Articles | Volume 25, issue 3
https://doi.org/10.5194/nhess-25-1071-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-1071-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamics and impacts of monsoon-induced geological hazards: a 2022 flood study along the Swat River in Pakistan
Nazir Ahmed Bazai
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad 45320, Pakistan
Mehtab Alam
CORRESPONDING AUTHOR
Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
Department of Civil Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640,Swabi District, Khyber Pakhtunkhwa, Pakistan
Peng Cui
CORRESPONDING AUTHOR
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Key Laboratory of Land Surface Pattern and Simulation/Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad 45320, Pakistan
Wang Hao
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Adil Poshad Khan
Department of Civil Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640,Swabi District, Khyber Pakhtunkhwa, Pakistan
Muhammad Waseem
Department of Civil Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640,Swabi District, Khyber Pakhtunkhwa, Pakistan
Yao Shunyu
China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Muhammad Ramzan
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Li Wanhong
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad 45320, Pakistan
Tashfain Ahmed
Deep Tech Lab, Computer Science and Engineering Department, Michigan State University, East Lansing, Michigan 48823, USA
Related authors
Nazir Ahmed Bazai, Paul A. Carling, Peng Cui, Wang Hao, Zhang Guotao, Liu Dingzhu, and Javed Hassan
The Cryosphere, 18, 5921–5938, https://doi.org/10.5194/tc-18-5921-2024, https://doi.org/10.5194/tc-18-5921-2024, 2024
Short summary
Short summary
We explored the growing threat of glacier lake outburst floods (GLOFs) driven by glacier surges in the Karakoram. Using advanced remote sensing and field data, we identified key lake volumes and depths that indicate potential GLOFs. Our findings improve early warning systems by providing rapid methods to assess lake volumes in remote areas. This research seeks to protect vulnerable communities and contribute to global efforts in predicting and mitigating catastrophic flood risks.
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023, https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary
Short summary
This study used identified stormflow thresholds as a diagnostic tool to characterize abrupt variations in catchment emergent patterns pre- and post-earthquake. Earthquake-induced landslides with spatial heterogeneity and temporally undulating recovery increase the hydrologic nonstationary; thus, large post-earthquake floods are more likely to occur. This study contributes to mitigation and adaptive strategies for unpredictable hydrologic regimes triggered by abrupt natural disturbances.
Li Wei, Dongri Song, Peng Cui, Lijun Su, Gordon G. D. Zhou, Kaiheng Hu, Fangqiang Wei, Yong Hong, Guoqiang Ou, Jun Zhang, Zhicheng Kang, Xiaojun Guo, Wei Zhong, Xiaoyu Li, Yaonan Zhang, Chao Shi, and Hui Tang
Earth Syst. Sci. Data, 17, 7331–7358, https://doi.org/10.5194/essd-17-7331-2025, https://doi.org/10.5194/essd-17-7331-2025, 2025
Short summary
Short summary
This research presents a unique 64-year (1961–2024) debris-flow dataset for Jiangjia Ravine, Dongchuan, Yunnan, China. The dataset includes detailed measurements of debris-flow kinematic parameters (velocity, depth, and discharge), physical–mechanical properties (particle size, yield stress, and viscosity), seismic data, and hydrometeorological records (e.g., minute-by-minute rainfall and soil moisture). The dataset is publicly accessible via the National Cryosphere Desert Data Center (NCDC).
Nazir Ahmed Bazai, Paul A. Carling, Peng Cui, Wang Hao, Zhang Guotao, Liu Dingzhu, and Javed Hassan
The Cryosphere, 18, 5921–5938, https://doi.org/10.5194/tc-18-5921-2024, https://doi.org/10.5194/tc-18-5921-2024, 2024
Short summary
Short summary
We explored the growing threat of glacier lake outburst floods (GLOFs) driven by glacier surges in the Karakoram. Using advanced remote sensing and field data, we identified key lake volumes and depths that indicate potential GLOFs. Our findings improve early warning systems by providing rapid methods to assess lake volumes in remote areas. This research seeks to protect vulnerable communities and contribute to global efforts in predicting and mitigating catastrophic flood risks.
