Articles | Volume 25, issue 3
https://doi.org/10.5194/nhess-25-1095-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-1095-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling urban stormwater drainage overflows for assessing flood hazards: application to the urban area of Dakar (Senegal)
Laurent Pascal Malang Diémé
CORRESPONDING AUTHOR
Laboratoire Leïdi “Dynamique des Territoires et Développement”, Université Gaston Berger (UGB), Saint Louis, Sénégal
IRD, UMR 5151, HSM, Univ. Montpellier, CNRS, IRD, Montpellier, France
Christophe Bouvier
IRD, UMR 5151, HSM, Univ. Montpellier, CNRS, IRD, Montpellier, France
Ansoumana Bodian
Laboratoire Leïdi “Dynamique des Territoires et Développement”, Université Gaston Berger (UGB), Saint Louis, Sénégal
Alpha Sidibé
DPGI “Direction de la Prévention et de la Gestion des Inondations au Sénégal”, MEA, Dakar, Sénégal
Related authors
Laurent Pascal Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Proc. IAHS, 385, 175–180, https://doi.org/10.5194/piahs-385-175-2024, https://doi.org/10.5194/piahs-385-175-2024, 2024
Short summary
Short summary
This study aims at proposing a modelling of flows and overflows of structures at fine resolution (5 m) for rainfall intensities of different return periods. The overflow points of the network are identified by the difference between the maximum flow and the capacity of the network to evacuate floods. The results of the simulations show that the drainage network appears to be overflowing for rare frequency rainfall events (100 years). The method seems adaptable to different contexts.
Serigne Bassirou Diop, Job Ekolu, Yves Tramblay, Bastien Dieppois, Stefania Grimaldi, Ansoumana Bodian, Juliette Blanchet, Ponnambalam Rameshwaran, Peter Salamon, and Benjamin Sultan
Nat. Hazards Earth Syst. Sci., 25, 3161–3184, https://doi.org/10.5194/nhess-25-3161-2025, https://doi.org/10.5194/nhess-25-3161-2025, 2025
Short summary
Short summary
West Africa is very vulnerable to river floods. Current flood hazards are poorly understood due to limited data. This study is filling this knowledge gap using recent databases and two regional hydrological models to analyze changes in flood risk under two climate scenarios. Results show that most areas will see more frequent and severe floods, with some increasing by over 45 %. These findings stress the urgent need for climate-resilient strategies to protect communities and infrastructure.
Ansoumana Bodian, Papa Malick Ndiaye, Serigne Bassirou Diop, Lamine Diop, Alain Dezetter, Andrew Ogilvie, and Koffi Djaman
Proc. IAHS, 385, 415–421, https://doi.org/10.5194/piahs-385-415-2024, https://doi.org/10.5194/piahs-385-415-2024, 2024
Short summary
Short summary
Reference evapotranspiration (ET0) is an essential parameter for hydrological modeling, irrigation planning and for studying the impacts of climate change on water resources. This work evaluate 20 alternative methods of estimating ET0 in order to adapt them to the climatic context of the 3 mains basins of Senegal where very little climate data is available. The methods of Valiantzas 1, Doorenboss & Pruitt and Penman are the most robust for the estimation of ET0 in this context.
Papa Malick Ndiaye, Ansoumana Bodian, Serigne Bassirou Diop, Lamine Diop, Alain Dezetter, Andrew Ogilvie, and Koffi Djaman
Proc. IAHS, 385, 305–311, https://doi.org/10.5194/piahs-385-305-2024, https://doi.org/10.5194/piahs-385-305-2024, 2024
Short summary
Short summary
The analyze of the trends of ET0 at the scale of the Senegal, Gambia and Casamance river basins using reanalyze data of NASA/POWER over 1984–2019 shows that ET0 increases significantly in 32% of the Senegal basin and decreases in less than 1% of it. In the Casamance and Gambia basins, the annual ET0 drops by 65% and 18%, respectively. Temperature and relative humidity show an increasing trend over all basins while wind speed and radiation decrease, confirming the so-called "evaporation paradox".
Garance Tanguy, Christophe Bouvier, and Lydie Sichoix
Proc. IAHS, 385, 31–37, https://doi.org/10.5194/piahs-385-31-2024, https://doi.org/10.5194/piahs-385-31-2024, 2024
Short summary
Short summary
In this study, a distributed, conceptual and event-based hydrological model is applied to 9 gauged catchments on the island of Tahiti. The model is chosen from a regionalization perspective, and insights are provided to explain the spatial variability of its parameters.
