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Abstract. Drought events have increased in frequency and
severity in recent years and result in significant economic
losses. Although the Brazilian semi-arid Northeast has been
historically associated with the impacts of drought, drought
is of national concern. From 2011–2019, drought events were
recorded in all Brazilian territories. Droughts can have major
consequences for agricultural production, which is of par-
ticular concern given the importance of soybeans for socio-
economic development. Due to its regional heterogeneity, it
is important to develop accurate drought forecast and as-
sessment tools for Brazil. We explore machine learning as
a method to forecast the vegetation health index (VHI),
for large-scale monthly drought monitoring across agricul-
tural land in Brazil. Furthermore, we also determine spatio-
temporal drivers of the VHI across the wide variation in
climates and evaluate machine learning performance for El
Niño–Southern Oscillation variation and forecasting of the
onset of drought stress. We show that machine learning meth-
ods such as gradient boosting methods are able to more eas-
ily forecast vegetation health in north and northeast Brazil
than in south Brazil, and they perform better during La Niña
events than El Niño events. Drought stress which reduces the
VHI below the commonly used 40 % threshold can be fore-
cast across Brazil with similar model performance. The stan-
dardized precipitation evapotranspiration index is shown to
be a useful indicator of drought stress, with 3-month accumu-
lation periods preferred over 1- and 2-month periods. Results
aim to inform future developments in operational drought
monitoring at the National Centre for Monitoring and Early

Warning of Natural Disasters in Brazil (CEMADEN). Future
work should build upon methods discussed here to improve
drought forecasts for agricultural drought response and dis-
aster risk reduction.

1 Introduction

Drought events have increased in frequency and severity in
recent years and can result in significant economic losses
(Cunha et al., 2019; Herweijer and Seager, 2008; Marengo
et al., 2017; Brito et al., 2018). According to a 2020 United
Nations report, drought caused at least USD 124 billion in
economic losses and affected more than 1.5 billion people
from 1998 to 2017. Furthermore, 5 billion people will live
in water-scarce areas by 2050 (Brodribb et al., 2020; Wei
et al., 2024). Meteorological droughts are defined as an ex-
tended period in which a water deficit occurs, usually be-
cause precipitation is less than average, resulting in water
scarcity (Cunha et al., 2019). Droughts can have significant
consequences for sectors, including drinking water supply,
waterborne transportation, electricity production, and agri-
culture (Van Loon, 2015). Agricultural drought is defined as
the point at which drought conditions result in adverse plant
responses such as crop failure (NOAA, 2024).

Agricultural drought can have significant socio-economic
impacts because they impact food security. For example,
droughts reduced European cereal yields by 9 % on aver-
age between 1961 and 2018 (Brás et al., 2021). Sensitivity
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to drought effects can depend on management factors such
as crop selection, irrigation, and tillage practice, as well as
climate variability (Wilhelmi and Wilhite, 2002). Agricul-
tural drought has been effectively detected using the vege-
tation health index (VHI), a proxy for the estimation of veg-
etation health (Kogan, 2002; Wu et al., 2020). This is be-
cause the VHI, from AVHRR (Advanced Very High Reso-
lution Radiometer) data, responds cumulatively and quickly
to changes in vegetation greenness. Therefore, the effect of
drought can be measured much earlier than that derived from
weather data or other drought monitoring tools, which allows
for faster adaptation responses (Kogan, 2002). Drought mon-
itoring using vegetation indices such as the VHI, the NDVI
(normalized difference vegetation index), or the VCI (vegeta-
tion condition index) has been developed in several locations
using satellite imagery from products such as MODIS and
NOAA STAR (Sadiq et al., 2023; Kloos et al., 2021). The
VHI is defined as the weighted average of two subindices:
the VCI and the temperature condition index (TCI). A full
definition of the VHI is found in Sect. 2.2.1. Although partly
based on the NDVI, the VHI is reported to improve upon us-
ing the NDVI for drought monitoring as it provides a measure
of vegetation condition relative to long-term change (West
et al., 2019). Although monitoring past events is useful, a
forecasting method would be highly beneficial to provide
timely warnings of drought intensification to government of-
ficials and other stakeholders.

Machine learning has been shown to outperform and hold
many advantages over traditional statistical and time-series-
based prediction methods; in particular machine learning can
more easily capture non-linear relationships and does not as-
sume a certain shape of the response function (Leng and Hall,
2020). Machine learning has been used to forecast vegeta-
tion indices at timescales including daily, 5 d, and 7 d in-
tervals (Kartal et al., 2024; Kladny et al., 2024; Reddy and
Prasad, 2018); monthly intervals (Lees et al., 2022); weekly
timescales (Barrett et al., 2020); and average vegetation con-
dition values aggregated over 1–3 months (Adede et al.,
2019). Models used to predict the VHI range from neural net-
works (Adede et al., 2019; Kladny et al., 2024; Lees et al.,
2022; Reddy and Prasad, 2018) to ensemble tree methods
such as random forest and gradient boosting methods (Nay
et al., 2018; Tanguy et al., 2023), with some studies using
other methods such as Gaussian process modelling (Barrett
et al., 2020). Results from many such studies show the po-
tential of machine learning and remote sensing indices to
effectively forecast agricultural drought. For example, Nay
et al. (2018) used gradient boosting methods to forecast the
enhanced vegetation index (EVI) and demonstrated corre-
lations in agricultural areas between the modelled and the
observed EVI above 0.75. Furthermore, Lees et al. (2022)
evaluated forecasts of the VCI in Kenya made with neural
networks and deep learning LSTM (long short-term mem-
ory) methods and found excellent performance. This work
showed that forecasting the VCI 1 month in advance with an

LSTM model can achieve an R2 value of up to 0.83. Other
work has also shown impressive results, suggesting great po-
tential for machine learning methods to forecast drought im-
pacts on the VHI at a large scale.

