Articles | Volume 25, issue 4
https://doi.org/10.5194/nhess-25-1521-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-1521-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of machine learning approaches for large-scale agricultural drought forecasts to improve monitoring and preparedness in Brazil
Joseph W. Gallear
CORRESPONDING AUTHOR
Rothamsted Research, West Common, Harpenden, UK
Marcelo Valadares Galdos
Rothamsted Research, West Common, Harpenden, UK
Marcelo Zeri
National Centre for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, Brazil
Andrew Hartley
Met Office Hadley Centre, FitzRoy Road, Exeter, UK
Related authors
No articles found.
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483, https://doi.org/10.5194/essd-2025-483, 2025
Preprint under review for ESSD
Short summary
Short summary
The second State of Wildfires report examines extreme wildfire events from 2024 to early 2025. It analyses key regional events in Southern California, Northeast Amazonia, Pantanal-Chiquitano, and the Congo Basin, assessing their drivers, predictability, and attributing them to climate change and land use. Seasonal outlooks and decadal projections are provided. Climate change greatly increased the likelihood of these fires, and without strong mitigation, such events will become more frequent.
Martin Richard Willett, Melissa Brooks, Andrew Bushell, Paul Earnshaw, Samantha Smith, Lorenzo Tomassini, Martin Best, Ian Boutle, Jennifer Brooke, John M. Edwards, Kalli Furtado, Catherine Hardacre, Andrew J. Hartley, Alan Hewitt, Ben Johnson, Adrian Lock, Andy Malcolm, Jane Mulcahy, Eike Müller, Heather Rumbold, Gabriel G. Rooney, Alistair Sellar, Masashi Ujiie, Annelize van Niekerk, Andy Wiltshire, and Michael Whitall
EGUsphere, https://doi.org/10.5194/egusphere-2025-1829, https://doi.org/10.5194/egusphere-2025-1829, 2025
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA8GL9, which includes improvements to the represenation of convection and other physical processes. GA8GL9 is used for operational weather prediction in the UK and forms the basis for the next GA and GL configuration.
Inika Taylor, Douglas I. Kelley, Camilla Mathison, Karina E. Williams, Andrew J. Hartley, Richard A. Betts, and Chantelle Burton
EGUsphere, https://doi.org/10.5194/egusphere-2025-720, https://doi.org/10.5194/egusphere-2025-720, 2025
Short summary
Short summary
Climate change is reshaping fire seasons worldwide and, in many places, increasing fire weather risk. We use climate model simulations to project future changes in fire danger at different levels of global warming, focusing on Australia, Brazil, and the USA. Keeping warming below 2 °C significantly limits the increase in fire risk, but even at 1.5 °C, fire seasons lengthen, with more extreme conditions. However, low-fire weather periods remain, offering critical windows for fire management.
Jessica Stacey, Richard Betts, Andrew Hartley, Lina Mercado, and Nicola Gedney
EGUsphere, https://doi.org/10.5194/egusphere-2025-51, https://doi.org/10.5194/egusphere-2025-51, 2025
Short summary
Short summary
Plants typically transpire less with rising atmospheric carbon dioxide, leaving more water in the ground for human use, but many future water scarcity assessments ignore this effect. We use a land surface model to examine how plant responses to carbon dioxide and climate change affect future water scarcity. Our results suggest that including these plant responses increases overall water availability for most people, highlighting the importance of their inclusion in future water scarcity studies.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Kandice L. Harper, Céline Lamarche, Andrew Hartley, Philippe Peylin, Catherine Ottlé, Vladislav Bastrikov, Rodrigo San Martín, Sylvia I. Bohnenstengel, Grit Kirches, Martin Boettcher, Roman Shevchuk, Carsten Brockmann, and Pierre Defourny
Earth Syst. Sci. Data, 15, 1465–1499, https://doi.org/10.5194/essd-15-1465-2023, https://doi.org/10.5194/essd-15-1465-2023, 2023
Short summary
Short summary
We built a spatially explicit annual plant-functional-type (PFT) dataset for 1992–2020 exhibiting intra-class spatial variability in PFT fractional cover at 300 m. For each year, 14 maps of percentage cover are produced: bare soil, water, permanent snow/ice, built, managed grasses, natural grasses, and trees and shrubs, each split into leaf type and seasonality. Model simulations indicate significant differences in simulated carbon, water, and energy fluxes in some regions using this new set.
