Articles | Volume 24, issue 12
https://doi.org/10.5194/nhess-24-4267-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-4267-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
María-Paz Reyes-Hardy
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland
Luigia Sara Di Maio
Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland
Lucia Dominguez
Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland
Corine Frischknecht
Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland
Sébastien Biass
Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland
Leticia Freitas Guimarães
Departamento de Geologia, Instituto de Geociências, Universidade Federal da Bahia, R. Barão de Jeremoabo, s/n – Ondina, Salvador – BA, 40170-290, Brazil
Amiel Nieto-Torres
Millennium Institute on Volcanic Risk Research – Ckelar Volcanoes, Avenida Angamos 0610, Antofagasta, Chile
Manuela Elissondo
Servicio Geológico Minero Argentino, SEGEMAR, Av. General Paz 5445 (colectora) Parque Tecnológico Miguelete Edificio 25. Piso 1 (Of 112) Buenos Aires, San Martín B1650KNA, Argentina
Gabriela Pedreros
Servicio Nacional de Geología y Minería, Red Nacional de Vigilancia Volcánica, Carlos Cardona Idarraga Rudecindo Ortega 03850, Temuco, Chile
Rigoberto Aguilar
Instituto Geológico Minero y Metalúrgico, Observatorio Vulcanológico del INGEMMET, Barrio Magisterial Nro. 2 B-16 Umacollo – Yanahuara, Arequipa, Peru
Álvaro Amigo
Servicio Nacional de Geología y Minería, Red Nacional de Vigilancia Volcánica, Carlos Cardona Idarraga Rudecindo Ortega 03850, Temuco, Chile
Sebastián García
Servicio Geológico Minero Argentino, SEGEMAR, Av. General Paz 5445 (colectora) Parque Tecnológico Miguelete Edificio 25. Piso 1 (Of 112) Buenos Aires, San Martín B1650KNA, Argentina
Pablo Forte
Observatorio Argentino de Vigilancia Volcánica (OAVV), SEGEMAR, CONICET, Av. Gral Paz 5445 Parque Tecnológico Miguelete. Edificio 25. Piso 1 (Of A1-03) Buenos Aires, San Martín B1650 WAB, Argentina
Costanza Bonadonna
Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205 Geneva, Switzerland
Related authors
Lucia Dominguez, Sébastien Biass, Corine Frischknecht, Alana Weir, Maria Paz Reyes-Hardy, Luigia Sara Di Maio, Nemesio Pérez, and Costanza Bonadonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-986, https://doi.org/10.5194/egusphere-2025-986, 2025
Short summary
Short summary
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By combining forensic techniques with network analysis, this research quantifies the effects of physical damage on the road network as well as the cascading loss of functionality and systemic disruptions to emergency services, health centers, agriculture and education. Result show the relevance of redundant infrastructure and landuse on effective risk management and mitigation of future volcanic impacts.
Elinor S. Meredith, Rui Xue Natalie Teng, Susanna F. Jenkins, Josh L. Hayes, Sébastien Biass, and Heather Handley
Nat. Hazards Earth Syst. Sci., 25, 2731–2749, https://doi.org/10.5194/nhess-25-2731-2025, https://doi.org/10.5194/nhess-25-2731-2025, 2025
Short summary
Short summary
Cities near volcanoes expose populations to hazards. We ranked 1106 cities by population exposed to volcanoes within < 100 km, nearest distance, and number of nearby volcanoes. Bandung ranks highest, with ~8 M exposed within < 30 km of 12 volcanoes. Jakarta leads populations exposed within <100 km (~38 M). Central America has the highest proportion of city exposure, with San Salvador near 23 volcanoes. We provide a global city exposure perspective, identifying areas for localized mitigation.
Simon Thivet, Gholamhossein Bagheri, Przemyslaw M. Kornatowski, Allan Fries, Jonathan Lemus, Riccardo Simionato, Carolina Díaz-Vecino, Eduardo Rossi, Taishi Yamada, Simona Scollo, and Costanza Bonadonna
Atmos. Meas. Tech., 18, 2803–2824, https://doi.org/10.5194/amt-18-2803-2025, https://doi.org/10.5194/amt-18-2803-2025, 2025
Short summary
Short summary
This work presents an innovative way of sampling and analyzing volcanic clouds using an unoccupied aircraft system (UAS). The UAS can reach hazardous environments to sample volcanic particles and measure in situ key parameters, such as the atmospheric concentration of volcanic aerosols and gases. Acquired data bridge the gap between the existing approaches of ground sampling and remote sensing, thereby contributing to the understanding of volcanic cloud dispersion and impact.
Luigi Mereu, Manuel Stocchi, Alexander Garcia, Michele Prestifilippo, Laura Sandri, Costanza Bonadonna, and Simona Scollo
Nat. Hazards Earth Syst. Sci., 25, 1943–1962, https://doi.org/10.5194/nhess-25-1943-2025, https://doi.org/10.5194/nhess-25-1943-2025, 2025
Short summary
Short summary
By considering the quantification of tephra mass deposited on roads following an eruption (or a series of explosive volcanic eruptions), in this work we assessed the cumulated tephra mass on the road networks in three selected towns on Mt Etna’s eastern flank during several paroxysms in 2021. This is a first attempt to estimate the amount of tephra that must be removed during a crisis that could be reused, converting in this way a potential problem into an opportunity.
Lucia Dominguez, Sébastien Biass, Corine Frischknecht, Alana Weir, Maria Paz Reyes-Hardy, Luigia Sara Di Maio, Nemesio Pérez, and Costanza Bonadonna
EGUsphere, https://doi.org/10.5194/egusphere-2025-986, https://doi.org/10.5194/egusphere-2025-986, 2025
Short summary
Short summary
This study assess the cascading impacts of the 2021 Tajogaite eruption on La Palma, Spain. By combining forensic techniques with network analysis, this research quantifies the effects of physical damage on the road network as well as the cascading loss of functionality and systemic disruptions to emergency services, health centers, agriculture and education. Result show the relevance of redundant infrastructure and landuse on effective risk management and mitigation of future volcanic impacts.
Noa Ligot, Patrick Bogaert, Sébastien Biass, Guillaume Lobet, and Pierre Delmelle
Nat. Hazards Earth Syst. Sci., 23, 1355–1369, https://doi.org/10.5194/nhess-23-1355-2023, https://doi.org/10.5194/nhess-23-1355-2023, 2023
Short summary
Short summary
Assessing risk to crops from volcanic ashfall is critical to protect people who rely on agriculture for their livelihood and food security. Ash retention on crop leaves is a key process in damage initiation. Experiments with tomato and chilli pepper plants revealed that ash retention increases with decreasing ash grain size and is enhanced when leaves are pubescent or their surfaces are wet. We propose a new relationship to quantify potential crop yield loss as a function of ash retention.
Sébastien Biass, Susanna F. Jenkins, William H. Aeberhard, Pierre Delmelle, and Thomas Wilson
Nat. Hazards Earth Syst. Sci., 22, 2829–2855, https://doi.org/10.5194/nhess-22-2829-2022, https://doi.org/10.5194/nhess-22-2829-2022, 2022
Short summary
Short summary
We present a methodology that combines big Earth observation data and interpretable machine learning to revisit the impact of past volcanic eruptions recorded in archives of multispectral satellite imagery. Using Google Earth Engine and dedicated numerical modelling, we revisit and constrain processes controlling vegetation vulnerability to tephra fallout following the 2011 eruption of Cordón Caulle volcano, illustrating how this approach can inform the development of risk-reduction policies.
