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Abstract. Effectively communicating uncertainties inherent
to statistical models is a challenging yet crucial aspect of the
modelling process. This is particularly important in applied
research, where output is used and interpreted by scientists
and decision-makers alike. In disaster risk reduction, suscep-
tibility maps for natural hazards are vital for spatial plan-
ning and risk assessment. We present a novel type of land-
slide susceptibility map that jointly visualizes the estimated
susceptibility and the corresponding prediction uncertainty,
using an example from a mountainous region in Carinthia,
Austria. We also provide implementation guidelines to cre-
ate such maps using popular free and open-source software
packages.

1 Introduction

In the context of disaster risk reduction, landslide risk as-
sessment plays a pivotal role in identifying, assessing, un-
derstanding, managing, and mitigating the potential impacts
of landslides on human lives, infrastructure, and the environ-
ment (Schlogl et al., 2019; Dai et al., 2002). Landslide sus-
ceptibility modelling comprises a set of computational ap-
proaches tailored towards the identification of areas exhibit-
ing an increased likelihood of landslide occurrence (Guzzetti
et al., 2006). In contrast to deterministic physical slope sta-
bility modelling, empirical statistical landslide susceptibil-
ity modelling usually employs methods of statistical learn-
ing applied in the context of a binary classification problem

(Spiekermann et al., 2023). Statistically based landslide sus-
ceptibility models use documented landslides from invento-
ries as target variables (training labels) and a number of pre-
disposing factors such as terrain conditions, lithology, or land
cover as independent variables. Having completed the model
tuning, training, and prediction process, the estimated class
probability of the positive class is referred to as landslide sus-
ceptibility (Reichenbach et al., 2018). Thus, areas with high
probabilities exhibit similar characteristics to landslide loca-
tions in the past and are therefore assumed to be more sus-
ceptible to slope instability during future triggering events.

Despite the generally acknowledged utility of landslide
susceptibility models in certain contexts, their impact is con-
tingent on the input data quality (Loche et al., 2022; Lima
et al., 2021; Gaidzik and Ramirez-Herrera, 2021; Steger
et al., 2016a) and geomorphic plausibility of the results (Ste-
ger et al., 2021). Geomorphic plausibility evaluation aims to
assess whether a landslide susceptibility map aligns with fun-
damental process knowledge or instead reflects errors stem-
ming from input data or the modelling approach, as detailed
in Steger et al. (2016b). On the other hand, overall usabil-
ity of maps and interpretability of the underlying models
are other aspects influencing the practical applicability. Thus,
communicating complex scientific findings effectively is cru-
cial for not only scientific advancement but also decision-
making in policy and practice (Weigold, 2001).

In this context, a particularly crucial aspect of science
communication is the uncertainty associated with scientific
methods and findings (Schneider, 2016). Yet uncertainty
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evaluation is often underrated despite having potentially far-
reaching implications for decision-makers needing to inter-
pret the information on landslide susceptibility. Uncertainty
is inherent to science, as it describes the quality and reliabil-
ity of observations and models and, consequently, is also rel-
evant to science communication (Gustafson and Rice, 2020).
Effectively conveying uncertainty is essential for upholding
trust in research and supporting successful user uptake of
findings (Fischhoff and Davis, 2014). This is particularly the
case in the context of numerical modelling of natural sys-
tems, where verification and validation is impossible and the
primary value of models is heuristic (Oreskes et al., 1994).

In the area of landslide susceptibility modelling, different
sources of uncertainty have been investigated. This includes,
among other things, the error propagation of inventory-based
positional errors (Steger et al., 2016a), the effects of different
landslide boundaries and spatial shape expressions (Huang
et al., 2022), the effect of spatial resolution (Huang et al.,
2023), the number of non-landslides sampled (Hong et al.,
2019), and the different resampling strategies (Moreno et al.,
2023).