Laurent Pascal Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Proc. IAHS, 385, 175–180, https://doi.org/10.5194/piahs-385-175-2024, https://doi.org/10.5194/piahs-385-175-2024, 2024
Short summary
Short summary
This study aims at proposing a modelling of flows and overflows of structures at fine resolution (5 m) for rainfall intensities of different return periods. The overflow points of the network are identified by the difference between the maximum flow and the capacity of the network to evacuate floods. The results of the simulations show that the drainage network appears to be overflowing for rare frequency rainfall events (100 years). The method seems adaptable to different contexts.
Ernest Amoussou, Gil Mahe, Oula Amrouni, Ansoumana Bodian, Christophe Cudennec, Stephan Dietrich, Domiho Japhet Kodja, and Expédit Wilfrid Vissin
Proc. IAHS, 384, 1–4, https://doi.org/10.5194/piahs-384-1-2021, https://doi.org/10.5194/piahs-384-1-2021, 2021
Short summary
Short summary
This short paper is the preface of the PIAHS volume of the IAHS/UNESCO FRIEND-Water conference of Cotonou in November 2021.
Yves Tramblay, Nathalie Rouché, Jean-Emmanuel Paturel, Gil Mahé, Jean-François Boyer, Ernest Amoussou, Ansoumana Bodian, Honoré Dacosta, Hamouda Dakhlaoui, Alain Dezetter, Denis Hughes, Lahoucine Hanich, Christophe Peugeot, Raphael Tshimanga, and Patrick Lachassagne
Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, https://doi.org/10.5194/essd-13-1547-2021, 2021
Short summary
Short summary
This dataset provides a set of hydrometric indices for about 1500 stations across Africa with daily discharge data. These indices represent mean flow characteristics and extremes (low flows and floods), allowing us to study the long-term evolution of hydrology in Africa and support the modeling efforts that aim at reducing the vulnerability of African countries to hydro-climatic variability.
Cited articles
Agonafir, C., Lakhankar, T., Khanbilvardi, R., Krakauer, N., Radell, D., and Devineni, N.: A review of recent advances in urban flood research, Water Secur., 19, 100141, https://doi.org/10.1016/j.wasec.2023.100141, 2023.
Balbastre-Soldevila, R., García-Bartual, R., and Andrés-Doménech, I.: A Comparison of Design Storms for Urban Drainage System Applications, Water, 11, 757, https://doi.org/10.3390/w11040757, 2019.
Barau, A. and Wada, A. S.: Do-It-Yourself Flood Risk Adaptation Strategies in the Neighborhoods of Kano City, Nigeria, in: African Handbook of Climate Change Adaptation, edited by: Oguge, N., Ayal, D., Adeleke, L., and da Silva, I., Springer International Publishing, Cham, 1353–1380, https://doi.org/10.1007/978-3-030-45106-6_190, 2021.
Bassel, M.: Eaux et environnement à Dakar-Pluies, ruissellement, pollution et évacuation des eaux. Contribution à l'étude des problèmes d'environnement liés aux eaux dans la région de Dakar, PhD thesis, Université Cheikh Anta Diop de Dakar, Département de Géographie, 244 pp., https://www.documentation.ird.fr/hor/fdi:010012652 (last access: 20 October 2023), 1996.
Bassel, M. and Pépin, Y.: Pluies, ruissellement, évacuation et qualité des eaux sur le bassin versant de Mermoz-Fann: Contribution à l'étude des problèmes d'environnement liés aux eaux dans la région de Dakar, rapport de campagne, ORSTOM, 59 pp., https://www.documentation.ird.fr/hor/fdi:010010028 (last access: 20 October 2023), 1995.
Bassel, M., Pépin, Y., and Thiébaux, J. P.: Rapport de campagne: Bassin urbain de Dakar, ORSTOM, 55 pp., https://www.documentation.ird.fr/hor/fdi:010020660 (last access: 27 October 2023), 1994.
Bentivoglio, R., Isufi, E., Jonkman, S. N., and Taormina, R.: Deep learning methods for flood mapping: a review of existing applications and future research directions, Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022, 2022.
Bichet, A. and Diedhiou, A.: West African Sahel has become wetter during the last 30 years, but dry spells are shorter and more frequent, Clim. Res., 75, 155–162, https://doi.org/10.3354/cr01515, 2018.