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023, https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary
Short summary
This study used identified stormflow thresholds as a diagnostic tool to characterize abrupt variations in catchment emergent patterns pre- and post-earthquake. Earthquake-induced landslides with spatial heterogeneity and temporally undulating recovery increase the hydrologic nonstationary; thus, large post-earthquake floods are more likely to occur. This study contributes to mitigation and adaptive strategies for unpredictable hydrologic regimes triggered by abrupt natural disturbances.
Cited articles
ACAPS: ACAPS Briefing Note: Pakistan Floods (31 August 2022), https://www.acaps.org/en/countries/pakistan (last access: 6 March 2025), 2022.
Alexander, D.: Applied geomorphology and the impact of natural hazards on the built environment, Nat. Hazards, 4, 57–80, 1991.
Ali, S., Ali, W., Khan, S., Fawad, M., and Javed, M. W.: Landuse-land cover change assessment in Swat valley, Journal of Himalayan Earth Sciences, 45.2, 23, 2012.
Amarasinghe, M., Kulathilaka, S., Robert, D., Zhou, A., and Jayathissa, H.: Risk assessment and management of rainfall-induced landslides in tropical regions: A review, Nat. Hazards, 120, 2179–2231, 2024.
Anjum, M. N., Ding, Y., Shangguan, D., Ijaz, M. W., and Zhang, S.: Evaluation of High-Resolution Satellite-Based Real-Time and Post-Real-Time Precipitation Estimates during 2010 Extreme Flood Event in Swat River Basin, Hindukush Region, Adv. Meteorol., 2016, 2604980, https://doi.org/10.1155/2016/2604980, 2016.
Ansari, R., Liaqat, M. U., and Grossi, G.: Improving flood and drought management in transboundary Upper Jhelum Basin-South Asia, Sci. Total Environ., 945, 174044, https://doi.org/10.1016/j.scitotenv.2024.174044, 2024.
Atta-ur-Rahman: Disaster risk management: flood perspective, VDM Publishing, ISBN 978-3639298918, 2010.
Austin, K. G., Schwantes, A., Gu, Y., and Kasibhatla, P. S.: What causes deforestation in Indonesia?, Environ. Res. Lett., 14, 024007, https://doi.org/10.1088/1748-9326/aaf6db, 2019.
Banking, G. C.: Climate-driven floods push Pakistan inflation to 44.5 %, https://greencentralbanking.com/2022/09/01/climate-driven-floods-pakistan-inflation/ (last access: 6 March 2025), 2022.
Bazai, N. A., Cui, P., Zhou, K. J., Abdul, S., Cui, K. F., Wang, H., Zhang, G. T., and Liu, D. Z.: Application of the soil conservation service model in small and medium basins of the mountainous region of Heilongjiang, China, Int. J. Environ. Sci. Technol., 19, 433–448, https://doi.org/10.1007/s13762-021-03136-1, 2021.
Bonnesoeur, V., Locatelli, B., Guariguata, M. R., Ochoa-Tocachi, B. F., Vanacker, V., Mao, Z., Stokes, A., and Mathez-Stiefel, S.-L.: Impacts of forests and forestation on hydrological services in the Andes: A systematic review, Forest Ecol. Manag., 433, 569–584, 2019.
Borga, M.: Forecasting, early warning and event management: non-structural protection measures for flash floods and debris flows, in: Dating Torrential Processes on Fans and Cones: Methods and Their Application for Hazard and Risk Assessment, Springer, 391–398, https://doi.org/10.1007/978-94-007-4336-6_27, 2012.
Bradshaw, C. J., Sodhi, N. S., and Brook, B. W.: Tropical turmoil: a biodiversity tragedy in progress, Front. Ecol. Environ., 7, 79–87, 2009.
Bu, C.-F., Wu, S.-F., and Yang, K.-B.: Effects of physical soil crusts on infiltration and splash erosion in three typical Chinese soils, Int. J. Sediment Res., 29, 491–501, 2014.
Campbell, R. H., Fleming, R. W., Prior, D., Nichols, D., Varnes, D. J., Hampton, M. A., Sangrey, D. A., and Brabb, E. E.: Landslide classification for identification of mud flows and other landslides, 2nd edition, 1–27, 1989.