While quantification of model fit and model performance
has become standard practice (Reichenbach et al., 2018), the
vast majority of published landslide susceptibility maps do
not spatially compute the uncertainty associated with the esti-
mated susceptibility. As the uncertainty in landslide suscepti-
bility predictions can be highly variable in space, it is imper-
ative that decision-makers have access to spatial information
describing the uncertainty. A small number of studies have
used ensemble modelling as a means to quantify uncertainty,
employing metrics for statistical dispersion to the ensemble
predictions to quantify uncertainty. Rossi et al. (2010) sug-
gested that the combination of landslide susceptibility zones
based on multiple forecasts can improve the quality of sus-
ceptibility assessments. In their comparative model evalua-
tion study, they provided maps of the geographical distribu-
tion of the model error across slope units. Petschko et al.
(2014) provided a comprehensive analysis of model uncer-
tainty based on the standard error in model prediction in their
quality assessment of landslide susceptibility maps and also
presented a spatial visualization of map uncertainty. Lom-
bardo et al. (2014) accounted for the dispersion of the sus-
ceptibility estimates obtained by training a series of mod-
els using different partitioning strategies and reported the re-
sults in a model error map, using an interval of 2 standard
deviations. Heckmann et al. (2014) used the inter-quantile
range (between the 0.95 quantile and the 0.05 quantile) of
100 susceptibility maps derived via random resampling as a
non-parametric measure of dispersion to quantify the uncer-
tainty caused by sampling and stepwise model selection in
their debris flow susceptibility modelling assessment. Peng
et al. (2014) used a rough-set support vector machine model
trained on five different random samples to obtain estimates
of landslide susceptibility for all mapping units. They also
used 2 standard deviations as the metric to quantify model
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uncertainty. Achu et al. (2023) employed an ensemble of
different machine-learning models and visualized the uncer-
tainty stemming from the model types using the coefficient
of variation across the predicted probabilities of all ensemble
members.

Against the backdrop of the diverse methodologies avail-
able to account for uncertainties, scientists face challenges
in effectively communicating their results, while decision-
makers struggle to interpret this complex information. Al-
though the challenge of representing and managing geospa-
tial information uncertainty is well understood in geoinfor-
mation science, particularly in cartography, this awareness
is not as pervasive in other scientific disciplines and appli-
cation areas, including geomorphology. Various methods for
visualizing geospatial information uncertainty have been pre-
sented and discussed (Kinkeldey et al., 2014; MacEachren
et al., 2005), including applications in slope stability mod-
elling (Davis and Keller, 1997). All previously mentioned
studies on landslide susceptibility modelling reported results
by including separate maps for the estimated susceptibility
and uncertainty. In this study, we visualize the uncertainty
caused by the sampling of negative instances by showing
the variability in the predictions contingent on sampling in
space, utilizing an ensemble of random-forest models. We
present a novel type of visualization of landslide suscepti-
bility maps that jointly represents the susceptibility estimate
along with the corresponding uncertainty. We advocate for
bivariate mapping as a straightforward yet sound and effec-
tive way to communicate landslide susceptibility and the as-
sociated uncertainty. We provide implementation guidelines
to create such maps using free and open-source software
(FOSS), with examples in R and QGIS.

2 Methods
2.1 Landslide susceptibility modelling

The study region encompasses an area of 5785 km? within
the Central Eastern Alps in Carinthia, Austria. A total of
1973 shallow landslides were documented in the landslide
inventory compiled for the study region. These events served
as the target variable (i.e. training labels). A wide range of
predisposing factors were considered independent variables,
including indicators describing geomorphology, hydrology,
climatology, lithology, land cover, surface runoff, and trans-
portation infrastructure. A subset of 21 features was eventu-
ally distilled from the total set of 46 features initially iden-
tified as potentially relevant determinants of landslide oc-
currence after an iterative feature selection process. Feature
selection was conducted based on two main considerations.
First, highly correlated features were dropped to ease inter-
pretability of feature effects. Second, features effectively rep-
resenting potential inventory biases were removed.

We used a pixel-based approach at a spatial resolution of
10 m. Given the large study area and the comparatively small
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number of landslides, this resulted in an event rate of only
2.7 x 1073, Therefore, we used random downsampling in the
context of balanced bagging to counter the severe class im-
balance present in the data set. Negative instances were ran-
domly sampled using probability-proportional-to-size sam-
pling. The no-sampling area was constrained to avoid sam-
pling in trivial (e.g. lakes) and problematic (e.g. too close
to existing slides, high-elevation regions such as glaciers ex-
hibiting different process characteristics) areas. In order to
obtain a balanced data set, the number of negative instances
sampled was identical to the number of positive samples
present in the data set. In order to quantify sampling un-
certainty, we repeated the sampling process 10 times. Since
all positive instances were kept in all iterations, the sam-
pling variation stems entirely from the negative instances.
There are more robust methods available that also account
for variations in landslide presence data (Lima et al., 2023;
Pourghasemi et al., 2020). The resulting 10 data sets served
as the basis for the training of random-forest models us-
ing nested spatial resampling for model tuning and perfor-
mance evaluation. Hyperparameter tuning was conducted us-
ing model-based optimization.