Bodian, A.: Caractérisation de la variabilité temporelle récente des précipitations annuelles au Sénégal (Afrique de l'Ouest), Physio-Géo, 8, 297–312, https://doi.org/10.4000/physio-geo.4243, 2014.
Bodian, A., Dacosta, H., Diouf, R. N., Ndiaye, E. H. O., and Mendy, A.: Contribution à la connaissance de l'aléa pluvial au Sénégal grâce à la valorisation des données pluviographiques historiques, Climatologie, 13, 38–46, https://doi.org/10.4267/climatologie.1194, 2016.
Bottazzi, P., Winkler, M. S., Boillat, S., Diagne, A., Maman Chabi Sika, M., Kpangon, A., Faye, S., and Speranza, C. I.: Measuring Subjective Flood Resilience in Suburban Dakar: A Before–After Evaluation of the “Live with Water” Project, Sustainability, 10, 2135, https://doi.org/10.3390/su10072135, 2018.
Bouadila, A., Bouizrou, I., Aqnouy, M., En-nagre, K., El Yousfi, Y., Khafouri, A., Hilal, I., Abdelrahman, K., Benaabidate, L., Abu-Alam, T., Stitou El Messari, J. E., and Abioui, M.: Streamflow Simulation in Semiarid Data-Scarce Regions: A Comparative Study of Distributed and Lumped Models at Aguenza Watershed (Morocco), Water, 15, 1602, https://doi.org/10.3390/w15081602, 2023.
Bouvier, C., Chahinian, N., Adamovic, M., Cassé, C., Crespy, A., Crès, A., and Alcoba, M.: Large-Scale GIS-Based Urban Flood Modelling: A Case Study on the City of Ouagadougou, in: Advances in Hydroinformatics, SimHydro2017, Sophia-Antipolis, France, 703–717, https://doi.org/10.1007/978-981-10-7218-5_50, 2017.
Bouvier, C., Bouchenaki, L., and Tramblay, Y.: Comparison of SCS and Green-Ampt Distributed Models for Flood Modelling in a Small Cultivated Catchment in Senegal, Geosciences, 8, 122, https://doi.org/10.3390/geosciences8040122, 2018.
Bulti, D. T. and Abebe, B. G.: A review of flood modeling methods for urban pluvial flood application, Model. Earth Syst. Environ., 6, 1293–1302, https://doi.org/10.1007/s40808-020-00803-z, 2020.
Chagnaud, G., Panthou, G., Vischel, T., Blanchet, J., and Lebel, T.: A unified statistical framework for detecting trends in multi-timescale precipitation extremes: application to non-stationary intensity-duration-frequency curves, Theor. Appl. Climatol., 145, 839–860, https://doi.org/10.1007/s00704-021-03650-9, 2021.
Chagnaud, G., Panthou, G., Vischel, T., and Lebel, T.: A synthetic view of rainfall intensification in the West African Sahel, Environ. Res. Lett., 17, 044005, https://doi.org/10.1088/1748-9326/ac4a9c, 2022.
Chahinian, N., Alcoba, M., Dembélé, N. D. J., Cazenave, F., and Bouvier, C.: Evaluation of an early flood warning system in Bamako (Mali): Lessons learned from the flood of May 2019, J. Flood Risk Manag., 16, e12878, https://doi.org/10.1111/jfr3.12878, 2023.
Chen, Y., Zhou, H., Zhang, H., Du, G., and Zhou, J.: Urban flood risk warning under rapid urbanization, Environ. Res., 139, 3–10, https://doi.org/10.1016/j.envres.2015.02.028, 2015.
Cissé Faye, S., Faye, S., Wohnlich, S., and Gaye, C. B.: An assessment of the risk associated with urban development in the Thiaroye area (Senegal), Env. Geol., 45, 312–322, https://doi.org/10.1007/s00254-003-0887-x, 2004.
Constantindes, C. A.: Numerical techniques for a two-dimensional kinematic overland flow model, Water SA, 7, 234–248, 1981.
Costabile, P., Costanzo, C., De Lorenzo, G., and Macchione, F.: Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model?, J. Hydrol., 580, 124231, https://doi.org/10.1016/j.jhydrol.2019.124231, 2020.
Coulibaly, G., Leye, B., Tazen, F., Mounirou, L. A., and Karambiri, H.: Urban Flood Modeling Using 2D Shallow-Water Equations in Ouagadougou, Burkina Faso, Water, 12, 2120, https://doi.org/10.3390/w12082120, 2020.