Centre for Research on the Epidemiology of Disasters (CRED): Annual Disaster Statistical Review 2014: The Numbers and Trends, Université catholique de Louvain, https://www.cred.be/sites/default/files/ADSR_2014.pdf (last access: 6 March 2025), 2014.
Cepeda, J., Höeg, K., and Nadim, F.: Landslide-triggering rainfall thresholds: a conceptual framework, 43, 69–84, https://doi.org/10.1144/1470-9236/08-066, 2010.
Chen, G., Chong, Y., Meng, X., Yang, Y., Yue, D., Jin, J., Bian, S., Shi, W., and Zhang, Y.: Experimental field study on the formation process of debris flow dam at channel confluence: Implications for early identification of river blockage, Landslides, 21, 1095–1108, https://doi.org/10.1007/s10346-023-02198-1, 2024a.
Chen, H., Dadson, S., and Chi, Y.-G.: Recent rainfall-induced landslides and debris flow in northern Taiwan, Geomorphology, 77, 112–125, 2006.
Chen, L., Zhu, G., Wang, Q. Q., Ye, L., Lin, X., Lu, S., Jiao, Y., Li, R., Meng, G., and Wang, Y.: Influence of mountain orientation on precipitation isotopes in the westerly belt of Eurasia, Global Planet. Change, 240, 104543, https://doi.org/10.1016/j.gloplacha.2024.104543, 2024b.
Choi, C. E. and Liang, Z.: Segmentation and deep learning to digitalize the kinematics of flow-type landslides, Acta Geotech., 19, 1–20, https://doi.org//10.1007/s11440-023-02216-5, 2024.
Cojean, R.: Role of water as triggering factor for landslides and debris flow, International conference and field workshop on floods, Trente, Italy, 1994.
Dahri, Z. H., Ahmad, B., Leach, J. H., and Ahmad, S.: Satellite-based snowcover distribution and associated snowmelt runoff modeling in Swat River Basin of Pakistan, Proc. Pak. Acad. Sci., 48, 19–32, 2011.
Davis, R. S.: Flash flood forecast and detection methods, in: Severe convective storms, Springer, American Meteorological Society, Boston, MA, 481–525, https://doi.org/10.1007/978-1-935704-06-5_12, 2001.
de Brito, M. M. and Evers, M.: Multi-criteria decision-making for flood risk management: a survey of the current state of the art, Nat. Hazards Earth Syst. Sci., 16, 1019–1033, https://doi.org/10.5194/nhess-16-1019-2016, 2016.
Dogan, F. N. and Karpuzcu, M. E.: Effect of land use change on hydrology of forested watersheds, Ecohydrology, 15, e2367, https://doi.org/10.1002/eco.2367, 2022.
Farnsworth, A., Lunt, D. J., Robinson, S. A., Valdes, P. J., Roberts, W. H. G., Clift, P. D., Markwick, P. J., Su, T., Wrobel, N., Bragg, F., Kelland, S.-J., and Pancost, R. D.: Past East Asian Monsoon Evolution Controlled by Paleogeography, Not CO2, Sci. Adv., 5.10, eaax1697, https://doi.org/10.1126/sciadv.aax1697, 2019.
García-Ruiz, J. M.: The effects of land uses on soil erosion in Spain: A review, Catena, 81, 1–11, 2010.
García-Ruiz, J. M., Beguería, S., Alatorre, L. C., and Puigdefábregas, J.: Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees, Geomorphology, 124, 250–259, 2010.
Georgakakos, K. P. and Hudlow, M. D.: Quantitative precipitation forecast techniques for use in hydrologic forecasting, B. Am. Meteor. Soc., 65, 1186–1200, 1984.
Gorr, A. N., McGuire, L. A., Youberg, A. M., and Rengers, F. K.: A progressive flow-routing model for rapid assessment of debris-flow inundation, Landslides, 19, 2055–2073, 2022.
Gul, H., Ijaz, N., Vanicek, I., Rehman, Z. u., Ijaz, Z., Hassan, G. Z., and Rahim, S. A.: State-of-the-art review on stability and serviceability of dikes as a flood infrastructure and their comprehensive assessment in Indus Plain considering global climate change, Nat. Hazards, 120.15, 1–53, https://doi.org/10.1007/s11069-024-06836-2, 2024.
