Articles | Volume 25, issue 4
https://doi.org/10.5194/nhess-25-1425-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-1425-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Visualizing uncertainties in landslide susceptibility modelling using bivariate mapping
Matthias Schlögl
CORRESPONDING AUTHOR
Department of Landscape, Spatial and Infrastructure Sciences, University of Natural Resources and Life Sciences, Peter-Jordan Straße 82, 1190 Vienna, Austria
Department for Climate Impact Research, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Anita Graser
Center for Digital Safety & Security, Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
Raphael Spiekermann
RiskLab, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Jasmin Lampert
Center for Digital Safety & Security, Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
Stefan Steger
RiskLab, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Related authors
No articles found.
Jess Delves, Kathrin Renner, Piero Campalani, Jesica Piñón, Stefan Schneiderbauer, Stefan Steger, Mateo Moreno, Maria Belen Benito Oterino, Eduardo Perez, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2024-3445, https://doi.org/10.5194/egusphere-2024-3445, 2025
Short summary
Short summary
This scientific paper presents a multi-hazard risk assessment for Burundi, focusing on flooding, torrential rains, landslides, earthquakes, and strong winds. The study identifies key risk hotspots with estimated economic losses of 92 million USD (2.5 % of GDP). Climate change projections indicate increased precipitation. The paper highlights data limitations and stresses the need for improved hazard models and the consideration of compounding risks in future assessments.
Jose Antonio Lorencio Abril, Anita Graser, Axel Weißenfeld, and Anahid Wachsenegger
Abstr. Int. Cartogr. Assoc., 7, 95, https://doi.org/10.5194/ica-abs-7-95-2024, https://doi.org/10.5194/ica-abs-7-95-2024, 2024
Chiara Crippa, Stefan Steger, Giovanni Cuozzo, Francesca Bearzot, Volkmar Mair, and Claudia Notarnicola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1511, https://doi.org/10.5194/egusphere-2024-1511, 2024
Short summary
Short summary
Our study, focused on South Tyrol (NE Italy), develops an updated and comprehensive activity classification system for all rock glaciers in the current regional inventory. Using multisource products, we integrate climatic, morphological and DInSAR data in replicable routines and multivariate statistical methods producing a comprehensive classification based on the updated RGIK 2023 guidelines. Results leave only 3.5% of the features non-classified respect to the 13–18.5% of the previous studies.
Meilin Shi, Kitty Currier, Zilong Liu, Krzysztof Janowicz, Nina Wiedemann, Judith Verstegen, Grant McKenzie, Anita Graser, Rui Zhu, and Gengchen Mai
AGILE GIScience Ser., 4, 42, https://doi.org/10.5194/agile-giss-4-42-2023, https://doi.org/10.5194/agile-giss-4-42-2023, 2023
Héctor Ochoa-Ortiz, Georg Gartner, and Anita Graser
Abstr. Int. Cartogr. Assoc., 5, 92, https://doi.org/10.5194/ica-abs-5-92-2022, https://doi.org/10.5194/ica-abs-5-92-2022, 2022
Cited articles
Achu, A., Aju, C., Di Napoli, M., Prakash, P., Gopinath, G., Shaji, E., and Chandra, V.: Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis, Geosci. Front., 14, 101657, https://doi.org/10.1016/j.gsf.2023.101657, 2023. a
Brenning, A., Schwinn, M., Ruiz-Páez, A. P., and Muenchow, J.: Brenning, A., Schwinn, M., Ruiz-Páez, A. P., and Muenchow, J.: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province, Nat. Hazards Earth Syst. Sci., 15, 45–57, https://doi.org/10.5194/nhess-15-45-2015, 2015. a
Chung, C.-J. F. and Fabbri, A. G.: Validation of Spatial Prediction Models for Landslide Hazard Mapping, Nat. Hazards, 30, 451–472, https://doi.org/10.1023/b:nhaz.0000007172.62651.2b, 2003. a