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Cited articles
Adede, C., Oboko, R., Wagacha, P. W., and Atzberger, C.: A mixed model approach to vegetation condition prediction using artificial neural networks (ANN): case of Kenya's operational drought monitoring, Remote Sens., 11, 1099, https://doi.org/10.3390/rs11091099, 2019. a, b, c
Agência Brasil: Drought was one of the villains of inflation in 2014, Agência Brasil, https://agenciabrasil.ebc.com.br/economia/noticia/2015-01/seca-foi-um-dos-viloes-da-inflacao-em-2014 (last access: 13 August 2024), 2015. a
Barrett, A. B., Duivenvoorden, S., Salakpi, E. E., Muthoka, J. M., Mwangi, J., Oliver, S., and Rowhani, P.: Forecasting vegetation condition for drought early warning systems in pastoral communities in Kenya, Remote Sens. Environ., 248, 111886, https://doi.org/10.1016/j.rse.2020.111886, 2020. a, b
Beaudoing, H., Rodell, M., Getirana, A., and Li, B.: Groundwater and Soil Moisture Conditions from GRACE and GRACE-FO Data Assimilation L4 7-days 0.125 x 0.125 degree U.S. V4.0, NASA/GSFC/HSL, Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA [data set], https://doi.org/10.5067/UH653SEZR9VQ, 2021. a
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Scientific data, 5, 1–12, 2018. a
Beguería, S., Vicente Serrano, S. M., Reig-Gracia, F., and Latorre Garcés, B.: SPEIbase v.2.10: A Comprehensive Tool for Global Drought Analysis, Version 2.10, DIGITAL.CSIC [data set] https://digital.csic.es/handle/10261/364137 (last access: 22 April 2025), 2024. a
Brás, T. A., Seixas, J., Carvalhais, N., and Jägermeyr, J.: Severity of drought and heatwave crop losses tripled over the last five decades in Europe, Environ. Res. Lett., 16, 065012, https://doi.org/10.1088/1748-9326/abf004, 2021. a
Brito, S. S. B., Cunha, A. P. M., Cunningham, C., Alvalá, R. C., Marengo, J. A., and Carvalho, M. A.: Frequency, duration and severity of drought in the Semiarid Northeast Brazil region, Int. J. Climatol., 38, 517–529, 2018. a
Brodribb, T. J., Powers, J., Cochard, H., and Choat, B.: Hanging by a thread? Forests and drought, Science, 368, 261–266, 2020. a
Chawla, N. V.: Data mining for imbalanced datasets: An overview, Data mining and knowledge discovery handbook, Springer New York, NY, 875–886, ISBN 978-0-387-09823-4, 2010. a
Chomboon, K., Chujai, P., Teerarassamee, P., Kerdprasop, K., and Kerdprasop, N.: An empirical study of distance metrics for k-nearest neighbor algorithm, in: Proceedings of the 3rd international conference on industrial application engineering, Kitakyushu, Fukuoka, Japan, March 2015, vol. 2, https://doi.org/10.12792/iciae2015.051, 2015. a
Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., Furtado, J. C., Mishra, V., Xiao, X., and Randall, R. M.: Global distribution, trends, and drivers of flash drought occurrence, Nat. Commun., 12, 6330, https://doi.org/10.1038/s41467-021-26692-z, 2021. a
Cirino, P. H., Féres, J. G., Braga, M. J., and Reis, E.: Assessing the impacts of ENSO-related weather effects on the Brazilian agriculture, Proc. Econ. Financ., 24, 146–155, 2015. a
CNA: Losses due to drought represent 7.36 % of the state's GDP, says Farsul, Confederação da Agricultura e Pecuária do Brasil, https://www.cnabrasil.org.br/noticias/prejuizos-com-a-seca-representam-7-36-do-pib-do-estado-aponta-farsul (last access: 13 August 2024), 2020. a