Guo, X., Li, Y., Chen, X., Zhang, J., and Sun, Y.: Variation of debris flow/flood formation conditions at the watershed scale in the Wenchuan Earthquake area, Landslides, 18, 2427–2443, 2021.
Handley, E.: Pakistan climate change: One third of the country is underwater, Open Access Government, 142864, https://www.openaccessgovernment.org/pakistan-climate-change/142864/ (last access: 6 March 2025), 2022.
Hungr, O., Evans, S., Bovis, M., and Hutchinson, J.: A review of the classification of landslides of the flow type, Environ. Eng. Geosci., 7.3, 221–238, https://doi.org/10.2113/gseegeosci.7.3.221, 2002.
Hürlimann, M., Copons, R., and Altimir, J.: Detailed debris flow hazard assessment in Andorra: a multidisciplinary approach, Geomorphology, 78, 359–372, 2006.
Hürlimann, M., Guo, Z., Puig-Polo, C., and Medina, V.: Impacts of future climate and land cover changes on landslide susceptibility: Regional scale modelling in the Val d'Aran region (Pyrenees, Spain), Landslides, 19, 1–20, https://doi.org/10.1007/s10346-021-01775-6, 2022.
Hussain, A., Hussain, I., Rezaei, A., Ullah, W., Lu, M., Zhou, J., and Guan, Y.: Increasing monsoon precipitation extremes in relation to large-scale climatic patterns in Pakistan, Atmos. Res., 309, 107592, https://doi.org/10.1016/j.atmosres.2024.107592, 2024.
Islam, F., Riaz, S., Ghaffar, B., Tariq, A., Shah, S. U., Nawaz, M., Hussain, M. L., Amin, N. U., Li, Q., and Lu, L.: Landslide susceptibility mapping (LSM) of Swat District, Hindu Kush Himalayan region of Pakistan, using GIS-based bivariate modeling, Front. Environ. Sci., 10, 1027423, https://doi.org/10.3389/fenvs.2022.1027423, 2022a.
Islam, F., Riaz, S., Ghaffar, B., Tariq, A., Shah, S. U., Nawaz, M., Hussain, M. L., Amin, N. U., Li, Q., Lu, L., Shah, M., and Aslam, M.: Landslide susceptibility mapping (LSM) of Swat District, Hindu Kush Himalayan region of Pakistan, using GIS-based bivariate modeling, Front. Environ. Sci., 10, 1027423, https://doi.org/10.3389/fenvs.2022.1027423, 2022b.
Iverson, R. M., Logan, M., LaHusen, R. G., and Berti, M.: The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res.-Earth, 115, https://doi.org/10.1029/2009JF001514, 2010.
Jonkman, S. N., Curran, A., and Bouwer, L. M.: Floods have become less deadly: an analysis of global flood fatalities 1975–2022, Nat. Hazards, 120, 6327–6342, https://doi.org/10.1007/s11069-024-06444-0, 2024.
Julien, P. Y. and Lan, Y.: Rheology of hyperconcentrations, J. Hydraul. Eng., 117, 346–353, https://doi.org/10.1061/(ASCE)0733-9429(1991)117:3(346), 1991.
Kamal, A.: Climate, Floods, and Migration in Pakistan, Int. Migr., 61.4, 349–352, https://doi.org/10.1111/imig.13170, 2023.
Kreft, S., Eckstein, D., and Melchior, I.: Global climate risk index 2014, Who suffers most from extreme weather events, 1, 31–32, 2013.
Lal, R.: Soil degradation by erosion, Land Degrad. Dev., 12, 519–539, 2001.
Li, M., Tian, S., Huang, C., Wen-qia, W. U., and Xin, S.: Risk Assessment of Highway in the Upper Reaches of Minjiang River Under the Stress of Debris Flow, Journal of Geoscience and Environment Protection, 9, 21–34, https://doi.org/10.4236/gep.2021.97002, 2021.
Liao, K. H.: A Theory on Urban Resilience to Floods–a Basis for Alternative Planning Practices, Ecol. Soc., 17, 48, https://doi.org/10.5751/es-05231-170448, 2012.
Lijuan, W., Chang, M., Dou, X., Ma, G., and Yang, C.: Analysis of River Blocking Induced by a Debris Flow, Geofluids, 2017, 1268135, https://doi.org/10.1155/2017/1268135, 2017.