Conoscenti, C., Rotigliano, E., Cama, M., Caraballo-Arias, N. A., Lombardo, L., and Agnesi, V.: Exploring the effect of absence selection on landslide susceptibility models: A case study in Sicily, Italy, Geomorphology, 261, 222–235, https://doi.org/10.1016/j.geomorph.2016.03.006, 2016. a
Costanzo, D., Rotigliano, E., Irigaray, C., Jiménez-Perálvarez, J. D., and Chacón, J.: Costanzo, D., Rotigliano, E., Irigaray, C., Jiménez-Perálvarez, J. D., and Chacón, J.: Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain), Nat. Hazards Earth Syst. Sci., 12, 327–340, https://doi.org/10.5194/nhess-12-327-2012, 2012. a
Dai, F., Lee, C., and Ngai, Y.: Landslide risk assessment and management: an overview, Eng. Geol., 64, 65–87, https://doi.org/10.1016/s0013-7952(01)00093-x, 2002. a
Davis, T. J. and Keller, C.: Modelling and visualizing multiple spatial uncertainties, Comput. Geosci., 23, 397–408, https://doi.org/10.1016/s0098-3004(97)00012-5, 1997. a
De Cola, L.: Spatial Forecasting of Disease Risk and Uncertainty, Cartogr. Geogr. Inf. Sc., 29, 363–380, https://doi.org/10.1559/152304002782008413, 2002. a
Dunnington, D., Thorne, B., and Hernangómez, D.: ggspatial: Spatial Data Framework for ggplot2, CRAN, https://doi.org/10.32614/CRAN.package.ggspatial, R package version 1.1.9, 2023. a
Elliot, A. J. and Maier, M. A.: Color-in-Context Theory, in: Advances in Experimental Social Psychology, edited by: Devine, P. and Plant, A., Elsevier, https://doi.org/10.1016/b978-0-12-394286-9.00002-0, 61–125 pp., 2012. a
Fischhoff, B. and Davis, A. L.: Communicating scientific uncertainty, P. Natl. Acad. Sci. USA, 111, 13664–13671, https://doi.org/10.1073/pnas.1317504111, 2014. a
Fisher, W. D.: On Grouping for Maximum Homogeneity, J. Am. Stat. Assoc., 53, 789–798, https://doi.org/10.1080/01621459.1958.10501479, 1958. a
Gaidzik, K. and Ramírez-Herrera, M. T.: The importance of input data on landslide susceptibility mapping, Sci. Rep.-UK, 11, 19334, https://doi.org/10.1038/s41598-021-98830-y, 2021. a
Grossenbacher, T. and Zehr, A.: Bivariate maps with ggplot2 and sf, Tutorials, https://timogrossenbacher.ch/bivariate-maps-with-ggplot2-and-sf (last access: 10 April 2025), 2019. a
Gustafson, A. and Rice, R. E.: A review of the effects of uncertainty in public science communication, Public Underst. Sci., 29, 614–633, https://doi.org/10.1177/0963662520942122, 2020. a
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M.: Estimating the quality of landslide susceptibility models, Geomorphology, 81, 166–184, https://doi.org/10.1016/j.geomorph.2006.04.007, 2006. a, b
Heckmann, T., Gegg, K., Gegg, A., and Becht, M.: Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows, Nat. Hazards Earth Syst. Sci., 14, 259–278, https://doi.org/10.5194/nhess-14-259-2014, 2014. a
Hong, H., Miao, Y., Liu, J., and Zhu, A.-X.: Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping, CATENA, 176, 45–64, https://doi.org/10.1016/j.catena.2018.12.035, 2019. a
Huang, F., Yan, J., Fan, X., Yao, C., Huang, J., Chen, W., and Hong, H.: Uncertainty pattern in landslide susceptibility prediction modelling: Effects of different landslide boundaries and spatial shape expressions, Geosci. Front., 13, 101317, https://doi.org/10.1016/j.gsf.2021.101317, 2022. a
Huang, F., Teng, Z., Guo, Z., Catani, F., and Huang, J.: Uncertainties of landslide susceptibility prediction: Influences of different spatial resolutions, machine learning models and proportions of training and testing dataset, Rock Mechanics Bulletin, 2, 100028, https://doi.org/10.1016/j.rockmb.2023.100028, 2023. a
Hussin, H. Y., Zumpano, V., Reichenbach, P., Sterlacchini, S., Micu, M., van Westen, C., and Bălteanu, D.: Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model, Geomorphology, 253, 508–523, https://doi.org/10.1016/j.geomorph.2015.10.030, 2016. a
Jenks, G. F. and Caspall, F. C.: Error on Choroplethic Maps: Definition, Measurement, Reduction, Ann. Assoc. Am. Geogr., 61, 217–244, https://www.jstor.org/stable/2562442 (last access: 10 April 2025), 1971. a