Darabi, H., Choubin, B., Rahmati, O., Torabi Haghighi, A., Pradhan, B., and Kløve, B.: Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques, J. Hydrol., 569, 142–154, https://doi.org/10.1016/j.jhydrol.2018.12.002, 2019.
Dehotin, J., Chazelle, B., Laverne, G., Hasnaoui, A., Lambert, L., Breil, P., and Braud, I.: Mise en œuvre de la méthode de cartographie du ruissellement IRIP pour l'analyse des risques lies aux écoulements sur l'infrastructure ferroviaire, Houille Blanche, 101, 56–64, https://doi.org/10.1051/lhb/20150069, 2015.
Desbordes, M. and Raous, P.: Un exemple de l'intérêt des études de sensibilité des modèles hydrologiques, Houille Blanche, 62, 37–43, https://doi.org/10.1051/lhb/1976004, 1976.
Descroix, L., Diongue Niang, A., Dacosta, H., Panthou, G., Quantin, G., and Diedhiou, A.: Évolution des pluies de cumul élevé et recrudescence des crues depuis 1951 dans le bassin du Niger moyen (Sahel), Climatologie, 10, 37–49, https://doi.org/10.4267/climatologie.78, 2013.
DHI (Danish Hydraulic Institute): Mike Flood 1D-2D and 1D-3D Modelling – user manual, 154 pp., https://manuals.mikepoweredbydhi.help/2021/Water_Resources/MIKE_FLOOD_UserManual.pdf (last access: 17 October 2023), 2021.
Diémé, L. P.: Système de surveillance des inondations à l'échelle de l'agglomération de Dakar, PhD thesis, Université Gaston-Berger, Département de géographie, 177 pp., https://doi.org/10.13140/RG.2.2.19319.09121, 2023.
Diémé, L. P., Bouvier, C., Bodian, A., and Sidibé, A.: Construction de la topologie de drainage à fine résolution spatiale en milieu urbain: exemple de l'agglomération de Dakar (Sénégal), LHB, 108, 2061313, https://doi.org/10.1080/27678490.2022.2061313, 2022.
Diop, M. S.: Les capacités adaptatives des communautés de la périphérie de Dakar face aux inondations, PhD thesis, Université Paris Saclay (COmUE), 354 pp., https://tel.archives-ouvertes.fr/tel-02415826 (last access: 11 October 2023), 2019.
Djibo, M., Chwala, C., Ouedraogo, W. Y. S. B., Doumounia, A., Sanou, S. R., Sawadogo, M., Kunstmann, H., and Zougmoré, F.: Commercial microwave link networks for rainfall monitoring in Burkina Faso: First results from a dense network in Ouagadougou, in: 2023 IEEE Multi-conference on Natural and Engineering Sciences for Sahel's Sustainable Development (MNE3SD), Bobo-Dioulasso, Burkina Faso, 1–7, https://doi.org/10.1109/MNE3SD57078.2023.10079165, 2023.
Faye, S. C., Diongue, M. L., Pouye, A., Gaye, C. B., Travi, Y., Wohnlich, S., Faye, S., and Taylor, R. G.: Tracing natural groundwater recharge to the Thiaroye aquifer of Dakar, Senegal, Hydrogeol. J., 27, 1067–1080, https://doi.org/10.1007/s10040-018-01923-8, 2019.
Gaisie, E. and Cobbinah, P. B.: Planning for context-based climate adaptation: Flood management inquiry in Accra, Environ. Sci. Policy, 141, 97–108, https://doi.org/10.1016/j.envsci.2023.01.002, 2023.
Galagedara, L. W., Parkin, G. W., and Redman, J. D.: An analysis of the ground-penetrating radar direct ground wave method for soil water content measurement, Hydrol. Process., 17, 3615–3628, 2003.
Henonin, J., Russo, B., Mark, O., and Gourbesville, P.: Real-time urban flood forecasting and modelling – a state of the art, J. Hydroinform., 15, 717–736, https://doi.org/10.2166/hydro.2013.132, 2013.
Huang, M., Gallichand, J., Dong, C., Wang, Z., and Shao, M.: Use of soil moisture data and curve number method for estimating runoff in the Loess Plateau of China, Hydrol. Process., 21, 1471–1481, https://doi.org/10.1002/hyp.6312, 2007.