Liu, Z., Qiu, H., Zhu, Y., Huangfu, W., Ye, B., Wei, Y., Tang, B., and Kamp, U.: Increasing irrigation-triggered landslide activity caused by intensive farming in deserts on three continents, Int. J. Appl. Earth Obs., 134, 104242, https://doi.org/10.1016/j.jag.2024.104242, 2024.
Ma, M., Wang, H., Yang, Y., Zhao, G., Tang, G., Hong, Z., Clark, R. A., Chen, Y., Xu, H., and Hong, Y.: Development of a new rainfall-triggering index of flash flood warning-case study in Yunnan province, China, J. Flood Risk Manag., 14, e12676, https://doi.org/10.1111/jfr3.12676, 2020.
Malagó, A., Bouraoui, F., and Roo, A. d.: Diagnosis and Treatment of the SWAT Hydrological Response Using the Budyko Framework, Sustainability, 10, 1373, https://doi.org/10.3390/su10051373, 2018.
Mani, Z. A. and Goniewicz, K.: Adapting disaster preparedness strategies to changing climate patterns in Saudi Arabia: A rapid review, Sustainability, 15, 14279, https://doi.org/10.3390/su151914279, 2023.
Masson-Delmotte, V., Zhai, P., Pirani, S., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M., and Scheel Monteiro, P. M.: IPCC, 2021: Summary for policymakers, in: Climate change 2021: The physical science basis, contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change, https://doi.org/10.1017/9781009157896, 2021.
Mayhorn, C. B. and McLaughlin, A. C.: Warning the world of extreme events: A global perspective on risk communication for natural and technological disaster, Saf. Sci., 61, 43–50, 2014.
Mehmood, M., Yaseen, M., Ud-Din, I., Badshah, A., and Khan, M.: Causes of deforestation and its geological impacts in Swat District, Khyber Pakhtunkhwa, Pakistan, Asian Journal of Environment & Ecology, 5, 1–9, 2018.
Mehtab, A., Jiang, Y.-J., Su, L.-J., Shamsher, S., Li, J.-J., and Mahfuzur, R.: Scaling the roots mechanical reinforcement in plantation of cunninghamia R. Br in Southwest China, Forests, 12, 33 https://doi.org/10.3390/f12010033, 2020.
Moghim, S.: Impact of climate variation on hydrometeorology in Iran, Global Planet. Change, 170, 93–105, 2018.
Montgomery, D. R., Schmidt, K. M., Greenberg, H. M., and Dietrich, W. E.: Forest clearing and regional landsliding, Geology, 28, 311–314, 2000.
Nanditha, J., Kushwaha, A. P., Singh, R., Malik, I., Solanki, H., Chuphal, D. S., Dangar, S., Mahto, S. S., Vegad, U., and Mishra, V.: The Pakistan flood of August 2022: Causes and implications, Earth's Future, 11, e2022EF003230, https://doi.org/10.1029/2022EF003230, 2023.
Nastos, P. T. and Dalezios, N. R.: Preface: Advances in meteorological hazards and extreme events, Nat. Hazards Earth Syst. Sci., 16, 1259–1268, https://doi.org/10.5194/nhess-16-1259-2016, 2016.
Nie, W., Tian, C., Song, D., Liu, X., and Wang, E.: Disaster process and multisource information monitoring and warning method for rainfall-triggered landslide: a case study in the southeastern coastal area of China, Nat. Hazards, https://doi.org/10.1007/s11069-024-06897-3, 1–30, 2024.
NWS: National Weather Service Glossary, http://w1.weather.gov/glossary/index.php (last access: 6 March 2025), 2009.
O'Brien, K. L., Sygna, L., Leichenko, R., Adger, W. N., Barnett, J., Mitchell, T., Schipper, E. L. F., Tanner, T., Vogel, C., and Mortreux, C.: Disaster Risk Reduction, Climate Change Adaptation and Human Security: A Commissioned Report for the Norwegian Ministry of Foreign Affairs by the Global Environmental Change and Human Security (GECHS) Project, 3, https://eprints.soas.ac.uk/id/eprint/31410 (last access: 6 March 2025), 2008.