In Brazil, drought accounts for approximately half of
natural-disaster-related impacts in terms of the number of
people affected (Sena et al., 2014). Droughts are of particu-
lar concern in the northeast semi-arid region, one of the most
densely populated semi-arid regions in the world, which also
has the most people living in poverty in Brazil. Nearly 80 %
of agricultural labour in the northeast is smallholder farm-
ers, and rainfed agriculture accounts for 95 % of farmed land
(Cunha et al., 2019; Marengo et al., 2022). Much work has
focused on drought trends in Brazil, with particular focus on
the northeast semi-arid region (Cunha et al., 2019; Marengo
et al., 2017, 2022; Rossato et al., 2017; Zeri et al., 2018).
However, in recent years, drought impacts have affected all
regions in Brazil (Cunha et al., 2019; Tomasella et al., 2023).
For example, in 2020 drought in Rio Grande do Sul was es-
timated to have cost BRL 36 billion (∼USD 6.22 billion) in
losses, representing 7.36 % of the state’s GDP (CNA, 2020).
Drought has also been linked to inflation, reportedly caus-
ing an increase in food prices of 8.03 % in 2014 (Agência
Brasil, 2015). Due to its regional heterogeneity, it is im-
portant to develop accurate drought forecast and assessment
tools for all of Brazil (Cunha et al., 2019). Drought monitor-
ing and dissemination of drought warnings and intensifica-
tion in Brazil is undertaken by the National Centre for Moni-
toring and Early Warning of Natural Disasters (CEMADEN).
CEMADEN uses several drought indices including the stan-
dardized precipitation index (SPI), root zone soil moisture
(RZSM) from remote sensing, and vegetation indices based
on remote sensing such as the vegetation health index (VHI).
These variables are part of an integrated drought index (IDI),
which takes into account classified versions of these prod-
ucts, harmonized to a common spatial resolution and domain.
The publicly available IDI is then used to make the diagnos-
tic of current drought conditions over all regions of the coun-
try but is not used to forecast drought metrics. This helps
to inform stakeholders of ongoing drought events across
the country. In this study, we aim to build on the drought
monitoring work at CEMADEN by assessing the potential
of machine-learning-based operational drought impact fore-
casting at monthly timescales using satellite-based VHI ob-
servations and drought indices at a large scale across Brazil.

In summary, the objectives of this study are the following:

1. to determine the effectiveness of machine learning
methods for VHI forecasts at monthly timescales across
agricultural areas of Brazil

2. to determine which input variables are most useful for
drought forecasting models when used across Brazil

3. to determine the effectiveness of machine learning
methods for forecasting the onset of VHI drought
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4. to determine how El Niño–Southern Oscillation
(ENSO) modes of variation affect VHI forecast perfor-
mance.

2 Methods and data

2.1 Study area

Brazil contains a wide variety of climate conditions and ge-
ographic features which present a challenge for prediction
when training and evaluating model performance across such
a wide area. Spatial variation in climate is particularly signif-
icant in Brazil. The climate of Brazil is made up of nine dif-
ferent Köppen–Geiger climate zones from semi-arid in the
northeast to tropical savanna and tropical rainforest in the
northwest, with some areas of marine climate in the south
(Peel et al., 2007; Beck et al., 2018). In addition to climate
zones, a wide variety of different biomes are found across
the country. Biomes in Brazil have been defined as Ama-
zon, Atlantic Forest, Caatinga, Cerrado, Pampa, and Pan-
tanal (Lopes Ribeiro et al., 2021). The Amazon biome is
mainly characterized by rainforest areas and has an equato-
rial climate with torrential rains distributed throughout the
year (Overbeck et al., 2015; Lopes Ribeiro et al., 2021). At-
lantic Forest is characterized by heavy rainfall due to the
proximity to the ocean and winds blowing inward over the
continent (Lopes Ribeiro et al., 2021). The Caatinga biome
experiences high temperatures and potential evapotranspira-
tion rates that exceed 2500 mm yr−1. This leads to the char-
acterization of the Caatinga as being of low water availability
and having limited storage capacity of rivers (Lopes Ribeiro
et al., 2021). The Cerrado is characterized by large savan-
nahs with a warm tropical subhumid climate and two dis-
tinct seasons: wet summers with torrential rains and dry win-
ters (Overbeck et al., 2015; Lopes Ribeiro et al., 2021). The
Pampa biome, located in the south, has a wet subtropical cli-
mate and is rainy throughout the year with hot summers and
cold winters. Pantanal is made up of poorly drained lowlands
which experience flooding from summer to autumn months.
Precipitation varies from 1000 to 1400 mm yr−1 (Ioris et al.,
2014; Lopes Ribeiro et al., 2021). All input and output data
were filtered using harvested areas from the crop grid dataset
(Tang et al., 2023). The crop grid (Tang et al., 2023) dataset
was chosen because it is the newest dataset found with esti-
mates of the crop-specific growing area for maize and soy-
beans in Brazil. The data were filtered to only contain grid
cells which are above the 75th percentile of harvested area
across the distribution of the maize and soybean harvested
area in Brazil. This is to ensure that the grid cells used for
training and evaluation are most likely to be indicative of
cropland for two major crops grown in Brazil: soybean and
maize. Choosing maize and soybean growing areas provides
a large spread across different climatic zones of Brazil and
ensures representation of two crops with economic and food

security value. As an additional test, models were also trained
using maize and soybean growing areas separately. The re-
sults of this test are found in Appendix D. Figure 1 shows the
spatial distribution of soybean (Fig. 1a) and maize (Fig. 1b)
growing areas.

Using the approach here to select for regions, the crop-
land area was obtained for a range of locations across Brazil.
Much of the most intensely farmed soybean area is in the
state of Mato Grosso in central Brazil, Rio Grande do Sul
and Paraná in the south, and some locations in Bahia in the
northeast. Maize is farmed much less intensively than soy-
beans, but it is equally widespread throughout the country.
More maize is grown in Minas Gerais than soybean and is
more widespread in the northeast of the country.

The large spatial scale of this work makes model train-
ing particularly challenging. Agricultural land in Brazil is
made up of multiple biomes with different soil moisture,
rainfall, and temperature characteristics (Cunha et al., 2019;
Lopes Ribeiro et al., 2021). Meteorological events such as
ENSO also affect different parts of the country in different
ways. Typically, during El Niño events, there is a reduc-
tion in precipitation in the north and northeast regions, while
the south experiences a higher frequency of heavier rains. In
La Niña events, the situation is reversed, with the north and
northeast experiencing greater-than-average rainfall and the
south being subjected to more severe droughts (Cirino et al.,
2015).

2.2 Input variables and drought indices

Drought indices were taken from a range of sources, resam-
pled to ensure consistent spatial and temporal resolution (see
Sect. 2.3), and then assimilated to create a combined dataset
to describe drought conditions across Brazil at 0.25° spatial
resolution for each month. To obtain consistent dates across
data sources, the dataset ranges from 2003 to 2022. These
years also account for seasonal variability and cyclical cli-
mate processes, including ENSO, which is addressed in this
study.