This procedure eventually resulted in an ensemble consist-
ing of 10 models trained and evaluated by means of nested
spatial cross-validation. Results of the single models were
aggregated using the ensemble mean as an estimate of pre-
dicted susceptibility and the ensemble standard deviation
to quantify the corresponding sampling uncertainty in the
model. A more detailed description of the modelling ap-
proach as well as an in-depth discussion focusing on statis-
tical performance and geomorphic plausibility is provided in
Schlogl et al. (2025).

2.2 Visualization
2.2.1 Concept

The theory and applications of bivariate (choropleth) maps
are well established (De Cola, 2002; Nelson, 1999; Trumbo,
1981), including applications in climatology (Teuling et al.,
2011) and hydrology (Speich et al., 2015). A seminal and
easily accessible introduction to bivariate choropleth maps
was provided by Joshua Stevens in 2015 (Stevens, 2015). We
build upon these considerations and apply the general princi-
ple to landslide susceptibility modelling, using the ensemble
mean and the ensemble standard deviation of predicted prob-
abilities as variables for the bivariate mapping of landslide
susceptibility and corresponding uncertainty.

We utilize a classical 3 x 3 bivariate visualization, result-
ing in nine classes in total. The reclassification method em-
ployed to stratify the continuous outputs into classes depends
on the feature.

— Susceptibility (ensemble mean). Landslide susceptibil-
ity maps are commonly created using probabilistic bi-
nary classifiers, with the predicted outcomes naturally
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occurring on a continuous scale within the interval
[0, 1]. While discretizing continuous variables poses
certain challenges, such as the loss of information and
certain pitfalls caused by the artificial breakpoints, cat-
egorizing continuous outcomes can aid in conveying re-
sults to stakeholders. Inspired by the methodology of
Spiekermann et al. (2023), we established two thresh-
olds based on the descending rank order plot, utilizing
the empirical 0.8 and 0.95 quantiles of the predicted
landslide susceptibility values for positive instances to
separate the three susceptibility categories. This effec-
tively means that 80 % of the observed events fall into
the highest class, 15 % of the events are contained in the
medium class, and only 5 % of the events fall into the
lowest class. This reclassification method was chosen
due to its straightforward and intuitive interpretability.
The thresholds resulting from the two selected quantiles
are 0.4481 and 0.6096, respectively.

— Uncertainty (ensemble standard deviation). Given the
skewness of the standard deviation, we used quantile-
based reclassification to split the continuous variable
into three classes. In the present case, this corresponds
to the thresholds 0.0297 and 0.0416.

The bivariate susceptibility maps are based on two sequen-
tial single-hue colour schemes, each increasing in satura-
tion and value, with one scheme representing each variable.
By blending these colour schemes, a bivariate colour palette
emerges (Fig. 1).

We conducted stakeholder workshops using the world café
method (Lohr et al., 2020), with selected expert users from
our main target group. Seven representatives from national
civil protection and disaster management organizations par-
ticipated, including geologists from the Austrian National
Geological Survey, geologists from Austrian federal govern-
ments, and representatives from disaster relief forces. They
provided unstructured feedback on the use of the map in spe-
cific contexts and for specific applications, such as for spa-
tial planning tasks. The world café sessions were held on
27 February 2024 in Vienna under the aegis of the Disaster
Competence Network Austria. Informed consent procedures
were followed to ensure that stakeholders participated will-
ingly and were adequately informed about the research. All
statements were collected and summarized under the preser-
vation of anonymity.

2.2.2 Implementation

There are several tools that support the practical implementa-
tion of the concept of bivariate susceptibility mapping. Here
we exemplarily illustrate the implementation using two open-
source tools representing one programming approach and
one desktop GIS approach.