Susanna F. Jenkins, Sébastien Biass, George T. Williams, Josh L. Hayes, Eleanor Tennant, Qingyuan Yang, Vanesa Burgos, Elinor S. Meredith, Geoffrey A. Lerner, Magfira Syarifuddin, and Andrea Verolino
Nat. Hazards Earth Syst. Sci., 22, 1233–1265, https://doi.org/10.5194/nhess-22-1233-2022, https://doi.org/10.5194/nhess-22-1233-2022, 2022
Short summary
Short summary
There is a need for large-scale comparable assessments of volcanic threat, but previous approaches assume circular hazard to exposed population. Our approach quantifies and ranks five exposure types to four volcanic hazards for 40 volcanoes in Southeast Asia. Java has the highest median exposure, with Merapi consistently ranking as the highest-threat volcano. This study and the tools developed provide a road map with the possibility to extend them to other regions and/or towards impact and loss.
Costanza Bonadonna, Ali Asgary, Franco Romerio, Tais Zulemyan, Corine Frischknecht, Chiara Cristiani, Mauro Rosi, Chris E. Gregg, Sebastien Biass, Marco Pistolesi, Scira Menoni, and Antonio Ricciardi
Nat. Hazards Earth Syst. Sci., 22, 1083–1108, https://doi.org/10.5194/nhess-22-1083-2022, https://doi.org/10.5194/nhess-22-1083-2022, 2022
Short summary
Short summary
Evacuation planning and management represent a key aspect of volcanic crises because they can increase people's protection as well as minimize the potential impacts on the economy, properties and infrastructure of the affected area. We present a simulation tool that assesses the effectiveness of different evacuation scenarios as well as a model to assess the economic impact of evacuation as a function of evacuation duration and starting period using the island of Vulcano (Italy) as a case study.
Frances Beckett, Eduardo Rossi, Benjamin Devenish, Claire Witham, and Costanza Bonadonna
Atmos. Chem. Phys., 22, 3409–3431, https://doi.org/10.5194/acp-22-3409-2022, https://doi.org/10.5194/acp-22-3409-2022, 2022
Short summary
Short summary
As volcanic ash is transported through the atmosphere, it may collide and stick together to form aggregates. Neglecting the process of aggregation in atmospheric dispersion models could lead to inaccurate forecasts used by civil aviation for hazard assessment. We developed an aggregation scheme for use with the model NAME, which is used by the London Volcanic Ash Advisory Centre. Using our scheme, we investigate the impact of aggregation on simulations of the 2010 Eyjafjallajökull ash cloud.
Eduardo Rossi and Costanza Bonadonna
Geosci. Model Dev., 14, 4379–4400, https://doi.org/10.5194/gmd-14-4379-2021, https://doi.org/10.5194/gmd-14-4379-2021, 2021
Short summary
Short summary
SCARLET-1.0 is a MATLAB package that creates virtual aggregates starting from a population of irregular shapes. Shapes are described in terms of the Standard Triangulation Language (STL) format, and this allows importing a great variety of shapes, such as from 3D scanning. The package produces a new STL file as an output and different analytical information about the packing, such as the porosity. It has been specifically designed for use in volcanology and scientific education.
Isaac Kerlow, Gabriela Pedreros, and Helena Albert
Geosci. Commun., 3, 343–364, https://doi.org/10.5194/gc-3-343-2020, https://doi.org/10.5194/gc-3-343-2020, 2020
Short summary
Short summary
Earth Girl Volcano is a casual strategy interactive game about saving communities at risk of volcanic hazards. The easy-to-play game features a friendly animated visual style and an engaging simulation of volcanic events. The game was designed by a multidisciplinary team to appeal to mainstream non-technical audiences, and it was inspired by the experiences of disaster survivors and civil defense teams. Players can learn through gameplay about disaster preparedness and response.
Cited articles
Aguilar, R., Thouret, J.-C., Samaniego, P., Wörner, G., Jicha, B., Paquette, J.-L., Suaña, E., and Finizola, A.: Growth and evolution of long-lived, large volcanic clusters in the Central Andes: The Chachani Volcano Cluster, southern Peru, J. Volcanol. Geoth. Res., 426, 107539, https://doi.org/10.1016/j.jvolgeores.2022.107539, 2022.
Aguilera, F.: Origen y naturaleza de los fluidos en los sistemas volcánicos, geotermales y termales de baja entalpía de la Zona Volcánica Central entre los 17°43′S y 25°10′ S, Chile, PhD Thesis, Univ. Católica del Norte, 393, 2008 (in Spanish).
Aguilera, F., Viramonte, J., Medina, E., Guzmán, K., Becchio, R., Delgado, H., and Arnosio, M.: Eruptive Activity From Lascar Volcano (2003–2005), XI Congr. Geológico Chil. Antofagasta, II Región, Chile, 7–11 August 2006, Universidad Catolica del Norte, 2, 397–400, 2006.
Aguilera, F., Tassi, F., Darrah, T., Moune, S., and Vaselli, O.: Geochemical model of a magmatic–hydrothermal system at the Lastarria volcano, northern Chile, B. Volcanol., 74, 119–134, https://doi.org/10.1007/s00445-011-0489-5, 2012.
Aguilera, F., Layana, S., Rodríguez-Díaz, A., González, C., Cortés, J., and Inostroza, M.: Hydrothermal alteration, fumarolic deposits and fluids from Lastarria Volcanic Complex: A multidisciplinary study, Andean Geol., 43, 166, https://doi.org/10.5027/andgeoV43n2-a02, 2016.
Aguilera, F., Layana, S., Rojas, F., Arratia, P., Wilkes, T. C., González, C., Inostroza, M., McGonigle, A. J. S., Pering, T. D., and Ureta, G.: First measurements of gas flux with a low-cost smartphone sensor-based uv camera on the volcanoes of Northern Chile, Remote Sens., 12, 2122, https://doi.org/10.3390/rs12132122, 2020.
Aguilera, F., Apaza, F., Del Carpio, J., Grosse, P., Jiménez, N., Ureta, G., Inostroza, M., Báez, W., Layana, S., Gonzalez, C., Rivera, M., Ortega, M., Gonzalez, R., and Iriarte, R.: Advances in scientific understanding of the Central Volcanic Zone of the Andes: a review of contributing factors, B. Volcanol., 84, 1–8, https://doi.org/10.1007/s00445-022-01526-y, 2022.
Amigo, A.: Volcano monitoring and hazard assessments in Chile, Volcanica, 4, 1–20, https://doi.org/10.30909/vol.04.S1.0120, 2021.
Amigo, A., Bertin, D., and Orozco, G.: Peligros volcanicos de la zona norte de Chile, Regiones de Arica y Parinacota, Tarapacá, Antofagasta y Atacama, Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental, https://repositorio.sernageomin.cl/items/427cac2c-4db2-43aa-8f5a-6563c08a7ba5 (last access: 18 November 2024), 2012.
Anderssohn, J., Motagh, M., Walter, T. R., Rosenau, M., Kaufmann, H., and Oncken, O.: Surface deformation time series and source modeling for a volcanic complex system based on satellite wide swath and image mode interferometry: The Lazufre system, central Andes, Remote Sens. Environ., 113, 2062–2075, https://doi.org/10.1016/j.rse.2009.05.004, 2009.
Antayhua, Y., Ramos, D., and Masías, P.: Monitoreo de los volcanes Ticsani, Sabancaya y Huaynaputina: Periodo 2006–2012, Boletín No 53 Ser. C Geodinámica e Ing. Geológica, 124, INGEMMET, https://repositorio.ingemmet.gob.pe/handle/20.500.12544/295 (last access: 18 November 2024), 2013.