2.2.1 Vegetation health index (VHI)

The vegetation health index is a proxy for estimating overall
vegetation health and is expressed in percentage. VHI values
below 40 % indicate stress conditions. The VHI is a compos-
ite index which is comprised of the vegetation condition in-
dex (VCI) and the TCI. These three variables are determined
by the following formulae:

VCI=
100(NDVI−NDVImin)

NDVImax−NDVImin
(1)

TCI=
100(BTmax−BT)

BTmax−BTmin
(2)
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Figure 1. Maps of harvested areas (circa 2020) across Brazil taken from the crop grid database. Panel (a) shows the soybean harvested area.
Panel (b) shows the maize harvested area.

VHI= αVCI+ (1−α)TCI, (3)

where BT is the brightness temperature recorded from a ther-
mal sensor, min/max represents minimum and maximum val-
ues of a variable over the study period, and α is a coefficient
used to determine the relative contribution of the TCI and
the VCI to the VHI. The vegetation health index data were
obtained from the NOAA STAR satellite-based vegetation
health system. The NOAA STAR system uses data and prod-
ucts from GOES (Geostationary Operational Environmental
Satellite), METEOSAT, MTSAT, and DMSP. Satellite obser-
vations are primarily based on radiance measurements taken
by the Advance Very High Resolution Radiometer (AVHRR)
found on NOAA polar-orbiting satellites. The visible and in-
frared observations are used to determine the NDVI as well
as the TCI, the VCI, and the vegetation health index (VHI)
(Kogan, 1997). VHI data were obtained at the resolution of
0.036° (4 km) but then were upscaled to 0.25° to bring them
to the common spatial resolution of the majority of the input
data.

2.2.2 Soil moisture

Soil moisture is essential to measure the propagation of mete-
orological drought into agricultural drought and water stress
in plants (Zeri et al., 2018, 2022). In this work, soil mois-
ture was obtained from the NASA GRACE satellite (Li et al.,
2019). The NASA GRACE satellite data are based on two
satellites which record changes in the earth’s gravity field
caused by the redistribution of water. Root zone soil mois-
ture was obtained from GRACE for the 0.25° grid scale
and a weekly timescale. Temporal resolution was reduced

to monthly by averaging soil moisture percentage across 4-
week intervals.

2.2.3 Standardized precipitation index (SPI)

The standardized precipitation index (SPI) is a drought in-
dex with wide comparability for different locations due to
spatially consistent standardization. This makes the SPI a
useful index for constructing a model of drought propaga-
tion across such a wide spatial domain as agricultural land in
Brazil. The SPI was first proposed by McKee et al. (1993)
to quantify the probability of occurrence of a precipitation
deficit at a particular monthly timescale. To determine the
SPI, precipitation data are fitted to a probability distribution
function (usually either gamma or Pearson), before the in-
verse normal distribution function is used to rescale proba-
bility values, leading to SPI values with a mean of zero and
standard deviation of 1 (Cunha et al., 2019). The SPI is calcu-
lated over different monthly timescales. Here, we use 1-, 2-
and 3-month SPIs. Various studies have shown that SPI3 has
the strongest correlation with vegetation response (Sepulcre-
Canto et al., 2012); however, we also assess 1- and 2-month
accumulation periods, which may also be useful for dry en-
vironments (Tanguy et al., 2023). SPI indicators with longer
accumulation periods are not part of the main model results
for reasons provided in Appendix E. The SPI is a widely used
index recommended by the World Meteorological Organiza-
tion (WMO). It is also used for operational drought monitor-
ing at CEMADEN (Cunha et al., 2019).

SPI data were taken from the NOAA–NIDIS Global Pre-
cipitation Climatology Centre (GPCC) (Ziese et al., 2011).
We selected SPI data fit to a gamma distribution. Data were
obtained at a 1° resolution and then upsampled using a k-
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nearest neighbours algorithm to obtain a consistent spatial
resolution with the rest of the dataset at 0.25°.

2.2.4 Standardized precipitation evapotranspiration
index (SPEI)

The SPEI (standardized precipitation evapotranspiration in-
dex) was first proposed by Vicente-Serrano et al. (2010) as
an improved drought index which considers the effect of ref-
erence evapotranspiration on drought severity. The SPEI is
based on the calculation of the SPI; however, the SPEI is de-
termined by computing a climatic water balance (precipita-
tion minus atmospheric evaporative demand) and then using
this metric to determine the probability of a water balance
deficit for a given period of time (Beguería et al., 2014). Sim-
ilar to the SPI, a statistical distribution is then used to fit the
data, and the data are standardized to produce a mean of zero
and standard deviation of 1 (Beguería et al., 2010).

SPEI data were taken from the global SPEI database
(SPEIbase), which was originally at a 0.5° spatial resolu-
tion (Beguería et al., 2010). Beguería et al. (2010) use a log-
logistic distribution to fit the SPEI. The SPEI is an advance-
ment on the SPI (standardized precipitation index) because
the incorporation of evapotranspiration effects accounts for
temperature effects on drought, which have been shown to
significantly affect drought conditions (Rebetez et al., 2006).
SPEI values are determined for a number of months, termed
accumulation periods. Different accumulation periods could
be more useful for specific representations (e.g. longer accu-
mulation periods could be more correlated with longer-term
storage effects such as groundwater). Here, we assess 1–3-
month accumulation periods for consistency with SPI accu-
mulation periods and relevance to crop growth periods.

2.2.5 ERA5 reanalysis input variables

Further data were obtained from the monthly averaged ERA5
database (Hersbach et al., 2023). ERA5 is a reanalysis
database which combines models and observations using
data assimilation to provide better estimates of meteorolog-
ical variables at the grid scale (Hersbach et al., 2023). Al-
though ERA5 has an hourly global coverage, we use monthly
averaged estimates to allow for consistency with the rest of
the data used for this study.

From this resource, 2 m temperature, potential evapora-
tion, and surface thermal (longwave) radiation downward
were obtained. Temperature variables are important to cap-
ture drought effects brought on by high temperatures rather
than solely a deficit in rainfall. This can be especially im-
portant for flash drought events, which are typically caused
by the compounding effects of rainfall deficits and high tem-
peratures, which increase evaporative stress (Christian et al.,
2021).