Bivariate susceptibility maps can be created programmat-
ically in R using commonly used packages for managing
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Figure 1. Conceptual illustration of a bivariate legend in the context of landslide susceptibility mapping. Panel (a) shows the univariate
colour scheme for the uncertainty mapped to the y axis, with uncertainty increasing from bottom to top. Panel (b) displays the univariate
colour scheme for susceptibility along the x axis, with susceptibility increasing from left to right. In both cases, single-hue colour palettes
are used, and higher values are characterized by higher saturation and value. Panel (c¢) depicts the combined bivariate result after blending
the two individual colour palettes, with the diagonal showing joint increases in both variables.

geodata, as well as the ggplot2 plotting framework. The
package biscale provides convenience functions for re-
classifying data into the desired number of classes and cre-
ating bivariate legends. It also offers a predefined set of bi-
variate colour palettes. Technical details are provided in Ap-
pendix A, and all code is available in the GitHub repository
in the Supplement.

Bivariate susceptibility maps can also be created using a
classical desktop geographic information system (GIS). In
QGIS, there are two main kinds of approaches to generating
bivariate maps from rasters: (1) combining two raster layers
with blending modes (such as multiply) to generate the bi-
variate effect or (2) reclassifying the raster into the desired
number of classes using raster algebra. The bivariate poly-
gon renderer plugin can be used to create the legend in the
print layout of the map. Technical details are provided in
Appendix B, and a QGIS project is available in the GitHub
repository in the Supplement.

3 Results

The bivariate visualization of landslide susceptibility and as-
sociated uncertainty is shown for a small area for demon-
strative purposes (Fig. 2). The map shows an area of the
Nockberge range of Carinthia. Lakes (most notably Brennsee
in the west) and high-elevation areas (> 1900m) around
the Wollaner Nock mountain (2145 m, east) are masked out
since they are out of the scope of the model (Schlogl et al.,
2025).

The legend of the bivariate map is grid-like, with the four
corner cases signifying the most extreme combination of the
two variables, susceptibility and uncertainty. The description
and interpretation of the combined information hold irrespec-
tive of the number of classes used.

— Lower-left corner — low susceptibility and low uncer-
tainty. These areas exhibit low susceptibility with a high
degree of confidence, with the model ensemble consis-
tently indicating a low occurrence probability of shal-
low landslides. Thus, the occurrence of shallow land-
slides in these areas is unlikely. Yet, the predictions still
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need to be interpreted with care, given the limitations
of the underlying data, including the landslide inventory
used. Results should still be assessed in light of geomor-
phic plausibility of the results (Steger et al., 2016b), and
the data basis as well as the modelling approach should
be integrated in the assessment.

— Lower-right corner — high susceptibility and low uncer-
tainty. These areas are identified as highly susceptible to
landslides with a high degree of confidence. This means
that the data and model ensemble used to predict land-
slide susceptibility yield consistent and reliable results
in these areas. Areas falling into this class could be can-
didates for prioritizing mitigation efforts, monitoring,
and preventive measures.

— Upper-left corner — low susceptibility and high uncer-
tainty. This class represents areas that are identified as
having low susceptibility to landslides, but the model
prediction is associated with high uncertainty. In the
case of an ensemble modelling approach, this means
that the ensemble members disagree, yielding a con-
siderable spread of predicted probabilities across the
individual models. This suggests that the model’s pre-
diction of low susceptibility is less reliable, meaning
that the high uncertainty warrants caution. While these
regions could be considered relatively safe from land-
slides, which may in turn imply that resources for adap-
tation and mitigation measures might be better allocated
elsewhere, these regions must not simply be neglected.
Additional studies and data collection may be necessary
to confirm the low susceptibility, especially if the area
is important from a geomorphic point of view.

— Upper-right corner — high susceptibility and high un-
certainty. These areas are also identified as highly sus-
ceptible to landslides but with a high degree of uncer-
tainty. This indicates that while the model suggests high
susceptibility, the prediction is less reliable. Decision-
makers should exercise caution and consider additional
analyses or validation before taking action. Areas within

https://doi.org/10.5194/nhess-25-1425-2025



M. Schlogl et al.: Bivariate landslide susceptibility mapping

1429

susceptibility

[ low
1 medium
I high

uncertainty

[T low
1 medium
[0 high

2
£
©
8
£
[
o
=
=1

susceptibility
0 1 2km
| B

Figure 2. Example of a bivariate susceptibility map and its univariate components. Panel (a) shows the susceptibility, panel (b) uncertainty,
and panel (c) the bivariate result using multiply blending. Lakes (transparency of 0 %) and high-elevation areas (transparency of 20 %) are

masked out.

this category could be designated as priority areas re-
quiring further investigation to reduce uncertainty. This
can be accomplished by employing local model inter-
pretation and diagnostic methods to explain these indi-
vidual predictions (e.g. local surrogate models or indi-
vidual conditional expectation curves), by investing in
additional data collection, or by conducting field-based
validation.