Hungerford, H., Smiley, S., Blair, T., Beutler, S., Bowers, N., and Cadet, E.: Coping with Floods in Pikine, Senegal: An Exploration of Household Impacts and Prevention Efforts, Urban Sci., 3, 54, https://doi.org/10.3390/urbansci3020054, 2019.
Jenson, S. K. and Domingue, J. O.: Extracting topographic structure from digital elevation data for geographic information system analysis, Photogramm. Eng. Rem. S., 54, 1593–1600, 1988.
Kelleners, T. J., Robinson, D. A., Shouse, P. J., Ayars, J. E., and Skaggs, T. H.: Frequency dependence of the complex permittivity and its impact on dielectric sensor calibration in soils, Soil Sci. Soc. Am. J., 69, 67–76, 2005.
Klutse, N. A. B., Quagraine, K. A., Nkrumah, F., Quagraine, K. T., Berkoh-Oforiwaa, R., Dzrobi, J. F., and Sylla, M. B.: The Climatic Analysis of Summer Monsoon Extreme Precipitation Events over West Africa in CMIP6 Simulations, Earth Syst. Environ., 5, 25–41, https://doi.org/10.1007/s41748-021-00203-y, 2021.
Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, J. C. J. H., Apel, H., Aronica, G. T., Arnbjerg-Nielsen, K., Bouwer, L. M., Bubeck, P., Caloiero, T., Chinh, D. T., Cortès, M., Gain, A. K., Giampá, V., Kuhlicke, C., Kundzewicz, Z. W., Llasat, M. C., Mård, J., Matczak, P., Mazzoleni, M., Molinari, D., Dung, N. V., Petrucci, O., Schröter, K., Slager, K., Thieken, A. H., Ward, P. J., and Merz, B.: Adaptation to flood risk: Results of international paired flood event studies, Earths Future, 5, 953–965, https://doi.org/10.1002/2017EF000606, 2017.
Le Bourgeois, O., Bouvier, C., Brunet, P., and Ayral, P.-A.: Inverse modeling of soil water content to estimate the hydraulic properties of a shallow soil and the associated weathered bedrock, J. Hydrol., 541, 116–126, https://doi.org/10.1016/j.jhydrol.2016.01.067, 2016.
Lericollais, A. and Roquet, D.: Croissance de la population et dynamique du peuplement au Sénégal depuis l'indépendance, Espace Popul. Sociétés, 17, 93–106, https://doi.org/10.3406/espos.1999.1872, 1999.
Li, G., Zhao, H., Liu, C., Wang, J., and Yang, F.: City Flood Disaster Scenario Simulation Based on 1D–2D Coupled Rain–Flood Model, Water, 14, 3548, https://doi.org/10.3390/w14213548, 2022.
Maref, N. and Seddini, A.: Modeling of flood generation in semi-arid catchment using a spatially distributed model: case of study Wadi Mekerra catchment (Northwest Algeria), Arab. J. Geosci., 11, 116, https://doi.org/10.1007/s12517-018-3461-2, 2018.
Mark, O., Weesakul, S., Apirumanekul, C., Aroonnet, S., and Djordjevic, S.: Potential and limitations of 1D modelling of urban flooding, J. Hydrol., 299, 284–299, https://doi.org/10.1016/S0022-1694(04)00373-7, 2004.
Martínez, C., Sanchez, A., Toloh, B., and Vojinovic, Z.: Multi-objective Evaluation of Urban Drainage Networks Using a 1D/2D Flood Inundation Model, Water Resour. Manag., 32, 4329–4343, https://doi.org/10.1007/s11269-018-2054-x, 2018.
Mashi, S. A., Inkani, A. I., Obaro, O., and Asanarimam, A. S.: Community perception, response and adaptation strategies towards flood risk in a traditional African city, Nat. Hazards, 103, 1727–1759, https://doi.org/10.1007/s11069-020-04052-2, 2020.
Meng, X., Zhang, M., Wen, J., Du, S., Xu, H., Wang, L., and Yang, Y.: A Simple GIS-Based Model for Urban Rainstorm Inundation Simulation, Sustainability, 11, 2830, https://doi.org/10.3390/su11102830, 2019.