Apaza, F., Kern, C., Ortega, M., and Miranda, R.: The July 2019 explosive activity of Ubinas Volcano, Peru, EGU21-3529, 1, https://doi.org/10.5194/egusphere-egu21-3529, 2021.
Auker, M. R., Sparks, R. S. J., Jenkins, S. F., Aspinall, W., Brown, S. K., Deligne, N. I., Jolly, G., Loughlin, S. C., Marzocchi, W., Newhall, C. G., and Palma, J. L.: Development of a new global Volcanic Hazard Index (VHI), in: Global Volcanic Hazards and Risk, Cambridge University Press, 349–358, https://doi.org/10.1017/CBO9781316276273.024, 2015.
Báez, W., Arnosio, M., Chiodi, A., Ortiz-Yañes, A., Viramonte, J. G., Bustos, E., Giordano, G., and López, J. F.: Stratigraphy and evolution of the Cerro Blanco Volcanic Complex, Puna Austral, Argentina, Rev. Mex. Cienc. Geol., 32, 29–49, 2015.
Bailey, R. A., Beauchemin, P. R., Kapinos, F. P., and Klick, D. W.: The Volcano Hazards Program: objectives and long-range plans, Open-File Rep. 83-400, U. S. Geol. Surv., Reston, VA, 33 pp., https://doi.org/10.3133/ofr83400, 1983.
Barazangi, M. and Isacks, B. L.: Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America, Geology, 4, 686, https://doi.org/10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2, 1976.
Bertin, D.: Volcano-tectonic history and volcanic hazard assessment of the 22.5–29° S segment of the Central Volcanic Zone of the Andes, Dr. Diss. Res. Space@Auckland. Univ. Auckl., 248, https://researchspace.auckland.ac.nz/handle/2292/59546 (last access: 18 November 2024), 2022.
Bertin, D., Lindsay, J. M., Cronin, S. J., de Silva, S. L., Connor, C. B., Caffe, P. J., Grosse, P., Báez, W., Bustos, E., and Constantinescu, R.: Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes, Front. Earth Sci., 10, 875439, https://doi.org/10.3389/feart.2022.875439, 2022.
Bertin, L., Jara, G., and Toloza, V.: Peligros del volcán Parinacota, región de Arica y Parinacota, Carta Geológica de Chile, Serie de Geología Ambiental: X p., 1 mapa escala 1:50.000, Servicio Nacional de Geología y Minería, Santiago, https://www.difrol.cl/transparencia/docs/terceros/Res_2022/98_SERNAGEOMIN.pdf (last access: 18 November 2024), 2022.
BGVN: Report on Sabancaya (Peru), edited by: Crafford, A. E. and Venzke, E., Glob. Volcanism Program, 2021, Bull. Glob. Volcanism Network, Smithson. Institution, 46, https://volcano.si.edu/showreport.cfm?doi=10.5479/si.GVP.BGVN202104-354006 (last access: 18 November 2024), 2021.
Bredemeyer, S., Ulmer, F.-G., Hansteen, T., and Walter, T.: Radar Path Delay Effects in Volcanic Gas Plumes: The Case of Láscar Volcano, Northern Chile, Remote Sens., 10, 1514, https://doi.org/10.3390/rs10101514, 2018.
Bromley, G. R. M., Thouret, J.-C., Schimmelpfennig, I., Mariño, J., Valdivia, D., Rademaker, K., del Pilar Vivanco Lopez, S., Team, A., Aumaître, G., Bourlès, D., and Keddadouche, K.: In situ cosmogenic 3He and 36Cl and radiocarbon dating of volcanic deposits refine the Pleistocene and Holocene eruption chronology of SW Peru, B. Volcanol., 81, 64, https://doi.org/10.1007/s00445-019-1325-6, 2019.
Brunori, C. A., Bignami, C., Stramondo, S., and Bustos, E.: 20 years of active deformation on volcano caldera: Joint analysis of InSAR and AInSAR techniques, Int. J. Appl. Earth Obs., 23, 279–287, https://doi.org/10.1016/j.jag.2012.10.003, 2013.
Budach, I., Brasse, H., and Díaz, D.: Imaging of conductivity anomalies at Lazufre volcanic complex, Northern Chile, through 3-D inversion of magnetotelluric data, Schmucker–Weidelt-Kolloquium, 19–23 September 2011, Neustadt an der Weinstraße, 27–34, 2011.
Byrdina, S., Ramos, D., Vandemeulebrouck, J., Masias, P., Revil, A., Finizola, A., Gonzales Zuñiga, K., Cruz, V., Antayhua, Y., and Macedo, O.: Influence of the regional topography on the remote emplacement of hydrothermal systems with examples of Ticsani and Ubinas volcanoes, Southern Peru, Earth Planet. Sc. Lett., 365, 152–164, https://doi.org/10.1016/j.epsl.2013.01.018, 2013.
Cahill, T. and Isacks, B. L.: Seismicity and shape of the subducted Nazca Plate, J. Geophys. Res., 97, 17503, https://doi.org/10.1029/92JB00493, 1992.
Capaccioni, B., Aguilera, F., Tassi, F., Darrah, T., Poreda, R. J., and Vaselli, O.: Geochemical and isotopic evidences of magmatic inputs in the hydrothermal reservoir feeding the fumarolic discharges of Tacora volcano (northern Chile), J. Volcanol. Geoth. Res., 208, 77–85, https://doi.org/10.1016/j.jvolgeores.2011.09.015, 2011.
Centeno, R., Anccasi, R., and Macedo, O.: Sismos distales de fractura observados en la zona de los Volcanes Misti y Chachani, 4, https://app.ingemmet.gob.pe/biblioteca/pdf/BSGP-109-34.pdf (last access: 18 November 2024), 2013.
Chiodi, A., Tassi, F., Báez, W., Filipovich, R., Bustos, E., Glok Galli, M., Suzaño, N., Ahumada, M. F., Viramonte, J. G., Giordano, G., Pecoraino, G., and Vaselli, O.: Preliminary conceptual model of the Cerro Blanco caldera-hosted geothermal system (Southern Puna, Argentina): Inferences from geochemical investigations, J. S. Am. Earth Sci., 94, 102213, https://doi.org/10.1016/j.jsames.2019.102213, 2019.
Clavero, J., Sparks, S., Polanco, E., and Pringle, M.: Evolution of Parinacota volcano, Central Andes, Northern Chile, Rev. Geol. Chile, 31, 317–347, https://doi.org/10.4067/S0716-02082004000200009, 2004.
Clavero, J., Soler, V., and Amigo, A.: Caracterización preliminar de la actividad sísmica y de desgasificación pasiva de volcanes activos de los Andes Centrales del Norte de Chile, XI Congr. Geológico Chil. Antofagasta, II Reg. Chile, 7–11 August 2006, Universidad Catolica del Norte, 2, 443–446, https://www.researchgate.net/profile/Jorge-Clavero/publication/350890412_CARACTERIZACION (last access: 18 November 2024), 2006.
Contreras, Á.: Caracterización de la mineralogía de alteración hidrotermal en superficie del Volcán Tacora y sus alrededores, Región de Arica y Parinacota, Mem. para optar al título geólogo, 98 pp., https://repositorio.uchile.cl/bitstream/2250/113298/1/cf-contreras_ap.pdf (last access: 18 November 2024), 2013.