2.2.6 Total monthly precipitation

Precipitation data were obtained from the Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS)
database (Funk et al., 2015). CHIRPS is a quasi-global
database (ranging from 50° N–50° S) which is available at
multiple spatial resolutions including 0.25°. The CHIRPS
dataset combines satellite data with in situ measurements to
provide a gridded dataset of appropriate spatial extent for this
study. CHIRPS has been validated against other datasets and
in situ observations and has been used for similar studies in
other regions (Lees et al., 2022). Total monthly precipitation
is included as a variable to provide a benchmark comparison
to precipitation indices when analysing variable importance.

2.3 Data processing and sampling methods

Data were originally obtained at a range of different spatial
and temporal resolutions. Table 1 shows the original resolu-
tion of each of the indices used. Where spatial resolution has
been decreased (spatial down sampling), this is done through
averaging. Where spatial resolution has increased (spatial up
sampling), this is calculated using a k-nearest neighbours al-
gorithm (where k is the five nearest neighbours). All data
were spatially corrected to a 0.25° spatial resolution. Some
data were obtained at weekly or daily timescales; in this case,
data were averaged per month for each grid cell location to
obtain average monthly estimates of each variable.

2.4 Forecasting methods

We evaluate a range of machine learning methods for the
forecasting of the vegetation health index 1 month in ad-
vance before using the best model to assess the perfor-
mance of further forecasts aimed at predicting the vege-
tation health index 2 and 3 months in advance and more
closely analysing spatio-temporal model performance. Meth-
ods compared here are random forest (Breiman, 2001), gra-
dient boosting (Friedman, 2001), artificial neural networks
(LeCun et al., 2015), k-nearest neighbours regression (KNR),
ridge regression, and a multiple linear regression for compar-
ison.

Random forest and gradient boosting are tree-based meth-
ods which construct an ensemble of decision trees. Decision
trees partition data into subsets based on conditions at each
leaf node of the tree. Tree depth and complexity can be spec-
ified by the user. Random forest constructs a specified num-
ber of trees and then averages the result of each individual
tree. Different trees are trained on different randomized sub-
samples of the dataset, a method known as bootstrapping.
Gradient boosting methods differ from random forest in that
decision trees are trained sequentially rather than simultane-
ously, with residual error from previous decision trees used to
improve each subsequent model (Friedman, 2001; Breiman,
2001; Marsland, 2011).
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Table 1. Variables considered for use in this study with original spatial (degrees) and temporal resolutions, sources, and abbreviations used
in this paper. LCSC – Climatology and Climate Services Laboratory.

Variable Spatial Temporal Source Abbreviation
resolution resolution

2 m temperature 0.25 Monthly ERA 5 t2m
Potential evaporation 0.25 Monthly ERA 5 pev
Surface thermal radiation downwards 0.25 Monthly ERA 5 longrad
Root zone soil moisture 0.25 Weekly NASA GRACE RZSM
Total precipitation 0.25 Daily CHIRPS precip
Vegetation health index 0.036 Monthly NOAA STAR VHI
SPEI 1 0.50 Monthly LCSC SPEI1
SPEI 2 0.50 Monthly LCSC SPEI2
SPEI 3 0.50 Monthly LCSC SPEI3
SPI 1 1.00 Monthly GPCC SPI1
SPI 2 1.00 Monthly GPCC SPI2
SPI 3 1.00 Monthly GPCC SPI3

Artificial neural networks are layered networks of inter-
connected units which each contains a set of weights.
Weights are optimized against an error term and the train-
ing data using a separate optimization algorithm. Deep neural
networks are those which contain many subsequent process-
ing layers (LeCun et al., 2015). Neural networks are flexible
architectures, with many adaptations being constructed for
different tasks. Here, we compare a fully connected neural
network. Fully connected neural networks are named as such
because each node in the preceding layer is connected to each
node in the subsequent layer.

The k-nearest neighbours regression is a semi-supervised
learning method which uses a user-defined k value to learn
the k-nearest data based on a distance calculation. Most com-
monly this method uses the Euclidean distance metric for
this approach; however, other distance metrics may be used
(Chomboon et al., 2015). Multiple linear regression and ridge
regression are used as linear comparisons to more complex
methods used here to assess the appropriate level of com-
plexity for the model required.

A comparison is also made between each of the above-
described models and a seasonal average model (denoted
SEA AV). The seasonal average model is simply the average
value of the VHI for a particular location and month. The pur-
pose of this model is to provide a low benchmark comparison
to assess model performance relative to that which would be
achieved by simply using the seasonality of the VHI alone.

2.5 Cross-validation and training procedure

We cross-validated models across a large span of years to
provide a general picture of model performance regardless
of evaluation period. Evaluation was split by year to avoid
the influence of spatial autocorrelation on data leakage be-
tween training, validation, and testing splits. Model evalu-
ation metrics were obtained by training 10 separate models

with the same set of hyperparameters each tested using a ran-
domized hold-out test year. Results for each model are then
aggregated to produce metrics across the 10-year aggregation
period. Furthermore, we also evaluated optimal hyperparam-
eter values, the results of which can be found in Appendix A.
To optimize hyperparameters, the data were again split by
year to avoid any shared information between splits; how-
ever, data were also split three times into training, validation,
and testing. For this method, we used a hold-out evaluation
dataset of 5 random years. These years were chosen as 2006,
2011, 2015, 2016, and 2019. The rest of the data are split
between two randomized folds based on year. The best set of
hyperparameters across both folds is used to train each model
before subsequent testing on the evaluation dataset. The deci-
sion was made to train and evaluate on as much data as possi-
ble here with suboptimal parameters to provide the best indi-
cation of general model performance across a wider range of
evaluation years. This allows us to better look into effects of
ENSO on model performance and inter-annual variability re-
gardless of specific hyperparameter optimization. Although
hyperparameter optimization did change the results of indi-
vidual models slightly, the best model was the same across
both training and evaluation procedures. Furthermore, it was
found that the best model results were achieved by simply
training on more data, rather than a specific set of hyperpa-
rameters.

2.6 Model evaluation methods

Model performance is evaluated using complementary mean
absolute error and coefficient of determination metrics (R2).
Coefficient of determination is used to determine the perfor-
mance of the model against a wide degree of variability, with
a high coefficient of determination indicating that the model
captures both extremes at the low and high end of the distri-
bution.

