Articles | Volume 24, issue 12
https://doi.org/10.5194/nhess-24-4237-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-4237-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring drought hazard, vulnerability, and related impacts on agriculture in Brandenburg
Geography Department, Humboldt-Universität zu Berlin, Berlin, 10099, Germany
Pedro Henrique Lima Alencar
Department of Ecohydrology and Landscape Evaluation, Technical University Berlin, Berlin, 10623, Germany
Huihui Zhang
Geography Department, Humboldt-Universität zu Berlin, Berlin, 10099, Germany
Friedrich Boeing
Department Computational Hydrosystems, Helmholtz Centre for Environmental Research (UFZ), Leipzig, 04318, Germany
Institute for Environmental Science and Geography, University of Potsdam, Potsdam-Golm, 14476, Germany
Silke Hüttel
Department of Agricultural Economics and Rural Development, University of Göttingen, Göttingen, 37073, Germany
Faculty of Agricultural, Nutritional and Engineering Sciences, University of Bonn, Bonn, 53115, Germany
Tobia Lakes
Geography Department, Humboldt-Universität zu Berlin, Berlin, 10099, Germany
Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, 10099, Germany
Related authors
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-428, https://doi.org/10.5194/egusphere-2025-428, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Márk Somogyvári, Fabio Brill, Mikhail Tsypin, Lisa Rihm, and Tobias Krueger
EGUsphere, https://doi.org/10.5194/egusphere-2024-4031, https://doi.org/10.5194/egusphere-2024-4031, 2025
Short summary
Short summary
In this study, we examined regional differences in groundwater behavior in Berlin-Brandenburg. We have developed a novel approach, combining standard groundwater modelling tools such with special data analysis techniques. The presented methodology can help to separate areas with different groundwater behavior from each other, which could be used as a starting point for further analysis.
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-428, https://doi.org/10.5194/egusphere-2025-428, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Márk Somogyvári, Fabio Brill, Mikhail Tsypin, Lisa Rihm, and Tobias Krueger
EGUsphere, https://doi.org/10.5194/egusphere-2024-4031, https://doi.org/10.5194/egusphere-2024-4031, 2025
Short summary
Short summary
In this study, we examined regional differences in groundwater behavior in Berlin-Brandenburg. We have developed a novel approach, combining standard groundwater modelling tools such with special data analysis techniques. The presented methodology can help to separate areas with different groundwater behavior from each other, which could be used as a starting point for further analysis.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Pedro Henrique Lima Alencar, Eva Nora Paton, and José Carlos de Araújo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-278, https://doi.org/10.5194/hess-2021-278, 2021
Manuscript not accepted for further review
Short summary
Short summary
Knowing how long and how fast it rained on a particular day is not often an easy (or cheap) task. It requires equipment and constant monitoring. It can be even harder if you live in an isolated area or if the day you are interested in is so much in the past that such pieces of equipment were not even in the market. In this paper, we propose a new way to assess such information and also show how it can help to model sediment transport and siltation in watersheds.
Batunacun, Ralf Wieland, Tobia Lakes, and Claas Nendel
Geosci. Model Dev., 14, 1493–1510, https://doi.org/10.5194/gmd-14-1493-2021, https://doi.org/10.5194/gmd-14-1493-2021, 2021
Short summary
Short summary
Extreme gradient boosting (XGBoost) can provide alternative insights that conventional land-use models are unable to generate. Shapley additive explanations (SHAP) can interpret the results of the purely data-driven approach. XGBoost achieved similar and robust simulation results. SHAP values were useful for analysing the complex relationship between the different drivers of grassland degradation.
Pedro Henrique Lima Alencar, José Carlos de Araújo, and Adunias dos Santos Teixeira
Hydrol. Earth Syst. Sci., 24, 4239–4255, https://doi.org/10.5194/hess-24-4239-2020, https://doi.org/10.5194/hess-24-4239-2020, 2020
Short summary
Short summary
Soil erosion by water has been emphasized as a key problem to be faced in the 21st century. Thus, it is critical to understand land degradation and to answer fundamental questions regarding how and why such processes occur. Here, we present a model for gully erosion (channels carved by rainwater) based on existing equations, and we identify some major variables that influence the initiation and evolution of this process. The successful model can help in planning soil conservation practices.
Cited articles
Abdullah, M. F., Siraj, S., and Hodgett, R. E.: An Overview of Multi-Criteria Decision Analysis (MCDA) Application in Managing Water-Related Disaster Events: Analyzing 20 Years of Literature for Flood and Drought Events, Water-Sui, 13, 1–27, https://doi.org/10.3390/w13101358, 2021.
Abunyewah, M., Okyere, S. A., Opoku Mensah, S., Erdiaw-Kwasie, M., Gajendran, T., and Byrne, M. K.: Drought impact on peri-urban farmers' mental health in semi-arid Ghana: The moderating role of personal social capital, Environmental Development, 49, 1–18, https://doi.org/10.1016/j.envdev.2023.100960, 2024.