Cruz, J.: Análisis de la actividad sísmica en el volcán Ticsani y su variación temporal, periodo 1999–2019, Inf. vulcanológico IGP/CENVUL-TIC/IV 2020-0001, 72, https://repositorio.igp.gob.pe/items/a3587fcd-fc08-44f6-934b-f5ed544ccb59 (last access: 18 November 2024), 2020.
Cruz, V., Vargas, V., and Matsuda, K.: Geochemical Characterization of Thermal Waters in the Calientes Geothermal Field, Tacna, South of Peru, Proc. World Geotherm. Congr. 2010, 25–29 April 2010, Nusa Dua, Bali, Indonesia, 7, https://repositorio.ingemmet.gob.pe/handle/20.500.12544/1676 (last access: 18 November 2024), 2010.
Cruz, V., Flores, R., and Velarde, Y.: Caracterización y evaluación del potencial geotérmico de la zona geotermal Casiri-Kallapuma, Región Tacna, INGEMMET, Boletín Ser. B Geol. Económica, No. 69, 250, https://repositorio.ingemmet.gob.pe/handle/20.500.12544/2801 (last access: 18 November 2024), 2020.
De Silva, S. and Francis, P.: Volcanoes of the Central Andes, Springer Verlag, Berlin, Heidelberg, New York, 216 pp., ISBN 3-540-53706-6, ISBN 0-387-53706-6, 1991.
Del Carpio, J. A. and Torres, J. L.: La actividad sísmica en el volcán Ubinas y su variación temporal (1998–2019) para la identificación de patrones de sismicidad a ser considerados en la gestión del riesgo de desastres, 71, https://repositorio.igp.gob.pe/items/fa5e88d8-3460-4c3b-8bc3-471545b4499a (last access: 18 November 2024), 2020.
Donovan, A. and Oppenheimer, C.: Volcanoes on borders: a scientific and (geo)political challenge, B. Volcanol., 81, 31, https://doi.org/10.1007/s00445-019-1291-z, 2019.
Elissondo, M. and Farías, C.: Riesgo volcánico relativo en territorio Argentino, Inst. Geol. y Recur. Miner. Serv. Geológico Min. Argentino, Ser. Contrib. Técnicas Peligrosidad Geológica No. 28, 99, https://repositorio.smn.gob.ar/handle/20.500.12160/2753 (last access: 18 November 2024), 2024.
Elissondo, M., Farías, C., and Collini, E.: Evaluacion del riesgo volcanico relativo en argentina, Cities Volcanoes 9, Puerto Varas, Chile, Poster, https://www.researchgate.net/publication/341232077_Cities_on_Volcanoes_9_Conference_CoV9_Understanding_Volcanoes_and_Society_-_The_Key_for_Risk_Mitigation_FINAL_PROGRAM . S1.2 Volcanic Risk Assessment in Argentina (last access: 28 November 2024), 2016.
Ewert, J. W.: System for Ranking Relative Threats of U.S. Volcanoes, Nat. Hazards Rev., 8, 112–124, https://doi.org/10.1061/(ASCE)1527-6988(2007)8:4(112), 2007.
Ewert, J. W., Miller, C. D., Tilling, R. I., and Neal, C. A.: Revised Criteria for Identifying High-Risk Volcanoes Around theWorld, No. 45, EOS T. Am. Geophys. Un., 79, 993, 1998.
Ewert, J. W., Guffanti, M., and Murray, T. L.: An assessment of volcanic threat and monitoring capabilities in the United States: Framework for a National Volcano Early Warning System, US Geological Survey Open-File Report 2005-1164, US Geological Survey, p. 62, https://doi.org/10.3133/ofr20051164, 2005.
FEMA: Design guide for improving critical facility safety from flooding and high winds: providing protection to people and buildings, US Department of homeland security, https://www.fema.gov/sites/default/files/2020-08/fema543_design_guide_complete.pdf (last access: 28 November 2024), 2007.
Fernandez-Turiel, J. L., Perez–Torrado, F. J., Rodriguez-Gonzalez, A., Saavedra, J., Carracedo, J. C., Rejas, M., Lobo, A., Osterrieth, M., Carrizo, J. I., Esteban, G., Gallardo, J., and Ratto, N.: La gran erupción de hace 4.2 ka cal en Cerro Blanco, Zona Volcánica Central, Andes: nuevos datos sobre los depósitos eruptivos holocenos en la Puna sur y regiones adyacentes, Estud. Geológicos, 75, 088, https://doi.org/10.3989/egeol.43438.515, 2019.
Fialko, Y. and Pearse, J.: Sombrero Uplift Above the Altiplano-Puna Magma Body: Evidence of a Ballooning Mid-Crustal Diapir, Science, 338, 250–252, https://doi.org/10.1126/science.1226358, 2012.
Fídel, L. and Huamaní, A.: Mapa preliminar de amenaza volcánica potencial del Volcán Yucamane, Boletín No. 26 Ser. C Geodinámica e Ing. Geológica, 165, INGEMMET, https://repositorio.ingemmet.gob.pe/handle/20.500.12544/250 (last access: 18 November 2024), 2001.
Forte, P., Rodríguez, L., Jácome Paz, M. P., Caballero García, L., Alpízar Segura, Y., Bustos, E., Perales Moya, C., Espinoza, E., Vallejo, S., and Agusto, M.: Volcano monitoring in Latin America: taking a step forward, Volcanica, 4, vii–xxxiii, https://doi.org/10.30909/vol.04.S1.viixxxiii, 2021.
Froger, J.-L., Remy, D., Bonvalot, S., and Legrand, D.: Two scales of inflation at Lastarria-Cordon del Azufre volcanic complex, central Andes, revealed from ASAR-ENVISAT interferometric data, Earth Planet. Sc. Lett., 255, 148–163, https://doi.org/10.1016/j.epsl.2006.12.012, 2007.
Gaete, A., Cesca, S., Franco, L., San Martin, J., Cartes, C., and Walter, T. R.: Seismic activity during the 2013–2015 intereruptive phase at Lascar volcano, Chile, Geophys. J. Int., 219, 449–463, https://doi.org/10.1093/gji/ggz297, 2019.
Gałaś, A., Panajew, P., and Cuber, P.: Stratovolcanoes in the Western Cordillera – Polish Scientific Expedition to Peru 2003–2012 reconnaissance research, Geotourism/Geoturystyka, 37, 61, https://doi.org/10.7494/geotour.2014.37.61, 2014.
García, S., Sruoga, P., and Elissondo, M.: Programa de Evaluación de Amenazas Volcánicas del SEGEMAR, Argentina, in: Foro Internacional: Los volcanes y su impacto, 26–27 April 2018, Arequipa, Peru, 174–178, https://app.ingemmet.gob.pe/biblioteca/pdf/FIVI-2018-174.pdf (last access: 28 November 2024), 2018.
Gardeweg, M., Mpodozis, C., and Clavero, J.: The Ojos del Salado complex: the highest active volcano of the world, Central Andes, Proc. IAVCE, Abstr. Magmat. Divers. Volcanoes their roots, 11–16 July 1998, Cape Town, South Africa, 21, 1998.
Gianni, G. M., Navarrete, C., and Spagnotto, S.: Surface and mantle records reveal an ancient slab tear beneath Gondwana, Sci. Rep., 9, 19774, https://doi.org/10.1038/s41598-019-56335-9, 2019.
Gillespie, R., Magee, J. W., Luly, J. G., Dlugokencky, E., Sparks, R. J., and Wallace, G.: AMS radiocarbon dating in the study of arid environments: Examples from Lake Eyre, South Australia, Palaeogeogr. Palaeocl., 84, 333–338, https://doi.org/10.1016/0031-0182(91)90052-S, 1991.
