Articles | Volume 24, issue 3
https://doi.org/10.5194/nhess-24-847-2024
https://doi.org/10.5194/nhess-24-847-2024
Research article
 | 
11 Mar 2024
Research article |  | 11 Mar 2024

An open-source radar-based hail damage model for buildings and cars

Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch

Related authors

Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024,https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Atmospheric drivers of melt-related ice speed-up events on the Russell Glacier in southwest Greenland
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023,https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Classification of North Atlantic and European extratropical cyclones using multiple measures of intensity
Joona Cornér, Clément Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria A. Sinclair
Nat. Hazards Earth Syst. Sci., 25, 207–229, https://doi.org/10.5194/nhess-25-207-2025,https://doi.org/10.5194/nhess-25-207-2025, 2025
Short summary
Subseasonal forecasts of heat waves in West African cities
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025,https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Impacts on and damage to European forests from the 2018–2022 heat and drought events
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025,https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Brief communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Georgy Ayzel and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 41–47, https://doi.org/10.5194/nhess-25-41-2025,https://doi.org/10.5194/nhess-25-41-2025, 2025
Short summary
Examining the Eastern European extreme summer temperatures of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 24, 4683–4706, https://doi.org/10.5194/nhess-24-4683-2024,https://doi.org/10.5194/nhess-24-4683-2024, 2024
Short summary

Cited articles

Ackermann, L., Soderholm, J., Protat, A., Whitley, R., Ye, L., and Ridder, N.: Radar and environment-based hail damage estimates using machine learning, Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024, 2024. a
Allen, J. T., Giammanco, I. M., Kumjian, M. R., Jurgen Punge, H., Zhang, Q., Groenemeijer, P., Kunz, M., and Ortega, K.: Understanding Hail in the Earth System, Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665, 2020. a
Amburn, S. A. and Wolf, P. L.: VIL Density as a Hail Indicator, Weather Forecast., 12, 473–478, https://doi.org/10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2, 1997. a
Atlas, D., Harper, W. G., Ludlam, F. H., and MacKlin, W. C.: Radar scatter by large hail, Q. J. Roy. Meteor. Soc., 86, 468–482, https://doi.org/10.1002/qj.49708637004, 1960. a
Auer, A. H.: Hail Recognition through the Combined Use of Radar Reflectivity and Cloud-Top Temperatures, Mon. Weather Rev., 122, 2218–2221, https://doi.org/10.1175/1520-0493(1994)122<2218:HRTTCU>2.0.CO;2, 1994. a
Download
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Altmetrics
Final-revised paper
Preprint