Agrarheute: https://www.agrarheute.com/pflanze/brandenburg-rekordernte-gerste-raps-446957 (last access: 6 March 2024), 2014.
Agrarheute: https://www.agrarheute.com/markt/marktfruechte/erste-bilanzen-neue-prognosen-katastrophale-ernte-norden-545961 (last access: 6 March 2024), 2018.
Albers, H., Gornott, C., and Hüttel, S.: How do inputs and weather drive wheat yield volatility? The example of Germany, Food Policy, 70, 50–61, https://doi.org/10.1016/j.foodpol.2017.05.001, 2017.
Alencar, P. H. L. and Paton, E. N.: How do we identify flash droughts? A case study in Central European Croplands, Hydrol. Res., 53, 1150–1165, https://doi.org/10.2166/nh.2022.003, 2022.
Amt für Statistik Berlin-Brandenburg: Kommunalwahlen Im Land Brandenburg: Endgültiges Ergebnis Der Wahlen Zu Den Kreistagen Der Landkreise Und Stadtverordnetenversammlungen Der Kreisfreien Städte, https://www.statistik-berlin-brandenburg.de/kommunalwahlen-brandenburg (last access: 29 March 2024), 2019a.
Amt für Statistik Berlin-Brandenburg: Regionaler Sozialbericht Berlin Und Brandenburg 2019, https://web.statistik-berlin-brandenburg.de/instantatlas/interaktivekarten/sozialbericht/atlas.html (last access: 29 March 2024), 2019b.
Amt für Statistik Berlin-Brandenburg: Ernteberichterstattung über Feldfrüchte und Grünland in Brandenburg, https://www.statistik-berlin-brandenburg.de/c-ii-1-m (last access: 29 March 2024), 2022.
Austin, E. K., Handley, T., Kiem, A. S., Rich, J. L., Lewin, T. J., Askland, H. H., Askarimarnani, S. S., Perkins, D. A., and Kelly, B. J.: Drought-related stress among farmers: findings from the Australian Rural Mental Health Study, The Medical Journal of Australia, 209, 159–165, https://doi.org/10.5694/mja17.01200, 2018.
Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Knutson, C., Smith, K. H., Wall, N., Fuchs, B., Crossman, N. D., and Overton, I. C.: Drought indicators revisited: the need for a wider consideration of environment and society, WIREs Water, 3, 516–536, https://doi.org/10.1002/wat2.1154, 2016.
Berg, A., Sheffield, J., and Milly, P. C. D.: Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett., 44, 236–244, https://doi.org/10.1002/2016gl071921, 2017.
BGR (Bundesanstalt für Geowissenschaften und Rohstoffe): Potentielle Erosionsgefährdung Der Ackerböden Durch Wasser in Deutschland Auf Basis von Klimaszenarien, https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index.html?lang=de#/datasets/portal/35d9601a-84f3-4e33-9436-69509bfd48c4 (last access: 29 March 2024), 2014a.
BGR (Bundesanstalt für Geowissenschaften und Rohstoffe): Potentielle Erosionsgefährdung Der Ackerböden Durch Wind in Deutschland, https://www.bgr.bund.de/DE/Themen/Boden/Ressourcenbewertung/Bodenerosion/Wind/PEG_wind_node.html (last access: 29 March 2024), 2014b.
BGR (Bundesanstalt für Geowissenschaften und Rohstoffe): Nutzbare Feldkapazität Im Effektiven Wurzelraum in Deutschland, https://www.bgr.bund.de/DE/Themen/Boden/Produkte/produktkatalog_node.html;jsessionid=78D8CD03B9D125DBDF2B089280CFCB6E.internet942 (last access: 29 March 2024), 2015a.
BGR (Bundesanstalt für Geowissenschaften und Rohstoffe): Physiologische Gründigkeit Der Böden Deutschlands (PhysGru1000_250 V1.0), https://www.govdata.de/daten/-/details/physiologische-grundigkeit-der-boden-deutschlands (last access: 29 March 2024), 2015b.
BGR (Bundesanstalt für Geowissenschaften und Rohstoffe): Austauschhäufigkeit Des Bodenwassers in Landwirtschaftlich Genutzten Böden Deutschlands, https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index.html?lang=de#/datasets/portal/3bfef3bf-855a-435f-9d88-553b10000a4c (last access: 29 March 2024), 2015c.
BKG (Bundesanstalt für Kartographie und Geodäsie): Digitales Geländemodell Gitterweite 200 M, https://mis.bkg.bund.de/trefferanzeige?docuuid=eaaa67a1-5ecb-4e57-af38-b5f1d6d57e2a (last access: 29 March 2024), 2017.
Blauhut, V.: The triple complexity of drought risk analysis and its visualisation via mapping: a review across scales and sectors, Earth-Sci. Rev., 210, 1–22, https://doi.org/10.1016/j.earscirev.2020.103345, 2020.
Blauhut, V., Stahl, K., Stagge, J. H., Tallaksen, L. M., De Stefano, L., and Vogt, J.: Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors, Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, 2016.