Gonzáles, K., Froger, J., Rivera, M., and Audin, L.: Deformación co-sísmica producida por el sismo Mb = 5.4 del 01 de Octubre de 2005 (Carumas-Moquegua), detectada por interferometría radar – InSAR, XIII Congr. Peru. Geolgía. Resúmenes Extendidos Soc. Geológica del Perú, 17–20 October 2006, Lima, 488–489, https://repositorio.ingemmet.gob.pe/handle/20.500.12544/439 (last access: 18 November 2024), 2006.
González-Ferrán, O.: Volcanes de Chile, Instituto Geográfico Militar, 640 pp., ISBN 9562020541, ISBN 9789562020541, 1995.
Gottsmann, J., Blundy, J., Henderson, S., Pritchard, M. E., and Sparks, R. S. J.: Thermomechanical modeling of the Altiplano-Puna deformation anomaly: Multiparameter insights into magma mush reorganization, Geosphere, 13, GES01420.1, https://doi.org/10.1130/GES01420.1, 2017.
Grosse, P., Orihashi, Y., Guzmán, S. R., Sumino, H., and Nagao, K.: Eruptive history of Incahuasi, Falso Azufre and El Cóndor Quaternary composite volcanoes, southern Central Andes, B. Volcanol., 80, 44, https://doi.org/10.1007/s00445-018-1221-5, 2018.
Grosse, P., Guzmán, S. R., Nauret, F., Orihashi, Y., and Sumino, H.: Central vs. lateral growth and evolution of the < 100 ka Peinado composite volcano, southern Central Volcanic Zone of the Andes, J. Volcanol. Geoth. Res., 425, https://doi.org/10.1016/j.jvolgeores.2022.107532, 2022.
Guimarães, L., Nieto-Torres, A., Bonadonna, C., and Frischknecht, C.: A New Inclusive Volcanic Risk Ranking, Part 2: Application to Latin America, Front. Earth Sci., 9, 1–24, https://doi.org/10.3389/feart.2021.757742, 2021.
GVP: Global Volcanism Program, Volcanoes World, v.4.9.2, edited by: Venzke, E., Smithson Institution, https://doi.org/10.5479/si.GVP.VOTW4-2013, 2013.
GVP: Global Volcanism Program, 2023. Holocene Volcanoes of the World (v.5.1.1; 17 Aug 2023), Distributed by Smithsonian Institution, compiled by: Venzke, E., https://doi.org/10.5479/si.GVP.VOTW5-2023.5.1, 2023a.
GVP: Global Volcanism Program, 2023. Pleistocene Volcanoes of the World (v.5.1.1; 17 Aug 2023), Distributed by Smithsonian Institution, compiled by: Venzke, E., https://doi.org/10.5479/si.GVP.VOTW5-2023.5.1, 2023b.
Hall, M. L., Samaniego, P., Le Pennec, J. L., and Johnson, J. B.: Ecuadorian Andes volcanism: A review of Late Pliocene to present activity, J. Volcanol. Geoth. Res., 176, 1–6, https://doi.org/10.1016/j.jvolgeores.2008.06.012, 2008.
Harpel, C. J., de Silva, S., and Salas, G.: The 2 ka Eruption of Misti Volcano, Southern Peru – The Most Recent Plinian Eruption of Arequipa's Iconic Volcano, in: The 2 ka Eruption of Misti Volcano, Southern Peru – The Most Recent Plinian Eruption of Arequipa's Iconic Volcano, Geological Society of America, https://doi.org/10.1130/2011.2484, 2011.
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., and Smoczyk, G. M.: Slab2, a comprehensive subduction zone geometry model, Science, 362, 58–61, https://doi.org/10.1126/science.aat4723, 2018.
Henderson, S. T. and Pritchard, M. E.: Decadal volcanic deformation in the Central Andes Volcanic Zone revealed by InSAR time series, Geochem. Geophy. Geosy., 14, 1358–1374, https://doi.org/10.1002/ggge.20074, 2013.
Henderson, S. T., Delgado, F., Elliott, J., Pritchard, M. E., and Lundgren, P. R.: Decelerating uplift at Lazufre volcanic center, Central Andes, from A. D. 2010 to 2016, and implications for geodetic models, Geosphere, 13, 1489–1505, https://doi.org/10.1130/GES01441.1, 2017.
Hickey, J., Gottsmann, J., and del Potro, R.: The large-scale surface uplift in the Altiplano-Puna region of Bolivia: A parametric study of source characteristics and crustal rheology using finite element analysis, Geochem. Geophy. Geosy., 14, 540–555, https://doi.org/10.1002/ggge.20057, 2013.
Holtkamp, S. G., Pritchard, M. E., and Lohman, R. B.: Earthquake swarms in South America, Geophys. J. Int., 187, 128–146, https://doi.org/10.1111/j.1365-246X.2011.05137.x, 2011.
HOT – Humanitarian OpenStreetMap Team: OpenStreetMap exports for use in GIS applications on The Humanitarian Data Exchange (HDX), HOT [data set], https://data.humdata.org/organization/225b9f7d-e7cb-4156-96a6-44c9c58d31e3 (last access: 29 August 2022), 2020.
IDE: Infraestructura de Datos Geoespaciales de Chile, Ministerio de Bienes Nacionales, Gobierno de Chile, https://www.ide.cl/ (last access: 5 July 2021), 2021.
IGN – Instituto Geográfico Nacional: Censo Nacional de Población, Hogares y Viviendas 2010, IGN [data set], https://www.ign.gob.ar/NuestrasActividades/Geografia/DatosArgentina/Poblacion2 (last access: 5 July 2021), 2010.
IGP: Volcanes Monitoreados, Instituto Geofísico del Perú, Cent. vulcanológico Nac. Volcanes Monit. Perú, https://www.igp.gob.pe/servicios/centro-vulcanologico-nacional/volcanes-monitoreados (last access: 18 November 2024), 2021.
INDEC – Instituto Nacional de Estadística y Censos de la República Argentina: Censo Nacional de Población, Hogares y Viviendas 2010, https://www.indec.gob.ar/ (last access: 11 March 2021), 2010.
INE – Instituto Nacional de Estadistica: Censo Nacional de Población y Vivienda 2012, INE [data set], https://www.ine.gob.bo/index.php/estadisticas-sociales/vivienda-y-servicios-basicos/censos-vivienda/ (last access: 6 July 2021), 2012.
INE – Instituto Nacional de Estadistica: Censos de Población y Vivienda 2017, INE [data set], https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda (last access: 6 July 2021), 2017a.
INE – Instituto Nacional de Estadistica: Servicios Departamentales De Caminos – Gobiernos Autónomos Municipales: Longitud de Caminos, INE [data set], https://www.ine.gob.bo/index.php/estadisticas-economicas/transportes/longitud-de-caminos-cuadros-estadisticos/ (last access: 21 July 2022), 2017b.
INEI – Instituto Nacional de Estadística e Informática: Establecimientos Del Sector Salud del PERU, INEI [data set], https://www.inei.gob.pe/estadisticas/indice-tematico/health-sector-establishments/ (last access: 29 July 2021), 2017.
Inostroza, M., Aguilera, F., Menzies, A., Layana, S., González, C., Ureta, G., Sepúlveda, J., Scheller, S., Böehm, S., Barraza, M., Tagle, R., and Patzschke, M.: Deposition of metals and metalloids in the fumarolic fields of Guallatiri and Lastarria volcanoes, northern Chile, J. Volcanol. Geoth. Res., 393, 106803, https://doi.org/10.1016/j.jvolgeores.2020.106803, 2020a.