Jiang, B.: Head/Tail Breaks: A New Classification Scheme for Data with a Heavy-Tailed Distribution, Prof. Geogr., 65, 482–494, https://doi.org/10.1080/00330124.2012.700499, 2013. a
Kawai, C., Zhang, Y., Lukács, G., Chu, W., Zheng, C., Gao, C., Gozli, D., Wang, Y., and Ansorge, U.: The good the bad and the red: implicit color-valence associations across cultures, Psychological Research, 87, 704–724, https://doi.org/10.1007/s00426-022-01697-5, 2022. a
Kinkeldey, C., MacEachren, A. M., and Schiewe, J.: How to Assess Visual Communication of Uncertainty? A Systematic Review of Geospatial Uncertainty Visualisation User Studies, Cartogr. J., 51, 372–386, https://doi.org/10.1179/1743277414y.0000000099, 2014. a
Knevels, R., Petschko, H., Proske, H., Leopold, P., Mishra, A. N., Maraun, D., and Brenning, A.: Assessing uncertainties in landslide susceptibility predictions in a changing environment (Styrian Basin, Austria), Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023, 2023. a
Lima, P., Steger, S., and Glade, T.: Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria, Landslides, 18, 3531–3546, https://doi.org/10.1007/s10346-021-01693-7, 2021. a
Lima, P., Steger, S., Glade, T., and Mergili, M.: Conventional data-driven landslide susceptibility models may only tell us half of the story: Potential underestimation of landslide impact areas depending on the modeling design, Geomorphology, 430, 108638, https://doi.org/10.1016/j.geomorph.2023.108638, 2023. a
Loche, M., Alvioli, M., Marchesini, I., Bakka, H., and Lombardo, L.: Landslide susceptibility maps of Italy: Lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory, Earth-Sci. Rev., 232, 104125, https://doi.org/10.1016/j.earscirev.2022.104125, 2022. a
Löhr, K., Weinhardt, M., and Sieber, S.: The “World Café” as a Participatory Method for Collecting Qualitative Data, Int. J. Qual. Meth., 19, https://doi.org/10.1177/1609406920916976, 2020. a
Lombardo, L., Cama, M., Maerker, M., and Rotigliano, E.: A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster, Nat. Hazards, 74, 1951–1989, https://doi.org/10.1007/s11069-014-1285-2, 2014. a
Lombardo, L., Opitz, T., Ardizzone, F., Guzzetti, F., and Huser, R.: Space-time landslide predictive modelling, Earth-Sci. Rev., 209, 103318, https://doi.org/10.1016/j.earscirev.2020.103318, 2020. a
Lovelace, R., Nowosad, J., and Muenchow, J.: Geocomputation with R, Chapman and Hall/CRC, https://doi.org/10.1201/9780203730058, 2019. a
MacEachren, A. M., Robinson, A., Hopper, S., Gardner, S., Murray, R., Gahegan, M., and Hetzler, E.: Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know, Cartogr. Geogr. Inf. Sc., 32, 139–160, https://doi.org/10.1559/1523040054738936, 2005. a
Moreno, M., Steger, S., Tanyas, H., and Lombardo, L.: Modeling the area of co-seismic landslides via data-driven models: The Kaikōura example, Eng. Geol., 320, 107121, https://doi.org/10.1016/j.enggeo.2023.107121, 2023. a
Morgan-Wall, T.: rayshader: Create Maps and Visualize Data in 2D and 3D, CRAN, https://doi.org/10.32614/CRAN.package.rayshader, R package version 0.37.3, 2024. a
Nelson, E. S.: Using Selective Attention Theory to Design Bivariate Point Symbols, Cartographic Perspectives, 32, 6–28, https://doi.org/10.14714/cp32.625, 1999. a
Nowosad, J.: How to Choose a Bivariate Color Palette?, Thinking in spatial patterns, https://jakubnowosad.com/posts/2020-08-25-cbc-bp2 (last access: 10 April 2025), 2020. a
Oreskes, N., Shrader-Frechette, K., and Belitz, K.: Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences, Science, 263, 641–646, https://doi.org/10.1126/science.263.5147.641, 1994. a
Pebesma, E.: Simple Features for R: Standardized Support for Spatial Vector Data, R J., 10, 439, https://doi.org/10.32614/rj-2018-009, 2018. a, b
Pebesma, E. and Bivand, R.: Spatial Data Science: With Applications in R, Chapman and Hall/CRC, https://doi.org/10.1201/9780429459016, 2023. a, b
Pebesma, E., Bivand, R., Racine, E., Sumner, M., Cook, I., Keitt, T., Lovelace, R., Wickham, H., Ooms, J., Müller, K., Pedersen, T. L., Baston, D., and Dunnington, D.: sf: Simple Features for R, CRAN, https://doi.org/10.32614/CRAN.package.sf, R package version 1.0-16, 2024a. a