Nat. Hazards Earth Syst. Sci., 25, 1521–1541, 2025 https://doi.org/10.5194/nhess-25-1521-2025



J. W. Gallear et al.: Machine learning for agricultural drought forecasts in Brazil 1527

Table 2. Definitions of classification metrics used to determine
model performance for accurately predicting the onset of drought
impacts on the VHI.

Classification Observed Forecast
value (%) value (%)

True positives (TPs) VHI< 40 VHI< 40
False positives (FPs) VHI> 40 VHI< 40
False negatives (FNs) VHI< 40 VHI> 40
True negatives (TNs) VHI> 40 VHI> 40

2.6.1 Drought onset forecasting evaluation

Furthermore, prediction of the onset of drought impact is
evaluated in Sect. 3.4. Here, we use precision and recall as
metrics for evaluating whether the model correctly predicts
when the VHI decreases below 40 %. The 40 % threshold is
chosen because it is used in many drought monitoring sys-
tems as the critical threshold at which warnings are issued
(Kogan, 1997; Kogan et al., 2013; Gidey et al., 2018). Re-
call and precision are defined by the four classification met-
rics used to determine classification performance: true pos-
itives (TPs), true negatives (TNs), false positives (FPs), and
false negatives (FNs). A true positive is determined when the
observed value of the VHI falls below 40 %, and the model
correctly forecasts a value of the VHI below 40 % for that
month. Conversely, if the observed value of the VHI falls be-
low 40 % but the model forecasts a value above 40 %, this is
a false negative. Likewise, if the model forecasts a value be-
low 40 %, which was not observed, this is classed as a false
positive. Finally, if both the observed and predicted values
fall above the 40 % threshold, a true negative is determined.
Table 2 defines each of the classification values.

Recall and precision are defined using the classification
determined in Table 2. Recall is a measure of the number of
true positives as a ratio of the number of true positives plus
the number of false negatives. Formally, recall is defined as

recall=
TP

TP+FN
. (4)

In this manner, recall can be thought of as the performance
of the model in proportion to the bias towards predicting the
negative class (values above 40 %). Precision is similarly de-
fined as

precision=
TP

TP+FP
. (5)

Precision is therefore defined as the number of true posi-
tives as a ratio of the number of true positives plus the num-
ber of false positives. It can therefore be thought of as the
performance of the model in proportion to the bias towards
predicting the positive class (values below 40 %).

3 Results

The results of this paper aim to present a first look at the
potential of machine learning to produce monthly VHI fore-
casts and the impacts of drought on the VHI across Brazil.
Model performance indicates great benefit can be obtained
from forecasting subseasonal vegetation health 1 month in
advance. Forecasts further in advance, for 2 and 3 months,
may also be achievable but show much greater model uncer-
tainty with methods tested.

3.1 Drivers of VHI variability

Figure 2 shows the correlations between the SPI and the SPEI
with the vegetation health index of the following month.
Longer accumulation periods lead to greater correlations
with the VHI. SPEI values are more strongly correlated with
VHI values in some regions than the SPI. Regions where this
occurs include northern Mato Grosso in central Brazil and
the south. Neither the SPEI nor the SPI has a very strong cor-
relation with next month’s VHI in these regions, but the SPEI
typically has correlations which are less weak.

Other variables included in the modelling process may
also be significant drivers of the VHI. Figure 2 shows the cor-
relations between next month’s VHI and root zone soil mois-
ture (RZSM), precipitation, potential evaporation, downward
longwave radiation, 2 m temperature, and the VHI of the
present month. As expected, the highest correlations are be-
tween the present and subsequent months’ VHI. RZSM has
high correlations in the northeast but very weak correlations
around central Brazil. The 2 m temperature generally has
greater correlations with next month’s VHI than downward
longwave radiation.

The correlations in Fig. 2 were used to inform 1-month
forecasts of the VHI using a variety of machine learning
methods presented in the subsequent section.

3.2 VHI forecasts

The initial selection of models described in Sect. 2.4 is com-
pared here in Fig. 3. The gradient boosting model (GBM)
was able to achieve greater performance across randomized
test years than the other models. For this reason, the GBM
was then chosen for further analysis including testing against
later years. Variable importance is described in Sect. 3.5.
SEA AV denotes a “seasonal average” benchmark, which is
simply a model which predicts each month at each location
as the historical average for the month, for the location to be
predicted. All models outperform this low benchmark. This
allows for the conclusion that all models obtain performance
greater than that which can be inferred entirely from seasonal
variability in the VHI.

The best model from the initial comparison (GBM model)
was taken and further assessed across the spatial domain
(Fig. 4) and for the mode of the Southern Oscillation Index
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Figure 2. Correlation coefficient between the vegetation health in-
dex and input variables used in this study.

(SOI) (Fig. 5). Model performance in terms of R2 is greatest
in the east; some of the weakest correlations are in the west
of the country and in the south and central regions. Figure 4c
shows that generally R2 values are between 0.6 and 0.75 for
the gradient boosting machine learning method across grid
cells. The distribution of mean absolute error values is less
skewed, with most falling between 5 %–6 %.

3.3 Effects of the Southern Oscillation Index

Here, model performance metrics are split into El Niño and
La Niña evaluation periods. Figure 5 shows how spatial
trends in model performance can be affected by ENSO. For
El Niño periods, model R2 significantly reduces for central
Mato Grosso, and there is a broader trend of decreases in
model R2 values across the south. This trend is also shown
for mean absolute error. Generally, La Niña periods are fore-
cast better than El Niño periods.

Figure 5 also shows how the effects of ENSO can lead
to either under- or overprediction of the VHI depending on
the location and ENSO mode. Of note is the overprediction

of the VHI in central Mato Grosso in El Niño periods and
underprediction in the south. Generally, model performance
is less affected by La Niña than El Niño.

3.4 Predicting onset of drought impacts on the VHI

It is also important for models to be able to forecast when
drought impact may reduce the VHI below the alert thresh-
old of 40 %. The metrics described in Sect. 2.6 are used here
to determine the performance of the best model for forecast-
ing if the VHI falls below 40 % in the following month. Typ-
ically, model precision is greater than recall, meaning that
there is a bias towards overprediction of values above 40 %
rather than overprediction of values below 40 %. This is to
be expected, given the distribution of VHI values results in
more values above 40 %.