Brill, F.: fabiobrill/brandenburg-drought-study: v1.0 (v1.0), Zenodo [data set] and [code], https://doi.org/10.5281/zenodo.13373271, 2024a.
Brill, F.: Drought hazard, vulnerability, and impacts to agriculture in Brandenburg, shinyapps [code], https://fabiobrill.shinyapps.io/agrdrought-explorer-brandenburg/ (last accessed 18 November 2024), 2024b.
Brill, F., Passuni Pineda, S., Espichán Cuya, B., and Kreibich, H.: A data-mining approach towards damage modelling for El Niño events in Peru, Geomat. Nat. Haz. Risk, 11, 1966–1990, https://doi.org/10.1080/19475705.2020.1818636, 2020.
Boeing, F., Rakovec, O., Kumar, R., Samaniego, L., Schrön, M., Hildebrandt, A., Rebmann, C., Thober, S., Müller, S., Zacharias, S., Bogena, H., Schneider, K., Kiese, R., Attinger, S., and Marx, A.: High-resolution drought simulations and comparison to soil moisture observations in Germany, Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, 2022.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 13–17 August 2016, 785-794, https://doi.org/10.1145/2939672.2939785, 2016.
Contreras, D.: The Integrated Spatial Pattern of Child Mortality during the 2012–2016 Drought in La Guajira, Colombia, Sustainability-Basel, 11, 1–23, https://doi.org/10.3390/su11247190, 2019.
Crocetti, L., Forkel, M., Fischer, M., Jurečka, F., Grlj, A., Salentinig, A., Trnka, M., Anderson, M., Ng, W.-T., Kokalj, Ž., Bucur, A., and Dorigo, W.: Earth Observation for agricultural drought monitoring in the Pannonian Basin (southeastern Europe): current state and future directions, Reg. Environ. Change, 20, 1–17, https://doi.org/10.1007/s10113-020-01710-w, 2020.
Cook, M., Schott, J. R., Mandel, J., and Raqueno, N.: Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive, Remote Sens., 6, 11244–11266, https://doi.org/10.3390/rs61111244, 2014.
Cook, B. I., Mankin, J. S., and Anchukaitis, K. J.: Climate change and drought: From past to future, Current Climate Change Reports, 4, 164–179, https://doi.org/10.1007/s40641-018-0093-2, 2018.
Coppola, E., Nogherotto, R., Ciarlo, J. M., Giorgi, F., van Meijgaard, E., Kadygrov, N., Iles, C., Corre, L., Sandstad, M., Somot, S., Nabat, P., Vautard, R., Levavasseur, G., Schwingshackl, C., Sillmann, J., Kjellström, E., Nikulin, G., Aalbers, E., Lenderink, G., Christensen, O. B., Boberg, F., Sørland, S. L., Demory, M.-E., Bülow, K., Teichmann, C., Warrach-Sagi, K., and Wulfmeyer, V.: Assessment of the European Climate Projections as Simulated by the Large EURO-CORDEX Regional and Global Climate Model Ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032356, https://doi.org/10.1029/2019JD032356, 2021.
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An ensemble version of the E-OBS temperature and precipitation data sets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018.
Dabanli, I.: Drought hazard, vulnerability, and risk assessment in Turkey, Arab. J. Geosci., 11, 1–12, https://doi.org/10.1007/s12517-018-3867-x, 2018.
de Brito, M. M., Kuhlicke, C., and Marx, A.: Near-real-time drought impact assessment: a text mining approach on the 2018/19 drought in Germany, Environ. Res. Lett., 15, 1040a9, https://doi.org/10.1088/1748-9326/aba4ca, 2020.
Dao, P. D., He, Y., and Proctor, C.: Plant drought impact detection using ultra-high spatial resolution hyperspectral images and machine learning, Int. J. Appl. Earth Obs., 102, 102364, https://doi.org/10.1016/j.jag.2021.102364, 2021.
De Stefano, L., González Tánago, I., Ballesteros, M., Urquijo, J., Blauhut, Ve., Stagge, J. H. and Stahl, K.: Methodological approach considering different factors influencing vulnerability – pan-European scale, Technical Report No. 26, https://www.researchgate.net/publication/331919810_Methodological_approach_considering_different_factors_influencing_vulnerability_-_pan-European_scale (last access: 15 November 2024), 2015.
De Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., Supit, I., van der Wijngaart, R., and van Diepen, K.: 25 years of the WOFOST cropping systems model, Agr. Syst., 168, 154–167, https://doi.org/10.1016/j.agsy.2018.06.018, 2019.
DLF (Deutschlandfunk): https://www.deutschlandfunkkultur.de/duerre-in-brandenburg-noch-schlimmer-als-letztes-jahr-100.html (last access: 6 March 2024), 2019.
Dutt, V. and Gonzalez, C.: Why do we want to delay actions on climate change? Effects of probability and timing of climate consequences, J. Behav. Decis. Making, 25, 154–164, https://doi.org/10.1002/bdm.721, 2010.