Otto, F. E. L., Zachariah, M., Saeed, F., Siddiqi, A., Kamil, S., Mushtaq, H., Arulalan, T., AchutaRao, K., Chaithra, S. T., Barnes, C., Philip, S., Kew, S., Vautard, R., Koren, G., Pinto, I., Wolski, P., Vahlberg, M., Singh, R., Arrighi, J., van Aalst, M., Thalheimer, L., Raju, E., Li, S., Yang, W., Harrington, L. J., and Clarke, B.: Climate change increased extreme monsoon rainfall, flooding highly vulnerable communities in Pakistan, Environmental Research: Climate, 2, 025001, https://doi.org/10.1088/2752-5295/acbfd5, 2023.
Ouyang, C., He, S., and Tang, C.: Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area, Eng. Geol., 194, 62–72, https://doi.org/10.1016/j.enggeo.2014.07.012, 2015a.
Ouyang, C., He, S., and Xu, Q.: MacCormack-TVD Finite Difference Solution for Dam Break Hydraulics over Erodible Sediment Beds, J. Hydraul. Eng., 141, 06014026, https://doi.org/10.1061/(asce)hy.1943-7900.0000986, 2015b.
Ouyang, C., He, S., Xu, Q., Luo, Y., and Zhang, W.: A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain, Comput. Geosci., 52, 1–10, https://doi.org/10.1016/j.cageo.2012.08.024, 2013.
Ouyang, C., Wang, Z., An, H., Liu, X., and Wang, D.: An example of a hazard and risk assessment for debris flows–A case study of Niwan Gully, Wudu, China, Eng. Geol., 263, 105351, https://doi.org/10.1016/j.enggeo.2019.105351, 2019a.
Ouyang, C., Zhou, K., Xu, Q., Yin, J., Peng, D., Wang, D., and Li, W.: Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China, Landslides, 14, 705–718, https://doi.org/10.1007/s10346-016-0764-9, 2016.
Ouyang, C., An, H., Zhou, S., Wang, Z., Su, P., Wang, D., Cheng, D., and She, J.: Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China, Landslides, 16, 1397–1414, https://doi.org/10.1007/s10346-019-01177-9, 2019b.
Pandey, S., Kumari, N., Dash, S. K., and Al Nawajish, S.: Challenges and Monitoring Methods of Forest Management Through Geospatial Application: A Review, Advances in Remote Sensing for Forest Monitoring, 13, 289–328, https://doi.org/10.1002/9781119788157.ch13, 2022.
Perkins, S. E., Alexander, L. V., and Nairn, J.: Increasing Frequency, Intensity and Duration of Observed Global Heatwaves and Warm Spells, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012gl053361, 2012.
Petley, D.: Global patterns of loss of life from landslides, Geology, 40, 927–930, 2012.
Pisano, L., Zumpano, V., Malek, Ž., Rosskopf, C. M., and Parise, M.: Variations in the susceptibility to landslides, as a consequence of land cover changes: A look to the past, and another towards the future, Sci. Total Environ., 601–602, 1147–1159, 2017.
Potić, I., Mihajlović, L. M., Šimunić, V., Ćurčić, N. B., and Milinčić, M.: Deforestation as a cause of increased surface runoff in the catchment: Remote Sensing and Swat Approach–A case study of southern Serbia, Front. Environ. Sci., 10, 896404, https://doi.org/10.3389/fenvs.2022.896404, 2022.
Pramova, E., Locatelli, B., Djoudi, H., and Somorin, O. A.: Forests and Trees for Social Adaptation to Climate Variability and Change, Wiley Interdisciplinary Reviews Climate Change, https://doi.org/10.1002/wcc.195, 2012.
Preti, F., Dani, A., Alliu, E., and Togni, M.: Deforestation and Danger from Surface Landslide, XXXII National Hydraulic Conference and Hydraulic Constructions, Palermo, September, 14–17, 2010.
Prochaska, A. B., Santi, P. M., Higgins, J. D., and Cannon, S. H.: Debris-flow runout predictions based on the average channel slope (ACS), Eng. Geol., 98, 29–40, 2008.