Counts within the resulting nine classes are not evenly dis-
tributed (Fig. 3). In the case of Carinthia, the class where both
susceptibility and uncertainty is low constitutes the largest
class, containing approximately 30 % of all pixels. Overall,
areas with low susceptibility account for about 50 % of the
study area.

https://doi.org/10.5194/nhess-25-1425-2025

Feedback on the usability of the bivariate map collected
during the stakeholder workshops indicated that users ini-
tially needed some time to become accustomed to the vi-
sualization. However, once the legend was internalized, the
combined map was considered an effective means of commu-
nicating the integrated information. Two main benefits over
the use of two separate maps were identified. First, there is
no need to switch between map views, making the joint in-
terpretation less cumbersome. In the medium and long run,
the cognitive effort required to internalize the legend once
is lower than that required to switch between maps. Second,
the consideration of the second dimension (uncertainty) was
deemed less likely to be neglected or overlooked.

Nat. Hazards Earth Syst. Sci., 25, 1425-1437, 2025
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Figure 3. Mosaic plot displaying the frequency distribution of the
nine bivariate classes of the full area of interest (n =46 760 232).
The plot is based on the contingency table of the classes and
shows both the conditional and the marginal distribution of the class
counts. The area is proportional to the cell frequencies of the un-
derlying contingency table, and colour is also mapped to the cell
frequency.

4 Discussion

There are two main properties that shape the appearance of
the resulting map: (1) the definition of classes and (2) the
colour palette. In addition, the type of uncertainty conveyed
should be kept in mind: the underlying uncertainties can be
aleatoric and epistemic in nature. In particular, epistemic un-
certainty stemming from different sources along the mod-
elling workflow, including the inventory, explanatory fea-
tures, or the model used, can be visualized.

Generally speaking, a wide range of methods are available
to derive univariate class intervals in continuous numerical
vectors, including the use of equal intervals, quantile breaks,
breaks derived through hierarchical or partitioning cluster-
ing methods, natural break optimization, and algorithms for
heavy-tailed distributions (Slocum et al., 2022; Jiang, 2013;
Jenks and Caspall, 1971; Fisher, 1958). In landslide suscepti-
bility modelling, results are commonly discretized into three
classes signifying low, medium, and high susceptibility. In
addition to the aforementioned methods for deriving class in-
tervals (Conoscenti et al., 2016; Hussin et al., 2016; Costanzo
et al., 2012), modified methods for calculating breaks in sus-
ceptibility have been proposed, including methods based on
the rank order (Spiekermann et al., 2023; Petschko et al.,
2014; Chung and Fabbri, 2003) or on the receiver operat-
ing characteristic curve (Steger et al., 2024). The number of
classes and the discretization algorithm used should be care-
fully considered and documented clearly, as these choices

Nat. Hazards Earth Syst. Sci., 25, 1425-1437, 2025

M. Schlogl et al.: Bivariate landslide susceptibility mapping

may have considerable impact on the appearance of the re-
sulting map. We recommend limiting the number of classes
to three or four in order to retain readability of the resulting
bivariate classes on the map. The fact that the two variables
are very likely to exhibit skewed distributions should also be
taken into account when creating class intervals. Using eas-
ily understandable class definitions such as those proposed
by Spiekermann et al. (2023) also aids interpretability: 80 %
of all events occurred in the highest class, the medium class
contained the next 15 % of observed events, and only the final
5 % of observed events fall into the lowest class.

The selection of a colour palette is vital for map design,
as it profoundly influences a map’s effectiveness, readability,
and aesthetic appeal. Thus, choosing an appropriate colour
palette is essential to prevent errors or biases in data interpre-
tation (Schloss et al., 2019; Seipel and Lim, 2017). This en-
compasses considerations of accessibility, especially for peo-
ple with vision deficiencies (Nowosad, 2020)". Additionally,
the cultural and contextual relevance should be accounted
for, recognizing the varying meaning of colours across cul-
tures (Kawai et al., 2022) and the psychological implications
as per the colour-in-context theory (Elliot and Maier, 2012).
Tailoring visualized information to users through a user-
centred design process improves its effectiveness (Twomlow
etal., 2022).