Inostroza, M., Tassi, F., Aguilera, F., Sepúlveda, J. P., Capecchiacci, F., Venturi, S., and Capasso, G.: Geochemistry of gas and water discharge from the magmatic-hydrothermal system of Guallatiri volcano, northern Chile, B. Volcanol., 82, 57, https://doi.org/10.1007/s00445-020-01396-2, 2020b.
Jaillard, E., Hérail, G., Monfret, T., Diaz-Martinez, E., Baby, P., Lavenu, A., and Dumont, J. F.: Tectonic evolution of the Andes of Ecuador, Peru, Bolivia and Northernmost Chile, in: Tectonic evolution of South America, edited by: Cordani, U., Milani, E., Thomaz Filho, A., and Campos, D., 31, 481–559, https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers19-02/010074719.pdf (last access: 18 November 2024), 2000.
James, D. E.: Andean crustal and upper mantle structure, J. Geophys. Res., 76, 3246–3271, https://doi.org/10.1029/JB076i014p03246, 1971.
Jay, J. A., Pritchard, M. E., West, M. E., Christensen, D., Haney, M., Minaya, E., Sunagua, M., McNutt, S. R., and Zabala, M.: Shallow seismicity, triggered seismicity, and ambient noise tomography at the long-dormant Uturuncu Volcano, Bolivia, B. Volcanol., 74, 817–837, https://doi.org/10.1007/s00445-011-0568-7, 2012.
Jay, J. A., Welch, M., Pritchard, M. E., Mares, P. J., Mnich, M. E., Melkonian, A. K., Aguilera, F., Naranjo, J. A., Sunagua, M., and Clavero, J.: Volcanic hotspots of the central and southern Andes as seen from space by ASTER and MODVOLC between the years 2000 and 2010, Geol. Soc. London Spec. Publ., 380, 161–185, https://doi.org/10.1144/SP380.1, 2013.
Jay, J. A., Delgado, F. J., Torres, J. L., Pritchard, M. E., Macedo, O., and Aguilar, V.: Deformation and seismicity near Sabancaya volcano, southern Peru, from 2002 to 2015, Geophys. Res. Lett., 42, 2780–2788, https://doi.org/10.1002/2015GL063589, 2015.
Jordan, T., Isacks, B., Allmendinger, R., Brewer, J., Ramos, V., and Ando, C.: Andean tectonics related to geometry of subducted Nazca plate, Geol. Soc. Am. Bull., 94, 341, https://doi.org/10.1130/0016-7606(1983)94<341:ATRTGO>2.0.CO;2, 1983.
Kay, S. M. and Coira, B. L.: Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano–Puna Plateau, Mem. Geol. Soc. Am., 204, 229–259, https://doi.org/10.1130/2009.1204(11), 2009.
Lamberti, M. C., Chiodi, A., Agusto, M., Filipovich, R., Massenzio, A., Báez, W., Tassi, F., and Vaselli, O.: Carbon dioxide diffuse degassing as a tool for computing the thermal energy release at Cerro Blanco Geothermal System, Southern Puna (NW Argentina), J. S. Am. Earth Sci., 105, 102833, https://doi.org/10.1016/j.jsames.2020.102833, 2021.
Lara, L. E., Clavero, J., Hinojosa, M., Huerta, S., Wall, R., and Moreno, H.: NVEWS-CHILE: Sistema de Clasificación semicuantitativa de la vulnerabilidad volcánica, Congr. Geológico Chil., 11, 487–490, 2006.
Lara, L., Orozco, G., Amigo, A., and Silva, C.: Peligros Volcánicos de Chile, Carta Geológica de Chile, Serie Geología Ambiental, 0–24, 1 mapa escala 1:2.000.000, Servicio Nacional de Geología y Minería, https://repositorio.sernageomin.cl/handle/0104/18365 (last access: 18 November 2024), 2011.
Liu, F., Elliott, J., Ebmeier, S., Craig, T., Hooper, A., Novoa, C., and Delgado, F.: Unrest Detected at Socompa Volcano, Northern Chile, from Geodetic Observations, AGU Fall Meet. Abstr., 12–16 December 2022, Chicago and Online, G46A-02, https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1165165 (last access: 18 November 2024), 2022.
Liu, F., Elliott, J. R., Ebmeier, S. K., Craig, T. J., Hooper, A., Novoa Lizama, C., and Delgado, F.: First Onset of Unrest Captured at Socompa: A Recent Geodetic Survey at Central Andean Volcanoes in Northern Chile, Geophys. Res. Lett., 50, e2022GL102480, https://doi.org/10.1029/2022GL102480, 2023.
Loyola, R., Figueroa, V., Núñez, L., Vasquez, M., Espíndola, C., Valenzuela, M., and Prieto, M.: The Volcanic Landscapes of the Ancient Hunter-Gatherers of the Atacama Desert Through Their Lithic Remains, Front. Earth Sci., 10, 1–22, https://doi.org/10.3389/feart.2022.897307, 2022.
Macedo, O., Taipe, E., Del Carpio, J., Ticona, J., Ramos, D., Puma, N., Aguilar, V., Machacca, R., Torres, J., Cueva, K., Cruz, J., Lazarte, I., Centeno, R., Miranda, R., Álvarez, Y., Masias, P., Vilca, J., Apaza, F., Chijcheapaza, R., Calderón, J., Cáceres, J., and Vela, J.: Evaluación del Riesgo Volcánico en el Sur del Perú (situación actual de la vigilancia actual y requerimientos de monitoreo en el futuro), Arequipa, https://repositorio.ingemmet.gob.pe/handle/20.500.12544/2135 (last access: 18 November 2024), 2016.
Mariño, J., Samaniego, P., Manrique, N., Valderrama, P., and Macedo, L.: Geología y Mapa de Peligros del Complejo Volcánico Tutupaca, INGEMMET, Boletín Ser. C Geodinámica e Ing. Geológica No. 66, 168, https://repositorio.ingemmet.gob.pe/handle/20.500.12544/1984 (last access: 18 November 2024), 2019.
Matthews, S. J., Gardeweg, M. C., and Sparks, R. S. J.: The 1984 to 1996 cyclic activity of Lascar Volcano, northern Chile: cycles of dome growth, dome subsidence, degassing and explosive eruptions, B. Volcanol., 59, 72–82, https://doi.org/10.1007/s004450050176, 1997.
Morales Rivera, A. M., Amelung, F., and Mothes, P.: Volcano deformation survey over the Northern and Central Andes with ALOS InSAR time series, Geochem. Geophy. Geosy., 17, 2869–2883, https://doi.org/10.1002/2016GC006393, 2016.
Mulcahy, P., Chen, C., Kay, S. M., Brown, L. D., Alvarado, P. M., Sandvol, E. A., Heit, B., and Yuan, X.: The Southern Puna seismic experiment: shape of the subducting Nazca Plate, areas of concentrated mantle and crustal earthquakes, and crustal focal mechanisms, Am. Geophys. Union, Fall Meet. 2010, 13–17 December 2010, San Francisco, CA, Abstr. id. T11A-2050, 1, https://ui.adsabs.harvard.edu/abs/2010AGUFM.T11A2050M/abstract (last access: 18 November 2024), 2010.
Naranjo, J. A.: Sulphur flows at Lastarria volcano in the North Chilean Andes, Nature, 313, 778–780, https://doi.org/10.1038/313778a0, 1985.