Figure 6 shows overall recall and precision (Fig. 6a) and
when separated by El Niño (Fig. 6a) and La Niña (Fig. 6b)
weather events. El Niño affects model performance by in-
creasing the range of precision and recall values, increasing
the number of those values at the low end of the distribution.

Figure 6 also shows the spatial pattern of recall and preci-
sion (Fig. 6a and b). Generally, recall is lower than precision,
although there is no clear spatial trend in which regions may
have higher or lower recall or precision. Lowest recall tends
to be in coastal areas.

3.5 Variable importance

Correlations are measured between the strength of correla-
tion between input and output variables and their correlation
with model performance. This is shown for the SPI and the
SPEI in Fig. 7 and for temperature and the VHI in Fig. 8.
Here, we show the relationship between the strength of corre-
lation between input variables and observed VHI and model
performance measured by the coefficient of determination.

Figure 7 shows that model performance is more highly
correlated with longer accumulation periods of the SPI and
the SPEI. Furthermore, the SPEI likely has a greater effect on
model performance than the SPI. Figure 8 indicates that 2 m
temperature may be a stronger variable to use to capture the
effects of temperature on the VHI than other similar but cor-
related variables such as incoming longwave radiation and
potential evaporation.

Spearman rank correlations between input variables are
found in Sect. C. This was determined to show how corre-
lations may affect variable importance and the highest corre-
lating variables with the VHI.

Furthermore, Shapley values were obtained for the gra-
dient boosting method used in this study. Figure 9 displays
Shapley values obtained. Shapley values correspond to the
estimated relative contribution of each variable to model pre-
dictions (Molnar, 2022). Values indicate, similarly to the
above analysis, that the VHI obtained for the previous month
is a strong contributor in the determination of the VHI for the
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Figure 3. VHI forecasting model performance ((a) coefficient of determination, (b) mean absolute error) across a range of initially selected
models. SEA AV refers to the monthly average model.

Figure 4. VHI forecasting model performance for the best model (GBM) across the spatial domain in Brazil, showing the R2 score and
mean absolute error for each grid cell location. Panels (a) and (b) show the spatial distribution of model performance for the two metrics;
panels (c) and (d) show histograms of model performance metrics.
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Figure 5. VHI forecasting model performance against positive and
negative modes of the Southern Oscillation Index: negative SOI is
associated with El Niño, and positive SOI is associated with La Niña
weather events. Metrics are the coefficient of determination (a, b),
mean absolute error (c, d), and mean bias (e, f).

next month. The month variable is likely also highly influen-
tial as it is used as a proxy for seasonality. Other variables
which are highly correlated (such as SPEI2 and SPEI3) may
have lower contributions due to correlations between vari-
ables.

4 Discussion

Model performance varies upon the relationship between soil
moisture, the SPEI, the SPI, and the VHI across Brazil, as
well as the temporal autocorrelation of the VHI. The VHI
in south Brazil (where rainfall is generally higher) is gen-
erally more difficult to forecast. For this reason, forecast-
ing models presented here are most appropriate to be used
in primarily moisture-driven regions (with most useful re-
sults for the northeast). The results presented here are of
great significance for drought monitoring and forecasting
efforts in Brazil and for others who may use studies such
as this to inform other drought monitoring and forecasting
work for other countries and regions. Here, we show that ma-
chine learning is capable of accurately forecasting the spatio-
temporal variability in the VHI across Brazil and can also
determine when VHI values are likely to fall below the 40 %
drought stress threshold. Gradient boosting methods are an
excellent method to use for both these evaluation metrics.

Figure 6. Recall and precision metrics shown both spatially (a, b)
and as box plots (c, d). Panel (d) also shows the effects of ENSO on
recall and precision.

Model performance is affected by El Niño events in the south
and central Mato Grosso. Although machine learning is able
to forecast when the VHI falls below 40 %, typically model
precision is greater than recall. This means that the model
is more biased towards forecasting VHI values above 40 %,
which is as expected given the distribution of VHI values.

4.1 Regional variability in VHI

Vegetation health index variability is greatest in the north-
east semi-arid region of Brazil. In this region, the VHI is
more greatly driven by rainfall and subsequent moisture ef-
fects than any other region in Brazil. This makes the north-
east the most easily forecast region. In the south and Central
West regions (particularly Mato Grosso State), this trend re-
sults in poorer model performance in these regions. Subse-
quently, temperature effects are greater drivers of the VHI in
these regions. This is likely due to the regional effects of lim-
iting factors, which limit the growth of crops and vegetation
and are known to vary spatially with varying climate (Sacks
et al., 2010).

4.2 Spatial heterogeneity and temporal
autocorrelations

Temporal autocorrelations across space indicate high
monthly autocorrelation for the VHI. These temporal auto-
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Figure 7. Pearson correlation coefficient between indices SPEI1–3 and VHI as well as between the SPI (1–3) and the VHI against model
prediction performance measured by the coefficient of determination (R2). A line of best fit is plotted in blue for each panel with the R value
on the bottom right. Each point represents the modelled R2 at a single grid cell with corresponding SPEI–VHI and SPI–VHI relationships.

correlations help to improve the ability to forecast the VHI
on monthly timescales. The VHI temporal autocorrelation is
highest in the northeast. This is a decisive factor contributing
to greater model performance in this region.

4.3 How to build the most useful model for subseasonal
VHI forecasting in Brazil

The results presented here provide key insights into the de-
velopment of machine learning methods to forecast the ef-
fects of drought on vegetation health. Recommendations for
how to build a forecasting model come in the form of two key
factors: machine learning architectures and indices. Accurate
forecasting requires a method of appropriate complexity. The
appropriate level of complexity should strike a balance be-
tween model explanatory power and number of parameters
to constrain. This study clearly indicates that linear meth-
ods such as multiple linear regression lack the explanatory
power to effectively forecast forthcoming drought impacts
and trends in the VHI. Conversely, some methods may be
too complex; in this circumstance, gradient boosting methods

outperformed the artificial neural network. Neural networks
contain a large number of parameters, which ultimately re-
quire more data to be adequately constrained. This can cause
model training to be a far greater challenge.