Cunha, A. P. M., Zeri, M., Deusdará Leal, K., Costa, L., Cuartas, L. A., Marengo, J. A., Tomasella, J., Vieira, R. M., Barbosa, A. A., Cunningham, C., Garcia, J. V. C., Broedel, E., Alvalá, R., and Ribeiro-Neto, G.: Extreme drought events over Brazil from 2011 to 2019, Atmosphere, 10, 642, https://doi.org/10.3390/atmos10110642, 2019. a, b, c, d, e, f, g, h, i
Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D. H., Verdin, J. P., Rowland, J. D., Romero, B. E., Husak, G. J., Michaelsen, J. C., and Verdin, A. P.: A quasi-global precipitation time series for drought monitoring, U.S. Geological Survey Data Series 832 [data set], https://data.chc.ucsb.edu/products/CHIRPS-2.0/ (last access: 10 October 2023), 2014. a
Gallear, J.: Jgallear/CSSP_brazil_23_24: Initial release, code for Evaluation of machine learning approaches for large-scale agricultural drought forecasts to improve monitoring and preparedness in Brazil (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.15210667, 2025. a
Geng, G., Wu, J., Wang, Q., Lei, T., He, B., Li, X., Mo, X., Luo, H., Zhou, H., and Liu, D.: Agricultural drought hazard analysis during 1980–2008: a global perspective, Int. J. Climatol., 36, 389–399, 2016. a
Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., and Zenebe, A.: Analysis of the long-term agricultural drought onset, cessation, duration, frequency, severity and spatial extent using Vegetation Health Index (VHI) in Raya and its environs, Northern Ethiopia, Environmental Systems Research, 7, 1–18, 2018. a
Hammad, A. T. and Falchetta, G.: Probabilistic forecasting of remotely sensed cropland vegetation health and its relevance for food security, Sci. Total Environ., 838, 156157, https://doi.org/10.1016/j.scitotenv.2022.156157, 2022. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2023. a, b, c
Herweijer, C. and Seager, R.: The global footprint of persistent extra-tropical drought in the instrumental era, Int. J. Climatol., 28, 1761–1774, 2008. a
Ioris, A. A. R., Irigaray, C. T., and Girard, P.: Institutional responses to climate change: opportunities and barriers for adaptation in the Pantanal and the Upper Paraguay River Basin, Climatic Change, 127, 139–151, 2014. a
Kartal, S., Iban, M. C., and Sekertekin, A.: Next-level vegetation health index forecasting: A ConvLSTM study using MODIS Time Series, Environ. Sci. Pollut. R., 31, 1–17, https://doi.org/10.1007/s11356-024-32430-x, 2024. a
Kloos, S., Yuan, Y., Castelli, M., and Menzel, A.: Agricultural drought detection with MODIS based vegetation health indices in southeast Germany, Remote Sens., 13, 3907, https://doi.org/10.3390/rs13193907, 2021. a
Kogan, F., Adamenko, T., and Guo, W.: Global and regional drought dynamics in the climate warming era, Remote Sens. Lett., 4, 364–372, 2013. a
Łabędzki, L.: Estimation of local drought frequency in central Poland using the standardized precipitation index SPI, Irrig. Drain., 56, 67–77, 2007. a
Leng, G. and Hall, J. W.: Predicting spatial and temporal variability in crop yields: an inter-comparison of machine learning, regression and process-based models, Environ. Res. Lett., 15, 044027, https://doi.org/10.1088/1748-9326/ab7b24, 2020. a
Li, B., Rodell, M., Kumar, S., Beaudoing, H. K., Getirana, A., Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I. B., Daira, D., Bila, M., de Lannoy, G., Mocko, D., Steele-Dunne, S. C., Save, H., and Bettadpur, S.: Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges, Water Resour. Res., 55, 7564–7586, https://doi.org/10.1029/2018WR024618, 2019. a, b