Eurostat: Population on 1 January by Age Group, Sex and NUTS 3 Region (demo_r_pjangrp3), https://ec.europa.eu/eurostat/databrowser/product/page/DEMO_R_PJANGRP3$DEFAULTVIEW (last access: 29 March 2024), 2021.
Eurostat: Gross Domestic Product (GDP) at Current Market Prices by NUTS 3 Regions (nama_10r_3gdp), https://ec.europa.eu/eurostat/databrowser/product/page/NAMA_10R_3GDP__custom_2867669 (last access: 29 March 2024), 2022.
Erfurt, M., Glaser, R., and Blauhut, V.: Changing impacts and societal responses to drought in southwestern Germany since 1800, Reg. Environ. Change, 19, 2311–2323, https://doi.org/10.1007/s10113-019-01522-7, 2019.
European Commission: EUR 430 million of EU funds to support the EU agricultural sector, press release, Brussels, 1–3 https://ec.europa.eu/commission/presscorner/detail/en/IP_23_3189 (last access: 15 November 2024), 2023.
Frischen, J., Meza, I., Rupp, D., Wietler, K., and Hagenlocher, M.: Drought Risk to Agricultural Systems in Zimbabwe: A Spatial Analysis of Hazard, Exposure, and Vulnerability, Sustainability-Basel, 12, 1–23, https://doi.org/10.3390/su12030752, 2020.
Germer, S., Kaiser, K., Bens, O., and Hüttl, R. F.: Water Balance Changes and Responses of Ecosystems and Society in the Berlin-Brandenburg Region – a Review, DIE ERDE – Journal of the Geographical Society of Berlin, 142, 65–95, https://www.die-erde.org/index.php/die-erde/article/view/43 (last access: 15 November 2024), 2011.
Ghazaryan, G., König, S., Rezaei, E. E., Siebert, S., and Dubovyk, O.: Analysis of Drought Impact on Croplands from Global to Regional Scale: A Remote Sensing Approach, Remote Sens.-Basel, 12, 1–17, https://doi.org/10.3390/rs12244030, 2020.
Ghazaryan, G., Ernst, S., Sempel, F., and Nendel, C.: Field-Level Irrigation Monitoring with Integrated Use of Optical and Radar Time Series in Temperate Regions, in: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Kuala Lumpur, Malaysia, 17–22 July 2022, 5448–5451, https://doi.org/10.1109/IGARSS46834.2022.9884067, 2022.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Hagenlocher, M., Meza, I., Anderson, C. C., Min, A., Renaud, F. G., Walz, Y., Siebert, S., and Sebesvari, Z.: Drought vulnerability and risk assessments: state of the art, persistent gaps, and research agenda, Environ. Res. Lett., 14, 1–13, https://doi.org/10.1088/1748-9326/ab225d, 2019.
Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Kyselý, J., and Kumar, R.: Revisiting the recent European droughts from a long-term perspective, Sci. Rep.-UK, 8, 1–11, https://doi.org/10.1038/s41598-018-27464-4, 2018.
Hari, V., Rakovec, O., Markonis, Y., Hanel, M., and Kumar, R.: Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming, Sci. Rep.-UK, 10, 1–10, https://doi.org/10.1038/s41598-020-68872-9, 2020.
Holsten, A., Vetter, T., Vohland, K. and Krysanova, V.: Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas, Ecol. Model., 220, 2076-2087, https://doi.org/10.1016/j.ecolmodel.2009.04.038, 2009.
Houmma, I. H., El Mansouri, L., Gadal, S., Garba, M., and Hadria, R.: Modelling agricultural drought: a review of latest advances in big data technologies, Geomat. Nat. Haz. Risk, 13, 2737–2776, https://doi.org/10.1080/19475705.2022.2131471, 2022.
Ihinegbu, C. and Ogunwumi, T.: Multi-criteria modelling of drought: a study of Brandenburg Federal State, Germany, Modeling Earth Systems and Environment, 8, 2035–2049, https://doi.org/10.1007/s40808-021-01197-2, 2022.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Jakob, M., Stein, D., and Ulmi, M.: Vulnerability of buildings to debris flow impact, Nat. Hazards, 60, 241–261, https://doi.org/10.1007/s11069-011-0007-2, 2012.
Jänicke, B., Meier, F., Fenner, D., Fehrenbach, U., Holtmann, A., and Scherer, D.: Urban–rural differences in near-surface air temperature as resolved by the Central Europe Refined analysis (CER): sensitivity to planetary boundary layer schemes and urban canopy models, Int. J. Climatol., 37, 2063–2079, https://doi.org/10.1002/joc.4835, 2017.
Jena, R., Shanableh, A., Al-Ruzouq, R., Pradhan, B., Gibril, M. B. A., Khalil, M. A., Ghorbanzadeh, O., Ganapathy, G. P., and Ghamisi, P.: Explainable Artificial Intelligence (XAI) Model for Earthquake Spatial Probability Assessment in Arabian Peninsula, Remote Sens., 15, 2248, https://doi.org/10.3390/rs15092248, 2023.