Miller, J., Vischel, T., Fowe, T., Panthou, G., Wilcox, C., Taylor, C. M., Visman, E., Coulibaly, G., Gonzalez, P., Body, R., Vesuviano, G., Bouvier, C., Chahinian, N., and Cazenave, F.: A modelling-chain linking climate science and decision-makers for future urban flood management in West Africa, Reg. Environ. Change, 22, 93, https://doi.org/10.1007/s10113-022-01943-x, 2022a.
Miller, J., Taylor, C., Guichard, F., Peyrillé, P., Vischel, T., Fowe, T., Panthou, G., Visman, E., Bologo, M., Traore, K., Coulibaly, G., Chapelon, N., Beucher, F., Rowell, D. P., and Parker, D. J.: High-impact weather and urban flooding in the West African Sahel – A multidisciplinary case study of the 2009 event in Ouagadougou, Weather Clim. Extrem., 36, 100462, https://doi.org/10.1016/j.wace.2022.100462, 2022b.
Mosavi, A., Ozturk, P., and Chau, K.: Flood Prediction Using Machine Learning Models: Literature Review, Water, 10, 1536, https://doi.org/10.3390/w10111536, 2018.
Moulds, S., Buytaert, W., Templeton, M. R., and Kanu, I.: Modeling the Impacts of Urban Flood Risk Management on Social Inequality, Water Resour. Res., 57, e2020WR029024, https://doi.org/10.1029/2020WR029024, 2021.
Ndiaye, I.: Étalement urbain et différenciation sociospatiale à Dakar (Sénégal), Cah. Géographie Qué., 59, 47–69, https://doi.org/10.7202/1034348ar, 2015.
Nicholson, S. E., Some, B., and Kone, B.: An Analysis of Recent Rainfall Conditions in West Africa, Including the Rainy Seasons of the 1997 El Niño and the 1998 La Niña Years, J. Climate, 13, 2628–2640, https://doi.org/10.1175/1520-0442(2000)013<2628:AAORRC>2.0.CO;2, 2000.
Nkrumah, F., Vischel, T., Panthou, G., Klutse, N. A. B., Adukpo, D. C., and Diedhiou, A.: Recent Trends in the Daily Rainfall Regime in Southern West Africa, Atmosphere, 10, 741, https://doi.org/10.3390/atmos10120741, 2019.
Nkwunonwo, U. C., Whitworth, M., and Baily, B.: A review of the current status of flood modelling for urban flood risk management in the developing countries, Sci. Afr., 7, e00269, https://doi.org/10.1016/j.sciaf.2020.e00269, 2020.
Nouaceur, Z.: La reprise des pluies et la recrudescence des inondations en Afrique de l'Ouest sahélienne, Physio-Géo Géographie Phys. Environ., 15, 89–109, https://doi.org/10.4000/physio-geo.10966, 2020.
Panthou, G., Lebel, T., Vischel, T., Quantin, G., Sane, Y., Ba, A., Ndiaye, O., Diongue-Niang, A., and Diopkane, M.: Rainfall intensification in tropical semi-arid regions: the Sahelian case, Environ. Res. Lett., 13, 064013, https://doi.org/10.1088/1748-9326/aac334, 2018.
Parvin, F., Ali, S. A., Calka, B., Bielecka, E., Linh, N. T. T., and Pham, Q. B.: Urban flood vulnerability assessment in a densely urbanized city using multi-factor analysis and machine learning algorithms, Theor. Appl. Climatol., 149, 639–659, https://doi.org/10.1007/s00704-022-04068-7, 2022.
Pla, G., Crippa, J., Djerboua, A., Dobricean, O., Dongar, F., Eugene, A., and Raymond, M.: ESPADA: un outil pour la gestion en temps réel des crues éclairs urbaines en pleine modernisation, Houille Blanche, 105, 57–66, https://doi.org/10.1051/lhb/2019027, 2019.
Ponce, V. M. and Hawkins, R. H.: Runoff curve number: Has it reached maturity?, J. Hydrol. Eng., 1, 11–19, https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11), 1996.
Pons, F., Delgado, J., Guéro, P., Berthier, E., and Ile-de-France, C.: Exzeco: a gis and dem based method for predetermination of flood risk related to direct runoff and flash floods, 9th Int. Conf. Hydroinformatics HIC 2010, 7–11 September 2010, Tianjin, China, 2063–2070, 2010.
Rabori, A. M. and Ghazavi, R.: Urban Flood Estimation and Evaluation of the Performance of an Urban Drainage System in a Semi-Arid Urban Area Using SWMM, Water Environ. Res., 90, 2075–2082, https://doi.org/10.2175/106143017X15131012188213, 2018.