Qamer, F. M., Abbas, S., Ahmad, B., Hussain, A., Salman, A., Muhammad, S., Nawaz, M., Shrestha, S., Iqbal, B., and Thapa, S.: A framework for multi-sensor satellite data to evaluate crop production losses: the case study of 2022 Pakistan floods, Sci. Rep., 13, 4240, https://doi.org/10.1038/s41598-023-30347-y, 2023.
Rahman, G., Bacha, A. S., Ul Moazzam, M. F., Rahman, A. U., Mahmood, S., Almohamad, H., Al Dughairi, A. A., Al-Mutiry, M., Alrasheedi, M., and Abdo, H. G.: Assessment of landslide susceptibility, exposure, vulnerability, and risk in shahpur valley, eastern hindu kush, Front. Earth Sci., 1348, https://doi.org/10.3389/feart.2022.953627, 2022.
Rahman, Z. U., Ullah, W., Bai, S., Ullah, S., Jan, M. A., Khan, M., and Tayyab, M.: GIS-based flood susceptibility mapping using bivariate statistical model in Swat River Basin, Eastern Hindukush region, Pakistan, Front. Environ. Sci., 11, 1178540, https://doi.org/10.3389/fenvs.2023.1178540, 2023.
Reichenbach, P., Busca, C., Mondini, A., and Rossi, M.: The influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy), Environ. Manage., 54, 1372–1384, 2014.
Rickenmann, D., Laigle, D., McArdell, B. W., and Hübl, J.: Comparison of 2D debris-flow simulation models with field events, Comput. Geosci., 10, 241–264, https://doi.org/10.1007/s10596-005-9021-3, 2006.
Rodrigues, J. A. M., Andrade, A. C. D. O., Viola, M. R., Ferreira, D. D., Mello, C. R. D., and Thebaldi, M. S.: Hydrological Modeling in a Basin of the Brazilian Cerrado Biome, Ambiente E Agua – An Interdisciplinary Journal of Applied Science, 16, https://doi.org/10.4136/ambi-agua.2639, 2021.
Schmitt, R. J. P., Virgüez, E., Ashfaq, S., and Caldeira, K.: Move Up or Move Over: Mapping Opportunities for Climate Adaptation in Pakistan's Indus Plains, Environ. Res. Lett., 18, 114024, https://doi.org/10.1088/1748-9326/acfc59, 2023.
Segoni, S., Piciullo, L., and Gariano, S. L.: Preface: Landslide early warning systems: monitoring systems, rainfall thresholds, warning models, performance evaluation and risk perception, Nat. Hazards Earth Syst. Sci., 18, 3179–3186, https://doi.org/10.5194/nhess-18-3179-2018, 2018.
Shafiq, M., Nasir, J., Batool, S., Naeem, K., Batool, H., Mehmood, S. A., Shahzad, M., Talib, B., and Arif, H.: Spatiotemporal Analysis of Land Use/Land Cover in Swat, Pakistan Using Supervised Classification in Remote Sensing: 2000 to 2015, International Journal of Economic and Environmental Geology, 11, 69–74, https://doi.org/10.46660/ijeeg.Vol11.Iss2.2020.450, 2020.
Shah, A. A., Ye, J., Abid, M., and Ullah, R.: Determinants of flood risk mitigation strategies at household level: a case of Khyber Pakhtunkhwa (KP) province, Pakistan, Nat. Hazards, 88, 415–430, 2017.
Shah, S. J. H.: Role of Institutions in Combating the Effects of Flood Hazard in Punjab-a Case Study of District Chiniot, Arts and Social Sciences, 1, 31–41, https://doi.org/10.34154/2020-assj-0202-33-43/euraass, 2020.
Sidle, R. and Ochiai, H.: Processes, prediction, and land use, Water resources monograph, American Geophysical Union, Washington, 525 pp., ISBN-13 978-0-87590-322-4, 2006.
Sidle, R. C.: A theoretical model of the effects of timber harvesting on slope stability, Water Resour. Res., 28, 1897–1910, 1992.
Špitalar, M., Gourley, J. J., Lutoff, C., Kirstetter, P.-E., Brilly, M., and Carr, N.: Analysis of flash flood parameters and human impacts in the US from 2006 to 2012, J. Hydrol., 519, 863–870, 2014.
Stancanelli, L. M. and Musumeci, R. E.: Geometrical Characterization of Sediment Deposits at the Confluence of Mountain Streams, Water, 10, 401, https://doi.org/10.3390/w10040401, 2018.