Landslide susceptibility models are associated with a wide
range of epistemic (i.e. lack of knowledge) and aleatory (i.e.
intrinsic randomness) uncertainties that propagate through
the modelling chain (Knevels et al., 2023; Lombardo et al.,
2020; Steger et al., 2016a; Brenning et al., 2015; Petschko
et al, 2014; Rossi et al., 2010). The uncertainty dis-
played here merely refers to the estimation uncertainty stem-
ming from the sampling of negative instances, as quantified
through the ensemble modelling approach. However, the pro-
posed bivariate depiction of landslide susceptibility is not
contingent on specific types of uncertainties, and we advo-
cate for a comprehensive inclusion of quantifiable uncertain-
ties in such maps.

5 Conclusions

We presented a bivariate landslide susceptibility map that
jointly visualizes the estimated susceptibility and the corre-
sponding uncertainty. This type of visualization is generally
applicable to all different kinds of uncertainty in the context
of susceptibility modelling for various natural hazards. The
methodology can be easily implemented in popular FOSS
packages, using the examples provided in the repository in
the Supplement as additional guidance. Overall, we argue

ITools such as https://colorbrewer2.org (last access: 10 April
2025) or https://hclwizard.org (last access: 10 April 2025), along
with the corresponding R package colorspace (Zeileis et al.,
2020), provide valuable assistance in selecting colour palettes for
users with different types of vision deficiencies.

https://doi.org/10.5194/nhess-25-1425-2025
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that this graphical representation of susceptibility maps can
aid in communicating modelling results and associated un-
certainty more effectively.

By understanding the combinations of landslide suscep-
tibility and the associated uncertainty, informed decisions
about where to focus efforts for data collection, monitoring,
risk mitigation, and resource allocation can be supported.
This approach ensures a balanced and strategic response to
landslide risk management, addressing both the immediate
and long-term needs based on the confidence level of the
modelled susceptibility.

Appendix A: Bivariate susceptibility maps in R
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Figure Al. Example of a bivariate susceptibility map created in R with ggplot2. Legend created with the package biscale using the

“DkViolet” colour ramp created by Grossenbacher and Zehr (2019).

The open-source programming language R (R Core Team,
2024) is a software environment for statistical computing and
data visualization. It does also feature excellent support for
geospatial data processing, geocomputational analyses, and
geographic information science (Wimberly, 2023; Lovelace
et al., 2019; Pebesma, 2018). Visualization of bivariate maps
in R is straightforward (Fig. A1) and requires the following
add-on packages.

— sf (Pebesma et al., 2024a) is used to handle spatial vec-
tor data by extending data frames with a geometry col-
umn, thereby providing simple feature access (Pebesma
and Bivand, 2023; Pebesma, 2018).

— stars (Pebesma et al., 2024b) is used to handle spatial
raster data (Pebesma and Bivand, 2023).

— ggplot2 (Wickham et al., 2024) provides a system for
declaratively creating graphics based on The Grammar
of Graphics (Wickham, 2016; Wilkinson, 2005) and is
used as a plotting framework.

https://doi.org/10.5194/nhess-25-1425-2025

— biscale (Prener et al., 2022) extends ggplot2 by
providing tools and colour palettes for bivariate the-
matic mapping.

— ggspatial (Dunnington et al., 2023) extends
ggplot2 by providing additional support for plotting
spatial objects.

— patchwork (Pedersen, 2024) or cowplot (Wilke,
2024) can be used to arrange multiple ggplot2 ob-
jects and compose a unified single plot.

— rayshader (Morgan-Wall, 2024) can be used for
3D visualizations of bivariate susceptibility maps.

Note that plotting raster data as points using
geom_raster () is recommended for reasons of compu-
tational performance.

Nat. Hazards Earth Syst. Sci., 25, 1425-1437, 2025
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Figure A2. Example of a 3D visualization of the bivariate susceptibility map using rayshader. The figure displays two rendered snapshots.

An interactive version is provided as Supplement.

