.org/10.1002/2016jb013191, 2016.
Wardman, J. B., Wilson, T., Bodger, P. S., Cole, J. W., and Johnston, D. M.: Investigating the electrical conductivity of volcanic ash and its effects on HV power systems, Phys. Chem. Earth, 45–46, 128–145, https://doi.org/10.1016/j.pce.2011.09.003, 2012.
Wilson, L., Parfitt, E. A., and Head, J. W.: Explosive volcanic eruptions-VIII. The role of magma recycling in controlling the behaviour of Hawaiian-style lava fountains, Geophys. J. Int., 121, 215–225, 1995.
Wilson, T. M, Stewart, C., Sword-Daniels, V., Leonard, G. S., Johnston, D. M., Cole, J. W., Wardman, J., Wilson, G., and Barnard, S. T.: Volcanic ash impacts on critical infrastructure, Phys. Chem. Earth, 45–46, 5–23, https://doi.org/10.1016/j.pce.2011.06.006, 2012.
Wilson, G., Wilson, T. M., Deligne, N. I., and Cole, J. W.: Volcanic hazard impacts to critical infrastructure: A review, J. Volcanol. Geotherm. Res., 286, 148–182, 2014.
Short summary
By considering the quantification of tephra mass deposited on roads following an eruption (or a series of explosive volcanic eruptions), in this work we assessed the cumulated tephra mass on the road networks in three selected towns on Mt Etna’s eastern flank during several paroxysms in 2021. This is a first attempt to estimate the amount of tephra that must be removed during a crisis that could be reused, converting in this way a potential problem into an opportunity.
By considering the quantification of tephra mass deposited on roads following an eruption (or a...
Altmetrics
Final-revised paper
Preprint