Marengo, J. A., Galdos, M. V., Challinor, A., Cunha, A. P., Marin, F. R., Vianna, M. d. S., Alvala, R. C., Alves, L. M., Moraes, O. L., and Bender, F.: Drought in Northeast Brazil: A review of agricultural and policy adaptation options for food security, Climate Resilience and Sustainability, 1, e17, https://doi.org/10.1002/cli2.17, 2022. a, b
Marsland, S.: Machine learning: an algorithmic perspective, Chapman and Hall/CRC, ISBN 9781466583283, 2011. a
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, in: Proceedings of the 8th Conference on Applied Climatology, January 1993, Anaheim, California, USA, vol. 17, 179–183, California, 1993. a
Mohammed, S., Alsafadi, K., Enaruvbe, G. O., Bashir, B., Elbeltagi, A., Széles, A., Alsalman, A., and Harsanyi, E.: Assessing the impacts of agricultural drought (SPI/SPEI) on maize and wheat yields across Hungary, Sci. Rep., 12, 8838, https://doi.org/10.1038/s41598-022-12799-w, 2022. a
Molnar, C.: Interpretable Machine Learning, 2nd edn., https://christophm.github.io/interpretable-ml-book (last access: 17 March 2025), 2022. a
NOAA: NIDIS: Agricultural drought, NOAA, https://www.drought.gov/topics/agriculture#:~:text=Agricultural%20drought%20by%20definition%20refers,total%20crop%20or%20forage%20failure, last access: 5 November 2024. a
NOAA: NESDIS STAR – Global Vegetation Health Products, NOAA [data set], https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php (last access: 24 February 2025), 2025. a
Overbeck, G. E., Vélez-Martin, E., Scarano, F. R., Lewinsohn, T. M., Fonseca, C. R., Meyer, S. T., Müller, S. C., Ceotto, P., Dadalt, L., Durigan, G., Ganade, G., Gossner, M., Guadagnin, D., Lorenzen, K., Jacobi, C., Weisser, W., and Pillar, V.: Conservation in Brazil needs to include non-forest ecosystems, Divers. Distrib., 21, 1455–1460, 2015. a, b
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007. a
Rebetez, M., Mayer, H., Dupont, O., Schindler, D., Gartner, K., Kropp, J. P., and Menzel, A.: Heat and drought 2003 in Europe: a climate synthesis, Ann. For. Sci., 63, 569–577, 2006. a
Rossato, L., Alvala, R. C. D. S., Marengo, J. A., Zeri, M., Cunha, A. P. d. A., Pires, L. B., and Barbosa, H. A.: Impact of soil moisture on crop yields over Brazilian semiarid, Front. Environ. Sci., 5, 73, https://doi.org/10.3389/fenvs.2017.00073, 2017. a
Sacks, W. J., Deryng, D., Foley, J. A., and Ramankutty, N.: Crop planting dates: an analysis of global patterns, Global Ecol. Biogeogr., 19, 607–620, 2010. a
Sadiq, M. A., Sarkar, S. K., and Raisa, S. S.: Meteorological drought assessment in northern Bangladesh: A machine learning-based approach considering remote sensing indices, Ecol. Indic., 157, 111233, https://doi.org/10.1016/j.ecolind.2023.111233, 2023. a
Sena, A., Barcellos, C., Freitas, C., and Corvalan, C.: Managing the health impacts of drought in Brazil, Int. J. Env. Res. Pub. He., 11, 10737–10751, 2014. a
Sepulcre-Canto, G., Horion, S., Singleton, A., Carrao, H., and Vogt, J.: Development of a Combined Drought Indicator to detect agricultural drought in Europe, Nat. Hazards Earth Syst. Sci., 12, 3519–3531, https://doi.org/10.5194/nhess-12-3519-2012, 2012. a