Stickler, C. M., Coe, M. T., Costa, M. H., Nepstad, D. C., McGrath, D. G., Dias, L. C., Rodrigues, H. O., and Soares-Filho, B. S.: Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales, P. Natl. Acad. Sci. USA, 110, 9601–9606, 2013.
Stoffel, M.: Magnitude–frequency relationships of debris flows – A case study based on field surveys and tree-ring records, Geomorphology, 116, 67–76, 2010.
Tang, G., Clark, M. P., Papalexiou, S. M., Ma, Z., and Hong, Y.: Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets, Remote Sens. Environ., 240, 111697, https://doi.org/10.1016/j.rse.2020.111697, 2020.
Tang, G., Zeng, Z., Ma, M., Liu, R., Wen, Y., and Hong, Y.: Can near-real-time satellite precipitation products capture rainstorms and guide flood warning for the 2016 summer in South China?, IEEE Geosci. Remote Sens. Lett., 14, 1208–1212, 2017.
Tian, Y., Zhao, Y., Son, S. W., Luo, J. J., Oh, S. G., and Wang, Y.: A deep-learning ensemble method to detect atmospheric rivers and its application to projected changes in precipitation regime, J. Geophys. Res.-Atmos., 128, e2022JD037041, https://doi.org/10.1029/2022JD037041, 2023.
Tsukamoto, Y.: Effect of vegetation on debris slide occurrences on steep forested slopes in Japan Islands, Effect of vegetation on debris slide occurrences on steep forested slopes in Japan Islands, Environmental Science, IAHS-AISH publication, 183–191, https://api.semanticscholar.org/CorpusID:131119827 (last access: 6 March 2024), 1990.
Valente-Neto, F., Koroiva, N. R., Fonseca-Gessner, A. A., and Roque, F. d. O.: The Effect of Riparian Deforestation on Macroinvertebrates Associated With Submerged Woody Debris, Aquat. Ecol., 49, 115–125, https://doi.org/10.1007/s10452-015-9510-y, 2015.
Vanacker, V., Vanderschaeghe, M., Govers, G., Willems, E., Poesen, J., Deckers, J., and De Bievre, B.: Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds, Geomorphology, 52, 299–315, 2003.
Volpe, E., Gariano, S. L., Ardizzone, F., Fiorucci, F., and Salciarini, D.: A Heuristic Method to Evaluate the Effect of Soil Tillage on Slope Stability: A Pilot Case in Central Italy, Land, 11, 912, https://doi.org/10.3390/land11060912, 2022.
Wang, T., Yin, K., Li, Y., Chen, L., Xiao, C., Zhu, H., and van Westen, C.: Physical vulnerability curve construction and quantitative risk assessment of a typhoon-triggered debris flow via numerical simulation: A case study of Zhejiang Province, SE China, Landslides, 21, 1333–1352, 2024.
Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., Kunz, M., Mohr, S., Muis, S., Riddell, G. A., Schäfer, A., Stanley, T., Veldkamp, T. I. E., and Winsemius, H. C.: Review article: Natural hazard risk assessments at the global scale, Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, 2020.
Wu, Y. H., Liu, K. F., and Chen, Y. C.: Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study, J. Mountain Sci., 10, 293–304, https://doi.org/10.1007/s11629-013-2511-1, 2013.
Xu, H., Zhao, Y., Zhao, D., Duan, Y., and Xu, X.: Improvement of disastrous extreme precipitation forecasting in North China by Pangu-weather AI-driven regional WRF model, Environ. Res. Lett., 19, 054051, https://doi.org/10.1088/1748-9326/ad41f0, 2024.
Short summary
The 2022 monsoon in Pakistan's Swat River basin brought record rainfall, exceeding averages by 7–8%, triggering catastrophic debris flows and floods. Key factors include extreme rainfall, deforestation, and steep slopes. Fieldwork, remote sensing, and simulations highlight land degradation's role in intensifying floods. Recommendations include reforestation, early warning systems, and land use reforms to protect communities and reduce future risks
The 2022 monsoon in Pakistan's Swat River basin brought record rainfall, exceeding averages by...
Altmetrics
Final-revised paper
Preprint