Jhan, H.-T., Ballinger, R., Jaleel, A., and Ting, K.-H.: Development and application of a Socioeconomic Vulnerability Indicator Framework (SVIF) for Local Climate Change Adaptation in Taiwan, Sustainability-Basel, 12, 1–27, https://doi.org/10.3390/su12041585, 2020.
Kahlenborn, W., Porst, L., Voss, M., Fritsch, U., Renner, K., Zebisch, M., Wolf, M., Schönthaler, K., and Schauser, I.: Climate Impact and Risk Assessment 2021 for Germany – Summary, Umweltbundesamt, Dessau-Roßlau, https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/cc_27-2021_climate_impact_and_risk_assessment_2021_for_germany_english_summary_bf.pdf (last access: 15 November 2024), 2021.
Karmakar, R., Teng, S.W., Murshed, M., Pang, S., Li, Y., and Lin, H.: Crop monitoring by multimodal remote sensing: A review, Remote Sensing Applications: Society and Environment, 33, 101093, https://doi.org/10.1016/j.rsase.2023.101093, 2024.
Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N., and Goldberg, A.: Use of NDVI and Land Surface and Temperature for Drought and Assessment: and Merits and Limitations, J. Climate, 23, 618–633, https://doi.org/10.1175/2009JCLI2900.1, 2010.
Khoshnazar, A., Perez, G. C., and Sajjad, M.: Characterizing spatial-temporal drought risk heterogeneities: A hazard, vulnerability and resilience-based modeling, J. Hydrol., 619, 1–16, https://doi.org/10.1016/j.jhydrol.2023.129321, 2023.
Kim, H., Park, J., Yoo, J., and Kim, T.-W.: Assessment of drought hazard, vulnerability, and risk: A case study for administrative districts in South Korea, J. Hydro-Environ. Res., 9, 28–35, https://doi.org/10.1016/j.jher.2013.07.003, 2015.
Kim, S. J., Park, S., Lee, S. J., Shaimerdenova, A., Kim, J., Park, E., Lee, W., Kim, G. S., Kim, N., Kim, T. H., Lim, C.-H., Choi, Y., and Lee, W.-K.: Developing spatial agricultural drought risk index with controllable geo-spatial indicators: A case study for South Korea and Kazakhstan, Int. J. Disast. Risk Re., 54, 1–12, https://doi.org/10.1016/j.ijdrr.2021.102056, 2021.
Kim, Y., Jackson, T., Bindlish, R., Lee, H., and Hong, S.: Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean, IEEE Geosci. Remote S., 9, 564–568, https://doi.org/10.1109/LGRS.2011.2174772, 2012.
Kondylatos, S., Prapas, I., Ronco, M., Papoutsis, I., Camps-Valls, G., Piles, M., Fernández-Torres, M.-Á., and Carvalhais, N.: Wildfire Danger Prediction and Understanding With Deep Learning, Geophys. Res. Lett., 49, 1–11, https://doi.org/10.1029/2022gl099368, 2022.
Kowalski, K., Okujeni, A., and Hostert, P.: A generalized framework for drought monitoring across Central European grassland gradients with Sentinel-2 time series, Remote Sens. Environ., 286, 113449, https://doi.org/10.1016/j.rse.2022.113449, 2023.
Krishnamurthy R, P. K., Fisher, J. B., Choularton, R. J., and Kareiva, P. M.: Anticipating drought-related food security changes, Nature Sustainability, 5, 956–964, https://doi.org/10.1038/s41893-022-00962-0, 2022.
LBGR (Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg): Atlas zur Geologie von Brandenburg, Cottbus, 1–69, ISBN 978-3-9808157-4-1, https://lbgr.brandenburg.de/sixcms/media.php/9/4_Geoatlas_1-69.pdf (last access: 15 November 2024), 2010.
LBV (Landesbauernverband Brandenburg e.V.): Ackerbau in Brandenburg, https://www.lbv-brandenburg.de/50-themen/ackerbau/209-ackerbau-in-Brandenburg, last access: 27 February 2024.
LELF (Landesamt für Ländliche Entwicklung, Landwirtschaft und Flurneuordnung): Richtwerte zur Bewertung von Aufwuchsschäden an landwirtschaftlichen Kulturen im Land Brandenburg, https://lelf.brandenburg.de/sixcms/media.php/9/Richtwerte-Aufwuchsschaeden-BB-2024.pdf (last access: 15 November 2024), 2016.
LELF (Landesamt für Ländliche Entwicklung, Landwirtschaft und Flurneuordnung): Datensammlung für die betriebswirtschaftliche Bewertung landwirtschaftlicher Produktionsverfahren im Land Brandenburg, https://lelf.brandenburg.de/sixcms/media.php/9/Datensammlung-2021-web.pdf (last access: 6 March 2024), 2021.