Tang, F. H. M., Nguyen, T. H., Conchedda, G., Casse, L., Tubiello, F. N., and Maggi, F.: CROPGRIDS: A global geo-referenced dataset of 173 crops circa 2020, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2023-130, 2023. a, b
Tanguy, M., Eastman, M., Magee, E., Barker, L. J., Chitson, T., Ekkawatpanit, C., Goodwin, D., Hannaford, J., Holman, I., Pardthaisong, L., Parry, S., Rey Vicario, D., and Visessri, S.: Indicator-to-impact links to help improve agricultural drought preparedness in Thailand, Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, 2023. a, b, c
Tomasella, J., Cunha, A. P. M., Simões, P. A., and Zeri, M.: Assessment of trends, variability and impacts of droughts across Brazil over the period 1980–2019, Nat. Hazards, 116, 2173–2190, 2023. a
Van Loon, A. F.: Hydrological drought explained, Wiley Interdisciplinary Reviews: Water, 2, 359–392, 2015. a
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index, J. Climate, 23, 1696–1718, 2010. a
Wei, W., Wang, J., Ma, L., Wang, X., Xie, B., Zhou, J., and Zhang, H.: Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data, Land, 13, 95, https://doi.org/10.3390/land13010095, 2024. a
West, H., Quinn, N., and Horswell, M.: Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities, Remote Sens. Environ., 232, 111291, https://doi.org/10.1016/j.rse.2019.111291, 2019. a
Wilhelmi, O. V. and Wilhite, D. A.: Assessing vulnerability to agricultural drought: a Nebraska case study, Nat. Hazards, 25, 37–58, 2002. a
Wu, B., Ma, Z., and Yan, N.: Agricultural drought mitigating indices derived from the changes in drought characteristics, Remote Sens. Environ., 244, 111813, https://doi.org/10.1016/j.rse.2020.111813, 2020. a
Zeri, M., S. Alvalá, R. C., Carneiro, R., Cunha-Zeri, G., Costa, J. M., Rossato Spatafora, L., Urbano, D., Vall-Llossera, M., and Marengo, J.: Tools for communicating agricultural drought over the Brazilian Semiarid using the soil moisture index, Water, 10, 1421, https://doi.org/10.3390/w10101421, 2018. a, b
Zeri, M., Williams, K., Cunha, A. P. M. A., Cunha‐Zeri, G., Vianna, M. S., Blyth, E. M., Marthews, T. R., Hayman, G. D., Costa, J. M., Marengo, J. A., Alvalá, R. C. S., Moraes, O. L. L., and Galdos, M. V.: Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An evaluation using the JULES model, in situ observations, and remote sensing, Climate Resilience and Sustainability, 1, e7, https://doi.org/10.1002/cli2.7, 2022. a
Ziese, M., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and Schneider, U.: GPCC First Guess Product at 1.0: Near real-time first guess monthly land-surface precipitation from rain-gauges based on SYNOP data, Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst [data set], https://doi.org/10.5676/DWD_GPCC/FG_M_100, 2011. a, b
Short summary
In Brazil, drought is of national concern and can have major consequences for agriculture. Here, we determine how to develop forecasts for drought stress on vegetation health using machine learning. Results aim to inform future developments in operational drought monitoring at the National Centre for Monitoring and Early Warning of Natural Disasters (CEMADEN) in Brazil. This information is essential for disaster preparedness and planning of future actions to support areas affected by drought.
In Brazil, drought is of national concern and can have major consequences for agriculture. Here,...
Altmetrics
Final-revised paper
Preprint