Pebesma, E., Sumner, M., Racine, E., Fantini, A., Blodgett, D., and Dyba, K.: stars: Spatiotemporal Arrays, Raster and Vector Data Cubes, CRAN, https://doi.org/10.32614/CRAN.package.stars, R package version 0.6-6, 2024b. a
Pedersen, T. L.: patchwork: The Composer of Plots, CRAN, https://doi.org/10.32614/CRAN.package.patchwork, R package version 1.2.0, 2024. a
Peng, L., Niu, R., Huang, B., Wu, X., Zhao, Y., and Ye, R.: Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China, Geomorphology, 204, 287–301, https://doi.org/10.1016/j.geomorph.2013.08.013, 2014. a
Petschko, H., Brenning, A., Bell, R., Goetz, J., and Glade, T.: Assessing the quality of landslide susceptibility maps – case study Lower Austria, Nat. Hazards Earth Syst. Sci., 14, 95–118, https://doi.org/10.5194/nhess-14-95-2014, 2014. a, b, c
Pourghasemi, H. R., Kornejady, A., Kerle, N., and Shabani, F.: Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping, CATENA, 187, 104364, https://doi.org/10.1016/j.catena.2019.104364, 2020. a
Prener, C., Grossenbacher, T., and Zehr, A.: biscale: Tools and Palettes for Bivariate Thematic Mapping, CRAN, https://doi.org/10.32614/CRAN.package.biscale, R package version 1.0.0, 2022. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 10 April 2025), 2024. a
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A review of statistically-based landslide susceptibility models, Earth-Sci. Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018. a, b
Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A. C., and Peruccacci, S.: Optimal landslide susceptibility zonation based on multiple forecasts, Geomorphology, 114, 129–142, https://doi.org/10.1016/j.geomorph.2009.06.020, 2010. a, b
Schlögl, M.: Landslide Susceptibility Modelling Carinthia, GitLab [code], https://gitlab.com/Rexthor/lsm-carinthia (last access: 10 April 2025), 2025. a
Schlögl, M. and Graser, A.: Supplementary code and data to “Communicating uncertainties in landslide susceptibility modeling using bivariate mapping”, Version v1.0, Zenodo [code/data set], https://doi.org/10.5281/zenodo.15189349, 2025. a
Schlögl, M., Richter, G., Avian, M., Thaler, T., Heiss, G., Lenz, G., and Fuchs, S.: On the nexus between landslide susceptibility and transport infrastructure – an agent-based approach, Nat. Hazards Earth Syst. Sci., 19, 201–219, https://doi.org/10.5194/nhess-19-201-2019, 2019. a
Schlögl, M., Spiekermann, R., and Steger, S.: Towards a holistic assessment of landslide susceptibility models: insights from the Central Eastern Alps, Environ. Earth Sci., 84, 113, https://doi.org/10.1007/s12665-024-12041-y, 2025. a, b
Schloss, K. B., Gramazio, C. C., Silverman, A. T., Parker, M. L., and Wang, A. S.: Mapping Color to Meaning in Colormap Data Visualizations, IEEE T. Vis. Comput Gr., 25, 810–819, https://doi.org/10.1109/tvcg.2018.2865147, 2019. a
Schneider, S.: Communicating Uncertainty: A Challenge for Science Communication, in: Communicating Climate-Change and Natural Hazard Risk and Cultivating Resilience. Case Studies for a Multi-disciplinary Approach, edited by: Drake, J. L., Kontar, Y. Y., Eichelberger, J. C., Rupp, T. S., and Taylor, K. M., Springer International Publishing, 267–278, https://doi.org/10.1007/978-3-319-20161-0_17, 2016. a
Seipel, S. and Lim, N. J.: Color map design for visualization in flood risk assessment, Int. J. Geogr. Inf. Sci., 31, 2286–2309, https://doi.org/10.1080/13658816.2017.1349318, 2017. a
Slocum, T. A., McMaster, R. B., Kessler, F. C., and Howard, H.: Thematic Cartography and Geovisualization, CRC Press, https://doi.org/10.1201/9781003150527, 2022. a
Speich, M. J., Bernhard, L., Teuling, A. J., and Zappa, M.: Application of bivariate mapping for hydrological classification and analysis of temporal change and scale effects in Switzerland, J. Hydrol., 523, 804–821, https://doi.org/10.1016/j.jhydrol.2015.01.086, 2015. a