Leonhardt, H., Hüttel, S., Lakes, T., Wesemeyer, M., and Wolff, S.: Use Cases of the Integrated Administration and Control System's Plot-Level Data: Protocol and Pilot Analysis for a Systematic Mapping Review, Ger. J. Agr. Econ., 72, 168–184, https://doi.org/10.30430/gjae.2023.0385, 2023.
LfU (Landesamt für Umwelt Brandenburg): Schutzgebiete Nach Naturschutzrecht Des Landes Brandenburg, https://geobroker.geobasis-bb.de/gbss.php?MODE=GetProductInformation&PRODUCTID=AB2F53A4-A68E-413F-84C4-A972D2A2DA0B (last access: 29 March 2024), 2020.
Li, H., Vulova, S., Rocha, A. D., and Kleinschmit, B.: Spatio-temporal feature attribution of European summer wildfires with Explainable Artificial Intelligence (XAI), Sci. Total Environ., 916, 1–13, https://doi.org/10.1016/j.scitotenv.2024.170330, 2024.
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, 1–9, arXiv [preprint], https://doi.org/10.48550/arXiv.1705.07874, 2017.
Lüttger, A. B. and Feike, T.: Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany, Theor. Appl. Climatol., 132, 15–29, https://doi.org/10.1007/s00704-017-2076-y, 2018.
McVicar, T. R. and Bierwirth, P. N.: Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRR imagery, Int. J. Remote Sens., 22, 2109–2128, https://doi.org/10.1080/01431160120728, 2001.
Merz, B., Kreibich, H., and Lall, U.: Multi-variate flood damage assessment: a tree-based data-mining approach, Nat. Hazards Earth Syst. Sci., 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, 2013.
Meza, I., Hagenlocher, M., Naumann, G., Vogt, J. V., and Frischen, J.: Drought vulnerability indicators for global-scale drought risk assessments: global expert survey results report, Publications Office of the European Union, Luxembourg, 1–56, https://doi.org/10.2760/73844, 2019.
Mishra, A. K. and Singh, V. P.: Drought modeling – A review, J. Hydrol., 403, 157–175, https://doi.org/10.1016/j.jhydrol.2011.03.049, 2011.
Mishra, V., Tiwari, A. D., Aadhar, S., Shah, R., Xiao, M., Pai, D. S., and Lettenmaier, D.: Drought and famine in India, 1870–2016, Geophys. Res. Lett., 46, 2075–2083, https://doi.org/10.1029/2018GL081477, 2019.
MLUK (Ministerium für Landwirtschaft, Umwelt und Klimaschutz): Berechenbar: Dürrehilfen 2018 abgeschlossen – rund 72 Millionen Euro für notleidende Agrarbetriebe, Pressemappe, agrar presseportal, Potsdam, https://www.agrar-presseportal.de/landwirtschaft/agrarpolitik/berechenbar-duerrehilfen-2018-abgeschlossen-rund-72-millionen-euro-fuer-notleidende-agrarbetriebe-27692.pdf (last access: 15 November 2024), 2019.
MLUK (Ministerium für Landwirtschaft, Umwelt und Klimaschutz): Agrarbericht Des Ministeriums Für Landwirtschaft, Umwelt Und Klimaschutz Des Landes Brandenburg, https://agrarbericht.brandenburg.de/abo/de/start/agrarstruktur/natuerliche-bedingungen/ (last access: 29 March 2024), 2022a.
MLUK (Ministerium für Landwirtschaft, Umwelt und Klimaschutz): Benachteiligtes Gebiet, https://geoportal.brandenburg.de/detailansichtdienst/render?view=gdibb&url=https://geoportal.brandenburg.de/gs-json/xml?fileid=f901b82c-54b7-4ef1-8365-2205da79c79b (last access: 29 March 2024), 2022b.
MLUK (Ministerium für Landwirtschaft, Umwelt und Klimaschutz): Daten aus dem Agrarförderantrag, https://geoportal.brandenburg.de/detailansichtdienst/render?view=gdibb&url=https://geoportal.brandenburg.de/gs-json/xml?fileid=996f8fd1-c662-4975-b680-3b611fcb5d1f (last access: 29 March 2024), 2022c.
MLUK (Ministerium für Landwirtschaft, Umwelt und Klimaschutz): Strategie des Landes Brandenburg zur Anpassung an die Folgen des Klimawandels, 1–177, https://mluk.brandenburg.de/sixcms/media.php/9/Klimaanpassungsstrategie-Brandenburg-LF.pdf (last access: 15 November 2024), 2023.
Naumann, G., Cammalleri, C., Mentaschi, L., and Feyen, L.: Increased economic drought impacts in Europe with anthropogenic warming, Nat. Clim. Change, 11, 485–491, https://doi.org/10.1038/s41558-021-01044-3, 2021.
Peichl, M., Thober, S., Samaniego, L., Hansjürgens, B., and Marx, A.: Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany, Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, 2021.