Newhall, C. G. and Self, S.: The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism, J. Geophys. Res., 87, 1231, https://doi.org/10.1029/JC087iC02p01231, 1982.
Nieto-Torres, A., Guimarães, L. F., Bonadonna, C., and Frischknecht, C.: A New Inclusive Volcanic Risk Ranking, Part 1: Methodology, Front. Earth Sci., 9, 1–22, https://doi.org/10.3389/feart.2021.697451, 2021.
ONEMI: Visor Chile Preparado, Territorio y Amenazas, ONEMI [data set], https://geoportalonemi.maps.arcgis.com/apps/webappviewer/index.html?id=5062b40cc3e347c8b11fd8b20a639a88 (last access: 13 April 2021), 2021a.
ONEMI: Ministerio del Interior y Seguridad Pública, https://www.onemi.gov.cl/ (last access: 7 July 2021), 2021b.
OVI: Observatorio Vulcanológico del INGEMMET, Inst. Geol. Min. y Metal., http://ovi.ingemmet.gob.pe/?page_id=26 (last access: 13 August 2021), 2021.
Pavez, A., Remy, D., Bonvalot, S., Diament, M., Gabalda, G., Froger, J.-L., Julien, P., Legrand, D., and Moisset, D.: Insight into ground deformations at Lascar volcano (Chile) from SAR interferometry, photogrammetry and GPS data: Implications on volcano dynamics and future space monitoring, Remote Sens. Environ., 100, 307–320, https://doi.org/10.1016/j.rse.2005.10.013, 2006.
Pavez, C., Comte, D., Gutiérrez, F., and Gaytán, D.: Analysis of the magmatic – Hydrothermal volcanic field of Tacora Volcano, northern Chile using travel time tomography, J. S. Am. Earth Sci., 94, 102247, https://doi.org/10.1016/j.jsames.2019.102247, 2019.
Petit-Breuilh Sepúlveda, M.: Volcanes fronterizos en América Latina y la importancia de los comités de frontera en casos de desastre: Chile y Argentina en el siglo XX., in: Clima, desastres y convulsiones sociales en España e Hispanoamérica, siglos XVII–XX, ISBN 978-84-16724-23-9, https://idus.us.es/items/7ec8da36-9845-460f-a0c7-b3a6384fd943, (last access: 18 November 2024), 2016.
Pieri, D. and Abrams, M.: ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit, J. Volcanol. Geoth. Res., 135, 13–28, https://doi.org/10.1016/j.jvolgeores.2003.12.018, 2004.
Pilger, R. H.: Cenozoic plate kinematics, subduction and magmatism: South American Andes, J. Geol. Soc. London., 141, 793–802, https://doi.org/10.1144/gsjgs.141.5.0793, 1984.
Pritchard, M. and Simons, M.: An InSAR-based survey of volcanic deformation in the central Andes, Geochem. Geophy. Geosy., 5, 1–42, https://doi.org/10.1029/2003GC000610, 2004.
Pritchard, M. E. and Simons, M.: A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes, Nature, 418, 167–171, https://doi.org/10.1038/nature00872, 2002.
Pritchard, M. E., Henderson, S. T., Jay, J. A., Soler, V., Krzesni, D. A., Button, N. E., Welch, M. D., Semple, A. G., Glass, B., Sunagua, M., Minaya, E., Amigo, A., and Clavero, J.: Reconnaissance earthquake studies at nine volcanic areas of the central Andes with coincident satellite thermal and InSAR observations, J. Volcanol. Geoth. Res., 280, 90–103, https://doi.org/10.1016/j.jvolgeores.2014.05.004, 2014.
Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., Farrell, A., Henderson, S. T., Jay, J. A., Lopez, T., Legrand, D., Naranjo, J. A., McFarlin, H., Muir, D., Perkins, J. P., Spica, Z., Wilder, A., and Ward, K. M.: Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes, Geosphere, 14, 954–982, https://doi.org/10.1130/GES01578.1, 2018.
Ramos, D.: Evaluación de la Actividad de los Volcanes Misti y Coropuna, Inf. Técnico No. A69, 27, INGEMMET, https://hdl.handle.net/20.500.12544/2486, (last access: 18 November 2024), 2019.
Ramos Chocobar, S. and Tironi, M.: An Inside Sun: Lickanantay Volcanology in the Salar de Atacama, Front. Earth Sci., 10, 1–11, https://doi.org/10.3389/feart.2022.909967, 2022.
Ramos, V. A. and Aleman, A.: Tectonic evolution of the Andes, 31st Int. Geol. Congr., 6–17 August 2000, Rio de Janeiro, Brazil, 635–685, 2000.
REAV Parinacota: Reporte Especial de Actividad Volcánica, Región de Arica y Parinacota, Volcán Parinacota, 2, Serv. Nac. Geol. y Minería, 2020.ts in Volcanic Gas
Reyes-Hardy, M.-P., Di Maio, L. S., Dominguez, L., Frischknecht, C., Biasse, S., Guimarães, L., Nieto-Torres, A., Elissondo, M., Pedreros, G., Aguilar, R., Amigo, Á., Garcia, S., Forte, P., and Bonadonna, C.: Active and potentially active volcanoes of the Central Volcanic Zone of the Andes (CVZA), Arch. Ouvert. UNIGE, 123, https://doi.org/10.13097/archive-ouverte/unige:172413, 2023.
Rivera, M., Thouret, J.-C., Mariño, J., Berolatti, R., and Fuentes, J.: Characteristics and management of the 2006–2008 volcanic crisis at the Ubinas volcano (Peru), J. Volcanol. Geoth. Res., 198, 19–34, https://doi.org/10.1016/j.jvolgeores.2010.07.020, 2010.
Rivera, M., Cueva, K., Vela, J., Soncco, Y., Manrique, N., Le Pennec, J.-L., and Samaniego, P.: Mapa Geológico del Volcán Sara Sara (Ayacucho) Escala , 1, 1 mapa, 2020.ts in Volcanic Gas
Robidoux, P., Rizzo, A. L., Aguilera, F., Aiuppa, A., Artale, M., Liuzzo, M., Nazzari, M., and Zummo, F.: Petrological and noble gas features of Lascar and Lastarria volcanoes (Chile): Inferences on plumbing systems and mantle characteristics, Lithos, 370–371, 105615, https://doi.org/10.1016/j.lithos.2020.105615, 2020.
Romero, H. and Albornoz, C.: Erupciones volcánicas, en Chile, Rev. Retratos la Esc. Brasília, 7, 513–527, 2013.
Ruch, J. and Walter, T. R.: Relationship between the InSAR-measured uplift, the structural framework, and the present-day stress field at Lazufre volcanic area, central Andes, Tectonophysics, 492, 133–140, https://doi.org/10.1016/j.tecto.2010.06.003, 2010.
Ruch, J., Anderssohn, J., Walter, T. R., and Motagh, M.: Caldera-scale inflation of the Lazufre volcanic area, South America: Evidence from InSAR, J. Volcanol. Geoth. Res., 174, 337–344, https://doi.org/10.1016/j.jvolgeores.2008.03.009, 2008.
Ruch, J., Manconi, A., Zeni, G., Solaro, G., Pepe, A., Shirzaei, M., Walter, T. R., and Lanari, R.: Stress transfer in the Lazufre volcanic area, central Andes, Geophys. Res. Lett., 36, L22303, https://doi.org/10.1029/2009GL041276, 2009.