The choice of climate indices and variables is also a key
question when building a forecasting model. In Brazil, the
wide range of biomes across the country can mean that the
influence of certain indices such as the SPEI and the SPI
may be of greater importance in some regions than in oth-
ers. Particularly, dry areas in the northeast are more affected
by the drought-based indicators SPEI, SPI, and RZSM. Fur-
thermore, although the SPEI may be more influential than
the SPI, it is more important that longer-term indicators of
3 months are used above shorter 1-month accumulation pe-
riods. Of course, using the temporal autocorrelation in the
VHI is a key factor in determining model performance. Re-
gions which have the greatest monthly VHI autocorrelation
also are the most easily forecast. Temperature variables are
more useful for the forecasting of the VHI in south Brazil,
where typically rainfall is higher and drought is less common
in occurrence.

https://doi.org/10.5194/nhess-25-1521-2025 Nat. Hazards Earth Syst. Sci., 25, 1521–1541, 2025



1532 J. W. Gallear et al.: Machine learning for agricultural drought forecasts in Brazil

Figure 8. Pearson correlation coefficient between temperature effects and the VHI against model prediction performance measured by
coefficient of determination (R2) as well as VHI autocorrelation. A line of best fit is plotted in blue for each panel with the R value on the
bottom right. Each point represents the modelled R2 at a single grid cell with the corresponding variable and VHI relationship.

Figure 9. Shapley values obtained for each of the model input vari-
ables.

Here, models were trained for VHI value forecasting, and
then the ability of the best model to determine onset of
drought is found in Sect. 3.4. This resulted in high precision
with slightly lower recall, meaning that model bias is towards

forecasting values of the VHI above the 40 % threshold. For
the forecasting of drought onsets, a more effective method
to train models may be to use a classification model with
altered training data to oversample VHI instances in which
the VHI is below 40 %. There are many methods which can
be used to improve dataset balance and improve recall, such
as ensemble-based methods, over- and undersampling strate-
gies, and synthetic minority oversampling methods (Chawla,
2010). However, in doing this, forecasting of VHI values
would require a separate model.

4.4 Scope of methods analysed

Here, we analyse machine learning methods including arti-
ficial neural networks, gradient boosting and random forest
methods, nearest neighbour methods, and linear regression
methods. Among the methods excluded are convolutional
LSTM models as discussed by Kladny et al. (2024) as well as
other deep learning methods such as an ensemble of tempo-
ral convolutional neural networks (Miller et al., 2023). These
model frameworks were excluded from the methodology fol-
lowing the general principal of Occam’s razor to evaluate
simpler methods first before expanding the scope of the work
to more complex methods with greater numbers of parame-
ters given time constraints. Evaluating such methods in the
region should be a priority for future work building from this
study.

In this study, machine learning methods are trained and
evaluated on both maize and soybean growing areas together.
Results for models trained on maize and soybean growing
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areas separately are presented in Appendix D. This analy-
sis indicated that the differences between the performance of
models trained on maize and soybean growing areas sepa-
rately would not be significant. A likely contributing factor
to this is that there is much overlap between maize and soy-
bean growing areas (see Fig. 1), particularly because maize
is often grown in rotation with soybean (dos Santos Canalli
et al., 2020; Carvalho et al., 2014).

4.5 Comparison with other forecasting studies

Although this is the first study to forecast drought stress us-
ing the VHI across Brazil, this work fits into a broader con-
text of other studies which address drought monitoring with
vegetation indices. A major separation of this work from
many other studies is the timescales involved. To the authors’
knowledge, there were few studies at the time of writing that
forecast the vegetation health index as far in advance as 1
month. One study (Lees et al., 2022) used a variety of neural
networks to forecast the monthly VCI in Kenya and achieved
very strong performance metrics. By contrast, Nay et al.
(2018) forecasted an EVI for 16 d intervals using gradient
boosting methods. Correlations between predictions and ob-
served data varied between around 0.75 and 0.8 for agricul-
tural land in two different regions. Given the longer lag time
for our study, it would be expected that correlations may be
lower (given that autocorrelations may decrease over time).
Some other tools have been applied to forecast vegetation in-
dices in dry climates such as in Tadesse et al. (2014), who
used a statistical method known as VegOut to forecast the
SDNDVI (the NDVI normalized for the historic record). Co-
efficient of determination values varied between 0.72 and 0.9
depending on the month evaluated (between June, July, and
August) for 1-month forecasts for the region tested. Across
studies found in the literature, results indicate that machine
learning methods can be highly useful for forecasting vegeta-
tion health to assess drought stress, even at longer timescales
such as per month (Kladny et al., 2024; Nay et al., 2018;
Tadesse et al., 2014; Lees et al., 2022; Adede et al., 2019;
Hammad and Falchetta, 2022). Such conclusions agree with
the results of this study.

4.6 Future model developments for Brazil drought
monitoring

To expand on the scope of this study, further work should
focus on the application and assessment of machine learn-
ing architectures such as those described in Sect. (4.4). Such
methods have been shown to improve vegetation health fore-
casts in other regions (Kladny et al., 2024; Miller et al., 2023)
and so may also improve results here. Furthermore, improve-
ments could be made to the forecasts of specific months key
for agricultural production. Here, the best model trained can
have variable performance depending on the month of as-
sessment. A greater assessment of sampling methods or the

targeted use of model ensembles may improve the stabil-
ity of model performance for key months. For many regions
November–March of the next year can encompass a typical
growing season (CONAB, 2022). Therefore, these months
are of greater importance.

This work aims to inform future developments in drought
monitoring for Brazilian agriculture at CEMADEN. Fore-
casting the VHI would help to identify areas potentially af-
fected by drought 1 month in the future. Currently, forecast-
ing of next month’s SPI is used to measure the potential im-
pacts of drought, since rainfall anomalies are critical as a haz-
ard. The forecast of the VHI can provide information on po-
tential impacts, since it reflects on the vegetation health. This
information is essential for disaster preparedness and plan-
ning of future actions to support areas affected by drought.
The identification of drought evolution can inform decision
makers in several agencies and levels of government on how
to manage resources destined to alleviate drought impacts on
agricultural activities.