Poljanšek, K., Casajus Valles, A., Marin Ferrer, M., De Jager, A., Dottori, F., Galbusera, L., Garcia Puerta, B., Giannopoulos, G., Girgin, S., Hernandez Ceballos, M., Iurlaro, G., Karlos, V., Krausmann, E., Larcher, M., Lequarre, A., Theocharidou, M., Montero Prieto, M., Naumann, G., Necci, A., Salamon, P., Sangiorgi, M., Sousa, M. L, Trueba Alonso, C., Tsionis, G., Vogt, J., and Wood, M.: Recommendations for National Risk Assessment for Disaster Risk Management in EU, EUR 29557 EN, Publications Office of the European Union, Luxembourg, JRC114650, ISBN 978-92-79-98366-5, https://doi.org/10.2760/084707, 2021.
Prodhan, F. A., Zhang, J., Hasan, S. S., Pangali Sharma, T. P., and Mohana, H. P.: A review of machine learning methods for drought hazard monitoring and forecasting: Current research trends, challenges, and future research directions, Environ. Modell. Softw., 149, 105327, https://doi.org/10.1016/j.envsoft.2022.105327, 2022.
Raihan, M. J., Khan, M. AM., Kee, S.-H., and Al Nahid, A.: Detection of the chronic kidney disease using XGBoost classifier and explaining the influence of the attributes on the model using SHAP, Sci. Rep.-UK, 13, 6263, https://doi.org/10.1038/s41598-023-33525-0, 2023.
Reinermann, S., Gessner, U., Asam, S., Kuenzer, C., and Dech, S.: The Effect of Droughts on Vegetation Condition in Germany: An Analysis Based on Two Decades of Satellite Earth Observation Time Series and Crop Yield Statistics, Remote Sens.-Basel, 11, 1–21, https://doi.org/10.3390/rs11151783, 2019.
Reisinger, A., Howden, M., Vera, C., Garschagen, M., Hurlbert, M., Kreibiehl, S., Mach, K. J., Mintenbeck, K., O'Neill, B., Pathak, M., Pedace, R., Pörtner, H.-O., Poloczanska, E., Corradi, M. R., Sillmann, J., van Aalst, M., Viner, D., Jones, R., Ruane, A. C., and Ranasinghe, R.: The concept of risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group Discussions, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 15 pp., https://www.ipcc.ch/site/assets/uploads/2021/02/Risk-guidance-FINAL_15Feb2021.pdf (last access: 15 November 2024), 2020.
Rossi, L., Wens, M., De Moel, H., Cotti, D., Sabino Siemons, A., Toreti, A., Maetens, W., Masante, D., van Loon, A., Hagenlocher, M., Rudari, R., Naumann, G., Meroni, M., Avanzi, F., Isabellon, M., and Barbosa, P.: European Drought Risk Atlas, Publications Office of the European Union, Luxembourg, 1–101, https://doi.org/10.2760/33211, 2023.
Şalap-Ayça, S. and Goto, E. A.: Beware the Rise of Models When They Are Wrong: A Look at Heat Vulnerability Modeling Through the Lens of Sensitivity (Short Paper), in: 12th International Conference on Geographic Information Science (GIScience 2023), Schloss-Dagstuhl-Leibniz Zentrum für Informatik, Germany, 12–15 September 2023, Leibniz International Proceedings in Informatics (LIPIcs), 277, 64:1–64:6, https://doi.org/10.4230/LIPICS.GISCIENCE.2023.64, 2023.
Samaniego, L., Kumar, R., and Zink, M.: Implications of Parameter Uncertainty on Soil Moisture Drought Analysis in Germany, J. Hydrometeorol., 14, 47–68, https://doi.org/10.1175/JHM-D-12-075.1, 2013.
Santini, M., Noce, S., Antonelli, M., and Caporaso, L.: Complex drought patterns robustly explain global yield loss for major crops, Sci. Rep.-UK, 12, 1–17, https://doi.org/10.1038/s41598-022-09611-0, 2022.
Satoh, Y., Yoshimura, K., Pokhrel, Y., Kim, H., Shiogama, H., Yokohata, T., Hanasaki, N., Wada, Y., Burek, P., Byers, E., Müller Schmied, H., Gerten, D., Ostberg, S., Newland Gosling, S., Stanslas Boulange, J. E., and Oki, T.: The timing of unprecedented hydrological drought under climate change, Nat. Commun., 13, 1–11, https://doi.org/10.1038/s41467-022-30729-2, 2022.
Schmitz, T. and Müller, D.: Digitale Karte der Bodenwertzahlen für Brandenburg, FORLand Technisches Papier 01, AgEcon Search, Germany, 1–13, https://doi.org/10.22004/ag.econ.308812, 2020.
Shapley, L. S.: A value for n-person games, in: Contributions to the Theory of Games, Volume II, Annals of Mathematics Studies, edited by: Kuhn, H. and Tucker, A. W., Princeton University Press, Princeton, NJ, 307–317, https://doi.org/10.1073/pnas.39.10.1095, 1953.