Samaniego, P., Rivera, M., Mariño, J., Guillou, H., Liorzou, C., Zerathe, S., Delgado, R., Valderrama, P., and Scao, V.: The eruptive chronology of the Ampato–Sabancaya volcanic complex (Southern Peru), J. Volcanol. Geoth. Res., 323, 110–128, https://doi.org/10.1016/j.jvolgeores.2016.04.038, 2016.
Sandri, L., Thouret, J.-C., Constantinescu, R., Biass, S., and Tonini, R.: Long-term multi-hazard assessment for El Misti volcano (Peru), B. Volcanol., 76, 771, https://doi.org/10.1007/s00445-013-0771-9, 2014.
Schoenbohm, L. M. and Carrapa, B.: Miocene–Pliocene shortening, extension, and mafic magmatism support small-scale lithospheric foundering in the central Andes, NW Argentina, in: Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile, vol. 212, Geological Society of America, 167–180, https://doi.org/10.1130/2015.1212(09), 2015.
Seggiaro, R. and Apaza, F.: Geología del proyecto geotérmico Socompa, Serv. Geológico Min. Argentino. Inst. Geol. y Recur. Miner., Buenos Aires, 26, https://repositorio.segemar.gov.ar/handle/308849217/4035 (last access: 19 November 2024), 2018.
Sempere, T., Hérail, G., Oller, J., and Bonhomme, M. G.: Late Oligocene-early Miocene major tectonic crisis and related basins in Bolivia, Geology, 18, 946, https://doi.org/10.1130/0091-7613(1990)018<0946:LOEMMT>2.3.CO;2, 1990.
SERNAGEOMIN: Ranking de riesgo específico para volcanes activos de Chile 2019, https://www.sernageomin.cl/wp-content/uploads/2020/07/2Ranking-2019_Tabla_Final.pdf (last access: 3 August 2020), 2020.
SERNAGEOMIN: Red Nac. Vigil. volcánica, Volcanes Act. y Monit. por cada región del país, Servicio Nacional de Geología y Minería, Chile, https://www.sernageomin.cl/red-nacional-de-vigilancia-volcanica/ (last access: 13 August 2021), 2021.
SERNAGEOMIN: Ranking de riesgo específico para volcanes activos de Chile 2023, https://rnvv.sernageomin.cl/wp-content/uploads/sites/2/2023/10/Ranking-2023_tabloide_20231012.pdf (last access: 19 November 2024), 2023.
Simkin, T. and Siebert, L.: Volcanoes of the World, in: 2nd Edn., Smithson Institution, Geosci. Tucson, 349 pp., ISBN 0-945005-12-1, 1994.
Sparks, R. S. J., Folkes, C. B., Humphreys, M. C. S., Barfod, D. N., Clavero, J., Sunagua, M. C., McNutt, S. R., and Pritchard, M. E.: Uturuncu volcano, Bolivia: Volcanic unrest due to mid-crustal magma intrusion, Am. J. Sci., 308, 727–769, https://doi.org/10.2475/06.2008.01, 2008.
Spica, Z., Legrand, D., Mendoza, A. I., Dahn, T., Walter, T., Heimann, S., Froger, J. L., and Rémy, D.: Analysis of surface waves extracted from seismic noise for the Lastarria volcanic zone, Chile, Cities Volcanoes 7, Colima, México, abstract no. 4C1.4-17, 2012.
Stern, C.: Active Andean volcanism: its geologic and tectonic setting, Rev. Geol. Chile, 31, 106–123, https://doi.org/10.4067/S0716-02082004000200001, 2004.
Szakács, A.: Redefining active volcanoes: a discussion, B. Volcanol., 56, 321–325, https://doi.org/10.1007/BF00326458, 1994.
Tassi, F., Aguilera, F., Vaselli, O., Medina, E., Tedesco, D., Delgado Huertas, A., Poreda, R., and Kojima, S.: The magmatic- and hydrothermal-dominated fumarolic system at the Active Crater of Lascar volcano, northern Chile, B. Volcanol., 71, 171–183, https://doi.org/10.1007/s00445-008-0216-z, 2009.
Tassi, F., Aguilera, F., Vaselli, O., Darrah, T., and Medina, E.: Gas discharges from four remote volcanoes in northern Chile (Putana, Olca, Irruputuncu and Alitar): a geochemical survey, Ann. Geophys., 54, 121–136, https://doi.org/10.4401/ag-5173, 2011.
Thorpe, R. S., Francis, P. W., and O'Callaghan, L. J.: Relative roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks, Philos. T. R. Soc. S. A, 310, 675–692, https://doi.org/10.1098/rsta.1984.0014, 1984.
Thouret, J., Finizola, A., Fornari, M., Suni, J., and Frechen, M.: Geology of El Misti volcano near the city of Arequipa , Peru, Geol. Soc. Am. Bull., 113, 1593–1610, https://doi.org/10.1130/0016-7606(2001)1132.0.CO;2, 2001.
Tilling, R. I.: Volcanism and associated hazards: the Andean perspective, Adv. Geosci., 22, 125–137, https://doi.org/10.5194/adgeo-22-125-2009, 2009.
Van der Meijde, M., Julià, J., and Assumpção, M.: Gravity derived Moho for South America, Tectonophysics, 609, 456–467, https://doi.org/10.1016/j.tecto.2013.03.023, 2013.
Vélez, M. ., Bustos, E., Euillades, L., Blanco, M., López, J. F. S., Barbero, I., Berrocoso, M., Gil Martinez, A., and Viramonte, J. G.: Ground deformation at the Cerro Blanco caldera: A case of subsidence at the Central Andes BackArc, J. S. Am. Earth Sci., 106, 102941, https://doi.org/10.1016/j.jsames.2020.102941, 2021.
Viramonte, J., Godoy, S., Arnosio, M., Becchio, R., and Poodts, M.: El campo geotermal de la caldera del cerro Blanco: utilización de imágenes aster, Proc. Geol. Congr. Buenos Aires, Asoc. Geológica Argentina, 16th Congreso Geológico Argentino, 20–23 September 2005, La Plata, Argentina, 2, 505–512, https://www.researchgate.net/publication/285264749_El_campo_geotermal_de_la_caldera_del_cerro_Blanco_utilizacion_de_imagenes_aster (last access: 19 November 2024), 2005.
Viramonte, J. G., Galliski, M. A., Araña Saavedra, V., Aparicio, A., Garcia Cacho, L., and Martín Escorza, C.: El finivolcanismo básico de la depresión de Arizaro, provincia de Salta, IX Congr. Geológico Argentino Actas III, 5–9 November 1984, San Carlos de Bariloche, AR, 234–251, https://www.researchgate.net/publication/281307056_El_finivulcanismo_basico_de_la_depresion_de_Arizaro_provincia_de_Salta (last access: 19 November 2024), 1984.
Walker, B. A., Klemetti, E. W., Grunder, A. L., Dilles, J. H., Tepley, F. J., and Giles, D.: Crystal reaming during the assembly, maturation, and waning of an eleven-million-year crustal magma cycle: thermobarometry of the Aucanquilcha Volcanic Cluster, Contrib. Mineral. Petr., 165, 663–682, https://doi.org/10.1007/s00410-012-0829-2, 2013.
WorldPop (School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), and Columbia University: Global High Resolution Population Denominators Project – Funded by The Bill and Melinda Gates Foundation (OPP1134076), WorldPop [data set], https://doi.org/10.5258/SOTON/WP00674, 2018.
WorldPop: WorldPop – Open spatial demographic data and research, https://www.worldpop.org/ (last access: 12 December 2023), 2023.
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We...
Altmetrics
Final-revised paper
Preprint