Rosenzweig, B. R., Herreros Cantis, P., Kim, Y., Cohn, A., Grove, K., Brock, J., Yesuf, J., Mistry, P., Welty, C., McPhearson, T., Sauer, J., and Chang, H.: The Value of Urban Flood Modeling, Earths Future, 9, e2020EF001739, https://doi.org/10.1029/2020EF001739, 2021.
Rubinato, M., Shucksmith, J., Saul, A. J., and Shepherd, W.: Comparison between InfoWorks hydraulic results and a physical model of an urban drainage system, Water Sci. Technol., 68, 372–379, 2013.
Sakijege, T. and Dakyaga, F.: Going beyond generalisation: perspective on the persistence of urban floods in Dar es Salaam, Nat. Hazards, 115, 1909–1926, https://doi.org/10.1007/s11069-022-05645-9, 2023.
Sambe-Ba, B., Espié, E., Faye, M. E., Timbiné, L. G., Sembene, M., and Gassama-Sow, A.: Community-acquired diarrhea among children and adults in urban settings in Senegal: clinical, epidemiological and microbiological aspects, BMC Infect. Dis., 13, 580, https://doi.org/10.1186/1471-2334-13-580, 2013.
Sané, O., Gaye, A. T., Diakhate, M., and Aziadekey, M.: Critical Factors of Vulnerability That Enable Medina Gounass (Dakar/Senegal) to Adapt against Seasonal Flood Events, J. Geogr. Inf. Syst., 08, 457–469, https://doi.org/10.4236/jgis.2016.84038, 2016.
Sane, Y., Panthou, G., Bodian, A., Vischel, T., Lebel, T., Dacosta, H., Quantin, G., Wilcox, C., Ndiaye, O., Diongue-Niang, A., and Diop Kane, M.: Intensity–duration–frequency (IDF) rainfall curves in Senegal, Nat. Hazards Earth Syst. Sci., 18, 1849–1866, https://doi.org/10.5194/nhess-18-1849-2018, 2018.
Sène, A., Sarr, M. A., Kane, A., and Diallo, M.: L'assèchement des lacs littoraux de la grande côte du Sénégal: Mythe ou réalité? Cas des lacs Thiourour, Warouwaye et Wouye de la banlieue de Dakar, J. Anim. Plant Sci., 35, 5623–5638, 2018.
Sène, A. M.: L'urbanisation de l'Afrique: davantage de bidonvilles ou des villes intelligentes?, Popul. Avenir, 739, 14–16, https://doi.org/10.3917/popav.739.0014, 2018.
Sene, S. and Ozer, P.: Evolution pluviométrique et relation inondations – événements pluvieux au Sénégal, Bull. Société Géographique Liège, 42, 27–33, 2002.
Sidek, L. M., Jaafar, A. S., Majid, W. H. A. W. A., Basri, H., Marufuzzaman, M., Fared, M. M., and Moon, W. C.: High-resolution hydrological-hydraulic modeling of urban floods using InfoWorks ICM, Sustainability, 13, 10259, https://doi.org/10.3390/su131810259, 2021.
Šimůnek, J., Genuchten, M. T., and Šejna, M.: Recent Developments and Applications of the HYDRUS Computer Software Packages, Vadose Zone J., 15, 1–25, https://doi.org/10.2136/vzj2016.04.0033, 2016.
Skrede, T. I., Muthanna, T. M., and Alfredesen, K.: Applicability of urban streets as temporary open floodways, Hydrol. Res., 51, 621–634, https://doi.org/10.2166/nh.2020.067, 2020.
Steenhuis, T. S., Winchell, M., Rossing, J., Zollweg, J. A., and Walter, M. F.: SCS Runoff Equation Revisited for Variable-Source Runoff Areas, J. Irrig. Drain. Eng., 121, 234–238, https://doi.org/10.1061/(ASCE)0733-9437(1995)121:3(234), 1995.
Sy, B., Frischknecht, C., Dao, H., Consuegra, D., and Giuliani, G.: Reconstituting past flood events: the contribution of citizen science, Hydrol. Earth Syst. Sci., 24, 61–74, https://doi.org/10.5194/hess-24-61-2020, 2020.
Tadesse, A. and Anagnostou, E. N.: African convective system characteristics determined through tracking analysis, Atmos. Res., 98, 468–477, https://doi.org/10.1016/j.atmosres.2010.08.012, 2010.