Appendix B: Bivariate susceptibility maps in QGIS

Existing QGIS plugins for bivariate mapping (bivariate leg-
end (https://plugins.qgis.org/plugins/BivariateLegend/, last
access: 10 April 2025) and bivariate polygon renderer
(https://plugins.qgis.org/plugins/BivariateRenderer/, last ac-
cess: 10 April 2025)) focus on vector data and, therefore, do
not support the creation of bivariate maps from susceptibility
rasters. While simply polygonizing the rasters and plotting
the resulting polygons is possible, this does not scale well to
large files.
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431000 432000 433000

There are two main kinds of approaches to generat-
ing bivariate maps from rasters: (1) combining two raster
layers with blending modes (such as multiply) to gen-
erate the bivariate effect or (2) reclassifying the raster
into the desired number of classes using raster algebra.
Starting in QGIS 3.22, the raster calculator supports IF
statements (https://www.qgis.org/project/visual-changelogs/
visualchangelog322/index.html, last access: 10 April 2025),
which make it straightforward to reclassify the susceptibility
raster into the classes required for the bivariate map.

The bivariate polygon renderer is based on the blend-
ing approach, with support for multiply, darken, and mixing
blending. It is worth noting however, that blending colours,
as shown in Fig. B1, does not result in the exact same bivari-
ate colour maps that can be seen in Fig. Al since the pink
and blue colours are always blended with the grey, resulting
in slightly darker tones.

CRS: EPSG:3416

20 W4
440000

439000

Figure B1. Example of a bivariate susceptibility map created in QGIS using multiply blending. Legend created using the bivariate renderer

plugin with the “Violet—-Blue” colour ramp.
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Appendix C: Bivariate colour palettes

Bluegill BlueGold BlueOr BlueYl

T T T T
& s s &
> > > >
> > > >
Xvar = Xvar = Xvar = Xvar =
Brown DkBlue DkCyan DkViolet
T T T T
& s & &
> > > >
> > > >
Xvar = Xvar = Xvar = Xvar =
GrPink PinkGrn PurpleGrn PurpleOr
T T T T
& s s &
> > > >
> > > >
Xvar = Xvar = Xvar = Xvar =

Figure C1. Overview of the colour palettes for bivariate maps available in the R package biscale.
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uncertainty >

susceptibility > susceptibility >
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13.80°  13.82°F  13.84°E

Figure C2. Illustrations of the bivariate susceptibility map using the colour palettes “BlueGold”, “BlueOr”, “DkBlue”, “DkViolet”, “GrPink”,
and “PurpleOr”.
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Appendix D: Conditional dependence of the standard
deviation on the mean

When interpreting the uncertainty estimate, the conditional
dependence of the ensemble standard deviation on the mean
susceptibility needs to be considered (Fig. D1). It can be ob-
served that the uncertainty in the outcome has a maximum
around 0.5 to 0.6 and decreases towards both ends of the sus-
ceptibility spectrum, exhibiting an approximately quadratic
relationship that can be approximated as y =0.1745x —
0.1658x2. Given the high heteroscedasticity, this relation-
ship was estimated using robust regression with M estima-
tion, employing Tukey’s bisquare loss function.

counts (log)

160000

o

"

S
L

8000

400

standard deviation

20

0.051 1

0.50
mean

Figure D1. Ensemble mean versus ensemble standard deviation for
all predictions of the full area of interest in Carinthia, Austria.

There are two main reasons for this emerging pattern.
First, the standard deviation is bound to be lower towards
both ends of the available susceptibility range for purely
mathematical reasons. Since susceptibility values are con-
fined between O and 1, the standard deviation is truncated
at both ends of the spectrum. Naturally, this effect becomes
more pronounced as the mean approaches either the mini-
mum or the maximum of the feature range. Second, predicted
outcomes near the class discrimination threshold of 0.5 are
typically more uncertain than instances classified as positive
or negative with high confidence. In this medium range, the
model ensemble has difficulties classifying the terrain as ei-
ther stable or unstable, which results in a higher standard de-
viation of the estimate and thus decreases the reliability of
the prediction (Guzzetti et al., 2006).

Code and data availability. All code to generate the plots and
maps is available on GitHub at https://github.com/r3xthOr/
bivariate-Ism (last access: 10 April 2025, released on Zenodo
via https://doi.org/10.5281/zenodo.15189349, Schlogl and Graser,
2025). Sample data are also provided in this repository via Git LFS.
Code for the underlying landslide susceptibility model for Carinthia
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is available on GitLab at https://gitlab.com/Rexthor/Ism-carinthia
(Schlogl, 2025).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/nhess-25-1425-2025-supplement.
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