Spiekermann, R. I., van Zadelhoff, F., Schindler, J., Smith, H., Phillips, C., and Schwarz, M.: Comparing physical and statistical landslide susceptibility models at the scale of individual trees, Geomorphology, 440, 108870, https://doi.org/10.1016/j.geomorph.2023.108870, 2023. a, b, c, d
Steger, S., Brenning, A., Bell, R., and Glade, T.: The propagation of inventory-based positional errors into statistical landslide susceptibility models, Nat. Hazards Earth Syst. Sci., 16, 2729–2745, https://doi.org/10.5194/nhess-16-2729-2016, 2016a. a, b, c
Steger, S., Brenning, A., Bell, R., Petschko, H., and Glade, T.: Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps, Geomorphology, 262, 8–23, https://doi.org/10.1016/j.geomorph.2016.03.015, 2016b. a, b
Steger, S., Mair, V., Kofler, C., Pittore, M., Zebisch, M., and Schneiderbauer, S.: Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling – Benefits of exploring landslide data collection effects, Sci. Total Environ., 776, 145935, https://doi.org/10.1016/j.scitotenv.2021.145935, 2021. a
Steger, S., Moreno, M., Crespi, A., Luigi Gariano, S., Teresa Brunetti, M., Melillo, M., Peruccacci, S., Marra, F., de Vugt, L., Zieher, T., Rutzinger, M., Mair, V., and Pittore, M.: Adopting the margin of stability for space–time landslide prediction – A data-driven approach for generating spatial dynamic thresholds, Geosci. Front., 15, 101822, https://doi.org/10.1016/j.gsf.2024.101822, 2024. a
Stevens, J.: Bivariate Choropleth Maps: A How-to Guide, Blog, https://www.joshuastevens.net/cartography/make-a-bivariate-choropleth-map (last access: 10 April 2025), 2015. a
Teuling, A. J., Stöckli, R., and Seneviratne, S. I.: Bivariate colour maps for visualizing climate data, Int. J. Climatol., 31, 1408–1412, https://doi.org/10.1002/joc.2153, 2011. a
Trumbo, B. E.: A Theory for Coloring Bivariate Statistical Maps, Am. Stat., 35, 220–226, https://doi.org/10.2307/2683294, 1981. a
Twomlow, A., Grainger, S., Cieslik, K., Paul, J. D., and Buytaert, W.: A user-centred design framework for disaster risk visualisation, Int. J. Disast Risk Re., 77, 103067, https://doi.org/10.1016/j.ijdrr.2022.103067, 2022. a
Weigold, M. F.: Communicating Science: A Review of the Literature, Science Commun., 23, 164–193, https://doi.org/10.1177/1075547001023002005, 2001. a
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer New York, https://doi.org/10.1007/978-0-387-98141-3, 2016. a
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., Dunnington, D., van den Brand, T., and Posit, PBC: ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics, CRAN, https://doi.org/10.32614/CRAN.package.ggplot2, R package version 3.5.1, 2024. a
Wilke, C. O.: cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2', CRAN, https://doi.org/10.32614/CRAN.package.cowplot, R package version 1.1.3, 2024. a
Wilkinson, L.: The Grammar of Graphics, Statistics and Computing, Springer, https://doi.org/10.1007/0-387-28695-0, 2005. a
Wimberly, M. C.: Geographic Data Science with R: Visualizing and Analyzing Environmental Change, Chapman and Hall/CRC, https://doi.org/10.1201/9781003326199, 2023. a
Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., Stauffer, R., and Wilke, C. O.: colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes, J. Stat. Softw., 96, 1–49, https://doi.org/10.18637/jss.v096.i01, 2020. a
Short summary
Communicating uncertainties is a crucial yet challenging aspect of spatial modelling – especially in applied research, where results inform decisions. In disaster risk reduction, susceptibility maps for natural hazards guide planning and risk assessment, yet their uncertainties are often overlooked. We present a new type of landslide susceptibility map that visualizes both susceptibility and associated uncertainty alongside guidelines for creating such maps using free and open-source software.
Communicating uncertainties is a crucial yet challenging aspect of spatial modelling –...
Altmetrics
Final-revised paper
Preprint