5 Conclusions

This study addresses several questions important for build-
ing an agricultural drought forecasting framework for Brazil.
In summary, the key conclusions of this work are as fol-
lows. Machine learning methods have great potential to be
used to forecast agricultural drought 1 month in advance,
and gradient boosting methods are able to achieve a coef-
ficient of determination of up to ∼ 0.8 in some areas such as
the northeast, making them an especially promising method
to use. This work also shows that for some regions across
Brazil the SPEI may be a more useful indicator than the SPI
alone. For the agricultural drought onset forecasts, models
also performed well, but further work is needed to test differ-
ent methods of classification. ENSO variation had small ef-
fects on model performance, with El Niño effects being more
difficult to predict than La Niña effects.

These findings are of significance for future drought mon-
itoring and forecasting work in Brazil as well as for other re-
gions in which drought monitoring and forecasting systems
using machine learning are being considered or developed.
Specifically, in showing how machine learning methods per-
form across Brazil, this research provides a first benchmark
set of results for agricultural drought forecasts in the coun-
try. This also provides useful information about the spatio-
temporal pattern of model performance. For future research
outside of Brazil, this work provides a case study as to how
machine learning methods perform across a wide area with a
large diversity in climate.

Future work should aim to build upon these results to fur-
ther aid drought monitoring efforts with improvements to
model performance through additional pre-processing tech-
niques and further assessment of machine learning modelling
frameworks.
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Appendix A

Here, we show results from the optimization of certain hyper-
parameters for the models investigated in this work. Hyper-
parameters are global parameters which affect the learning
process rather than the model itself. Hyperparameters can in-
clude the learning rate of a neural network, the number of
neighbours to use in the k-nearest neighbours algorithm, or
the number of decision tree estimators present within a ran-
dom forest model or gradient boosting machine. We under-
took minimal hyperparameter optimization. We use the coef-
ficient of determination to optimize hyperparameters across
cross-validation folds. For gradient boosting and random for-
est models, we optimize the number of estimators which
comprise the model. We found that above a certain thresh-
old value (typically 2–10) the number of estimators which
achieved the best results can vary if repeating optimization.
For the k-nearest neighbours algorithm, the number of neigh-
bours was varied between 5 and 1000, and 500 neighbours
was found as the optimum value. For ridge regression, the
regularization parameter (α) was optimized; however, results
did not improve above those of the default value (1). The
neural network was optimized by varying the number of neu-
rons in each hidden layer and the number of epochs, which
is the number of iterations through the dataset when train-
ing. Through optimization we determined 30 epochs with 25
neurons in each layer. We kept the number of hidden layers
as small as possible (one layer) to avoid overparameteriza-
tion. Model results with these optimized parameters can be
found in Fig. A1.

Figure A1. VHI forecasting model performance across the hold-out evaluation dataset for each of the initially selected models. Results
shown are for optimized hyperparameters.

Some models achieved slightly better performance with
optimization such as KNR. However, more data gener-
ally resulted in better model performance rather than op-
timized hyperparameters. Gradient boosting (GBM) is the
best-performing model regardless of hyperparameter opti-
mization.
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Appendix B

Across months, VHI forecasts show little difference in the
distribution of mean absolute error (Fig. B1). However, coef-
ficient of determination values can differ much more between
months. Figure B1a shows that January, February, Septem-
ber, and October are typically the most difficult months to
predict. Because R2 differs more than mean absolute error,
this indicates that variability is more poorly captured in these
months rather than there being a particular overall bias re-
lating to the mischaracterization of the seasonal cycle of the
VHI.

Further subsequent months after 1 month into the future
were assessed to determine how model performance reduces
for increased lag times. Figure B1 shows how model coeffi-
cient of determination reduces from a median of 0.69 to 0.35
and then to 0.16 when increasing the forecast lag time from
1 to 2 and then to 3 months.

Figure B1. VHI forecasting model performance for the best model summarized as an average for each month, showing the R2 score and
mean absolute error per month (a, b). Secondly, model performance was compared for forecasts 2 and 3 months in advance (c, d).
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Appendix C

Figure C1 shows Spearman rank correlations between each
of the input variables. Highest correlations between input
variables are between SPEI2 and 3 and SPI2 and 3 respec-
tively. Both have a Spearman rank correlation of above 0.8.
Secondly, t2m and longrad (both defined in Table 1) are also
highly correlated (0.79).

A further variable was also included in initial tests (and in
Fig. C1), which was the Southern Oscillation Index (SOI).
The SOI provides an indicator of the mode of the ENSO,
which can show whether El Niño or La Niña conditions are
likely to occur. The Southern Oscillation Index was however
shown to provide little information gain and adversely af-
fected model performance in some instances. Therefore, this
index was not included in the model results presented in this
paper.

Figure C1. Spearman rank correlation between proposed input variables and the target variable (VHI), where lag-1 denotes a lag time of
1 month relative to the time step of the VHI.
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Appendix D

In this study maize and soybean growing areas are combined
to create a dataset used for training and testing the machine
learning models. For contrast, Fig. D1 shows a compari-
son between model performance metrics of a random forest
model if the model is trained using maize and soybean grow-
ing areas separately.

For the one model tested, there is little difference between
training separately on maize and soybean harvested areas.
This is likely because there is considerable overlap between
the locations in which either crop is grown as they can often
be grown in rotation (dos Santos Canalli et al., 2020; Car-
valho et al., 2014).

Figure D1. Mean absolute error (MAE) and coefficient of determi-
nation (R2) of a random forest model trained only using grid cells
high in maize growing area and soybean growing area separately.

Appendix E

In this study, SPEI and SPI values are used for 1-, 2-, and 3-
month accumulation periods. Periods longer than 3 months
are not used for several reasons. Firstly, maize and soybean
growth periods typically do not exceed 3 months, so us-
ing longer accumulation periods would not be indicative of
crop growth (CONAB, 2022). Secondly, studies in the litera-
ture have shown that SPI1 to SPI3 better reflect agricultural
drought development than longer accumulation periods such
as SPI 6 and 12 (Łabędzki, 2007; Mohammed et al., 2022;
Tanguy et al., 2023; Geng et al., 2016). Thirdly, a correlation
analysis was performed between SPEI indicators and target
VHI values for the following month shown in Fig. E1. This
analysis shows that SPEI2 and 3 are more strongly correlated
with the VHI than 6 and 12. For all of these reasons it was
deemed that adding longer accumulation periods above the
SPEI and SPI3 would not make a significant difference in
forecast model performance.

Figure E1. Correlation coefficient between SPEI indicators and ob-
served VHI of the following month. Each correlation is calculated
per grid cell (across 216 months) with box plots forming the spatial
distribution of all correlations.
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