Taromideh, F., Fazloula, R., Choubin, B., Emadi, A., and Berndtsson, R.: Urban Flood-Risk Assessment: Integration of Decision-Making and Machine Learning, Sustainability, 14, 4483, https://doi.org/10.3390/su14084483, 2022.
Taylor, C. M., Belušić, D., Guichard, F., Parker, D. J., Vischel, T., Bock, O., Harris, P. P., Janicot, S., Klein, C., and Panthou, G.: Frequency of extreme Sahelian storms tripled since 1982 in satellite observations, Nature, 544, 475–478, https://doi.org/10.1038/nature22069, 2017.
Tazen, F., Diarra, A., Kabore, R. F. W., Ibrahim, B., Bologo/Traoré, M., Traoré, K., and Karambiri, H.: Trends in flood events and their relationship to extreme rainfall in an urban area of Sahelian West Africa: The case study of Ouagadougou, Burkina Faso, J. Flood Risk Manag., 12, e12507, https://doi.org/10.1111/jfr3.12507, 2018.
Tramblay, Y., Bouvier, C., Ayral, P.-A., and Marchandise, A.: Impact of rainfall spatial distribution on rainfall-runoff modelling efficiency and initial soil moisture conditions estimation, Nat. Hazards Earth Syst. Sci., 11, 157–170, https://doi.org/10.5194/nhess-11-157-2011, 2011.
Turko, M., Gosset, M., Kacou, M., Bouvier, C., Chahinian, N., Boone, A., and Alcoba, M.: Rainfall Measurement from Commercial Microwave Links for Urban Hydrology in Africa: A Simulation Framework for Sensitivity Analysis, J. Hydrometeorol., 22, 1819–1834, 2021.
Williams, D. S., Máñez Costa, M., Sutherland, C., Celliers, L., and Scheffran, J.: Vulnerability of informal settlements in the context of rapid urbanization and climate change, Environ. Urban., 31, 157–176, https://doi.org/10.1177/0956247818819694, 2019.
Yengoh, G. T., Fogwe, Z. N., and Armah, F. A.: Floods in the Douala metropolis, Cameroon: attribution to changes in rainfall characteristics or planning failures?, J. Environ. Plann. Man., 60, 204–230, https://doi.org/10.1080/09640568.2016.1149048, 2017.
Yuan, Y., Chen, S. S., and Miao, Y.: Unmanaged Urban Growth in Dar es Salaam: The Spatiotemporal Pattern and Influencing Factors, Sustainability, 15, 10575, https://doi.org/10.3390/su151310575, 2023.
Zanchetta, A. and Coulibaly, P.: Recent Advances in Real-Time Pluvial Flash Flood Forecasting, Water, 12, 570, https://doi.org/10.3390/w12020570, 2020.
Zhang, C., Huang, H., and Li, Y.: Analysis of water accumulation in urban street based on DEM generated from LiDAR data, Desalination Water Treat., 119, 253–261, https://doi.org/10.5004/dwt.2018.22049, 2018.
Zheng, X., Maidment, D. R., Tarboton, D. G., Liu, Y. Y., and Passalacqua, P.: GeoFlood: Large-Scale Flood Inundation Mapping Based on High-Resolution Terrain Analysis, Water Resour. Res., 54, 10013–10033, https://doi.org/10.1029/2018WR023457, 2018.
Zhenyu, X. and Olivier, B.: Conception des réseaux d'assainissement: Pluies de projet et norme NF EN 752-2, Rev. Eur. Génie Civ., 9, 401–413, https://doi.org/10.1080/17747120.2005.9692762, 2005.
Zhu, Z., Chen, Z., Chen, X., and He, P.: Approach for evaluating inundation risks in urban drainage systems, Sci. Total Environ., 553, 1–12, https://doi.org/10.1016/j.scitotenv.2016.02.025, 2016.
Short summary
We propose a decision support tool that detect the occurrence of flooding by drainage overflow, with sufficiently short calculation times. The simulations are based on a drainage topology on 5 m grids, incorporating changes to surface flows induced by urbanization. The method can be used for flood mapping in project mode and in real time. It applies to the present situation as well as to any scenario involving climate change or urban growth.
We propose a decision support tool that detect the occurrence of flooding by drainage overflow,...
Altmetrics
Final-revised paper
Preprint