Articles | Volume 25, issue 4
https://doi.org/10.5194/nhess-25-1425-2025
https://doi.org/10.5194/nhess-25-1425-2025
Brief communication
 | 
14 Apr 2025
Brief communication |  | 14 Apr 2025

Brief communication: Visualizing uncertainties in landslide susceptibility modelling using bivariate mapping

Matthias Schlögl, Anita Graser, Raphael Spiekermann, Jasmin Lampert, and Stefan Steger

Related authors

Overcoming barriers to reproducibility in geoscientific data analysis: Challenges and practical implementation strategies
Matthias Schlögl, Laura Waltersdorfer, Peter Regner, Andrea Siposova, and Alexander Brenning
EGUsphere, https://doi.org/10.5194/egusphere-2025-5210,https://doi.org/10.5194/egusphere-2025-5210, 2025
Short summary
Impact-based early warning of mass movements – A dynamic spatial modelling approach for the Alpine region
Stefan Steger, Raphael Spiekermann, Mateo Moreno, Sebastian Lehner, Katharina Enigl, Alice Crespi, and Matthias Schlögl
EGUsphere, https://doi.org/10.5194/egusphere-2025-4940,https://doi.org/10.5194/egusphere-2025-4940, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary

Cited articles

Achu, A., Aju, C., Di Napoli, M., Prakash, P., Gopinath, G., Shaji, E., and Chandra, V.: Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis, Geosci. Front., 14, 101657, https://doi.org/10.1016/j.gsf.2023.101657, 2023. a
Brenning, A., Schwinn, M., Ruiz-Páez, A. P., and Muenchow, J.: Brenning, A., Schwinn, M., Ruiz-Páez, A. P., and Muenchow, J.: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province, Nat. Hazards Earth Syst. Sci., 15, 45–57, https://doi.org/10.5194/nhess-15-45-2015, 2015. a
Chung, C.-J. F. and Fabbri, A. G.: Validation of Spatial Prediction Models for Landslide Hazard Mapping, Nat. Hazards, 30, 451–472, https://doi.org/10.1023/b:nhaz.0000007172.62651.2b, 2003. a
Conoscenti, C., Rotigliano, E., Cama, M., Caraballo-Arias, N. A., Lombardo, L., and Agnesi, V.: Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy, Geomorphology, 261, 222–235, https://doi.org/10.1016/j.geomorph.2016.03.006, 2016. a
Costanzo, D., Rotigliano, E., Irigaray, C., Jiménez-Perálvarez, J. D., and Chacón, J.: Costanzo, D., Rotigliano, E., Irigaray, C., Jiménez-Perálvarez, J. D., and Chacón, J.: Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain), Nat. Hazards Earth Syst. Sci., 12, 327–340, https://doi.org/10.5194/nhess-12-327-2012, 2012. a
Download
Short summary
Communicating uncertainties is a crucial yet challenging aspect of spatial modelling – especially in applied research, where results inform decisions. In disaster risk reduction, susceptibility maps for natural hazards guide planning and risk assessment, yet their uncertainties are often overlooked. We present a new type of landslide susceptibility map that visualizes both susceptibility and associated uncertainty alongside guidelines for creating such maps using free and open-source software.
Share
Altmetrics
Final-revised paper
Preprint