Articles | Volume 25, issue 4
https://doi.org/10.5194/nhess-25-1425-2025
https://doi.org/10.5194/nhess-25-1425-2025
Brief communication
 | 
14 Apr 2025
Brief communication |  | 14 Apr 2025

Brief communication: Visualizing uncertainties in landslide susceptibility modelling using bivariate mapping

Matthias Schlögl, Anita Graser, Raphael Spiekermann, Jasmin Lampert, and Stefan Steger

Related authors

On the nexus between landslide susceptibility and transport infrastructure – an agent-based approach
Matthias Schlögl, Gerald Richter, Michael Avian, Thomas Thaler, Gerhard Heiss, Gernot Lenz, and Sven Fuchs
Nat. Hazards Earth Syst. Sci., 19, 201–219, https://doi.org/10.5194/nhess-19-201-2019,https://doi.org/10.5194/nhess-19-201-2019, 2019
Short summary
Potential future exposure of European land transport infrastructure to rainfall-induced landslides throughout the 21st century
Matthias Schlögl and Christoph Matulla
Nat. Hazards Earth Syst. Sci., 18, 1121–1132, https://doi.org/10.5194/nhess-18-1121-2018,https://doi.org/10.5194/nhess-18-1121-2018, 2018
Short summary
Extreme weather exposure identification for road networks – a comparative assessment of statistical methods
Matthias Schlögl and Gregor Laaha
Nat. Hazards Earth Syst. Sci., 17, 515–531, https://doi.org/10.5194/nhess-17-515-2017,https://doi.org/10.5194/nhess-17-515-2017, 2017
Short summary

Related subject area

Landslides and Debris Flows Hazards
Brief communication: Weak correlation between building damage and loss of life from landslides
Maximillian Van Wyk de Vries, Alexandre Dunant, Amy L. Johnson, Erin L. Harvey, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Simon J. Dadson, Alexander L. Densmore, Tek Bahadur Dong, Mark E. Kincey, Katie Oven, Anuradha Puri, and Nick J. Rosser
Nat. Hazards Earth Syst. Sci., 25, 1937–1942, https://doi.org/10.5194/nhess-25-1937-2025,https://doi.org/10.5194/nhess-25-1937-2025, 2025
Short summary
Comparative analysis of μ(I) and Voellmy-type grain flow rheologies in geophysical mass flows: insights from theoretical and real case studies
Yu Zhuang, Brian W. McArdell, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 25, 1901–1912, https://doi.org/10.5194/nhess-25-1901-2025,https://doi.org/10.5194/nhess-25-1901-2025, 2025
Short summary
Exploring implications of input parameter uncertainties in glacial lake outburst flood (GLOF) modelling results using the modelling code r.avaflow
Sonam Rinzin, Stuart Dunning, Rachel Joanne Carr, Ashim Sattar, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 25, 1841–1864, https://doi.org/10.5194/nhess-25-1841-2025,https://doi.org/10.5194/nhess-25-1841-2025, 2025
Short summary
From rockfall source area identification to susceptibility zonation: a proposed workflow tested on El Hierro (Canary Islands, Spain)
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025,https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Constraining landslide frequency across the United States to inform county-level risk reduction
Lisa V. Luna, Jacob B. Woodard, Janice L. Bytheway, Gina M. Belair, and Benjamin B. Mirus
EGUsphere, https://doi.org/10.5194/egusphere-2025-947,https://doi.org/10.5194/egusphere-2025-947, 2025
Short summary

Cited articles

Achu, A., Aju, C., Di Napoli, M., Prakash, P., Gopinath, G., Shaji, E., and Chandra, V.: Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis, Geosci. Front., 14, 101657, https://doi.org/10.1016/j.gsf.2023.101657, 2023. a
Brenning, A., Schwinn, M., Ruiz-Páez, A. P., and Muenchow, J.: Brenning, A., Schwinn, M., Ruiz-Páez, A. P., and Muenchow, J.: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province, Nat. Hazards Earth Syst. Sci., 15, 45–57, https://doi.org/10.5194/nhess-15-45-2015, 2015. a
Chung, C.-J. F. and Fabbri, A. G.: Validation of Spatial Prediction Models for Landslide Hazard Mapping, Nat. Hazards, 30, 451–472, https://doi.org/10.1023/b:nhaz.0000007172.62651.2b, 2003. a
Conoscenti, C., Rotigliano, E., Cama, M., Caraballo-Arias, N. A., Lombardo, L., and Agnesi, V.: Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy, Geomorphology, 261, 222–235, https://doi.org/10.1016/j.geomorph.2016.03.006, 2016. a
Costanzo, D., Rotigliano, E., Irigaray, C., Jiménez-Perálvarez, J. D., and Chacón, J.: Costanzo, D., Rotigliano, E., Irigaray, C., Jiménez-Perálvarez, J. D., and Chacón, J.: Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain), Nat. Hazards Earth Syst. Sci., 12, 327–340, https://doi.org/10.5194/nhess-12-327-2012, 2012. a
Download
Short summary
Communicating uncertainties is a crucial yet challenging aspect of spatial modelling – especially in applied research, where results inform decisions. In disaster risk reduction, susceptibility maps for natural hazards guide planning and risk assessment, yet their uncertainties are often overlooked. We present a new type of landslide susceptibility map that visualizes both susceptibility and associated uncertainty alongside guidelines for creating such maps using free and open-source software.
Share
Altmetrics
Final-revised paper
Preprint