Sieg, T., Vogel, K., Merz, B., and Kreibich, H.: Tree-based flood damage modeling of companies: Damage processes and model performance, Water Resour. Res., 53, 6050–6068, https://doi.org/10.1002/2017wr020784, 2017.
Söder, M., Berg-Mohnicke, M., Bittner, M., Ernst, S., Feike, T., Frühauf, C., Golla, B., Jänicke, C., Jorzig, C., Leppelt, T., Liedtke, M., Möller, M., Nendel, C., Offermann, F., Riedesel, L., Romanova, V., Schmitt, J., Schulz, S., Seserman, D.-M., and Shawon, A. R.: Klimawandelbedingte Ertragsveränderungen und Flächennutzung (KlimErtrag), Thünen Working Paper 198, AgEcon Search, Johann Heinrich von Thünen-Institut, Braunschweig, Germany, 234 pp., https://doi.org/10.22004/ag.econ.324625, 2022.
Sodoge, J., Kuhlicke, C., and de Brito, M. M.: Automatized spatio-temporal detection of drought impacts from newspaper articles using natural language processing and machine learning, Weather and Climate Extremes, 41, 1–9, https://doi.org/10.1016/j.wace.2023.100574, 2023.
Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D., Miskus, D., and Stephens, S.: The Drought Monitor, B. Am. Meteorol. Soc., 83, 1181–1190, https://doi.org/10.1175/1520-0477-83.8.1181, 2002.
Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., De Stefano, L., Acácio, V., Dias, S., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, A., Assimacopoulos, D., and Van Lanen, H. A. J.: Impacts of European drought events: insights from an international database of text-based reports, Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/10.5194/nhess-16-801-2016, 2016.
Statistische Ämter des Bundes und der Länder: Arbeitskräfte Und Deren Arbeitsleistung in Landwirtschaftlichen Betrieben, https://www.regionalstatistik.de/genesis/online?operation=table&code=41141-08-02-4-B&bypass=true&levelindex=1&levelid=1657801475190#abreadcrumb (last access: 29 March 2024), 2010.
Statistische Ämter des Bundes und der Länder: Bodenfläche Nach Art Der Tatsächlichen Nutzung, https://www.regionalstatistik.de/genesis//online?operation=table&code=33111-01-02-4&bypass=true&levelindex=0&levelid=1659007696599#abreadcrumb (last access: 29 March 2024), 2020a.
Statistische Ämter des Bundes und der Länder: Landwirtschaftliche Betriebe Insgesamt Sowie Mit Ökologischem Landbau Und Deren Landwirtschaftlich Genutzte Fläche (LF) Und Viehbestand, https://www.regionalstatistik.de/genesis/online?operation=table&code=41141-04-02-4&bypass=true&levelindex=0&levelid=1660746074321#abreadcrumb (last access: 29 March 2024), 2020b.
Statistische Ämter des Bundes und der Länder: Landwirtschaftliche Betriebe Mit Hofnachfolge, https://www.regionalstatistik.de/genesis//online?operation=table&code=41141-09-01-4&bypass=true&levelindex=0&levelid=1663767785139#abreadcrumb (last access: 29 March 2024), 2020c.
Statistische Ämter des Bundes und der Länder: Landwirtschaftliche Betriebe Nach Rechtsform Und Sozialökonomische Betriebstypen, https://www.regionalstatistik.de/genesis//online?operation=table&code=41141-07-01-4&bypass=true&levelindex=0&levelid=1661699406158#abreadcrumb (last access: 29 March 2024), 2020d.
Statistische Ämter des Bundes und der Länder: Schulabgangsquote an Allgemeinbildenden Schulen VIII, https://www.bildungsmonitoring.de/bildung/online?operation=table&code=BBD15.1i&bypass=true&levelindex=0&levelid=1660318442403#abreadcrumb (last access: 12 August 2022, no longer available online), 2021.
Statistische Ämter des Bundes und der Länder: Arbeitslosenquote Regionalatlas Deutschland, https://regionalatlas.statistikportal.de/?BL=DE&TCode=AI008-1-5&ICode=AI0801 (last access: 11 August 2022), 2022.
Stephan, R., Terzi, S., Erfurt, M., Cocuccioni, S., Stahl, K., and Zebisch, M.: Assessing agriculture's vulnerability to drought in European pre-Alpine regions, Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, 2023a.
Stephan, R., Stahl, K., and Dormann, C. F.: Drought impact prediction across time and space: limits and potentials of text reports, Environ. Res. Lett., 18, 074004, https://doi.org/10.1088/1748-9326/acd8da, 2023b.
Sutanto, S. J., van der Weert, M., Wanders, N., Blauhut, V., and van Lanen, H. A. J.: Moving from drought hazard to impact forecasts, Nat. Commun., 10, 1–7, https://doi.org/10.1038/s41467-019-12840-z, 2019.
Tagesschau: https://www.tagesschau.de/wirtschaft/unternehmen/landwirtschaft-erntebilanz-bauern-duerre-101.html (last access: 6 March 2024), 2022.
Tanguy, M., Eastman, M., Magee, E., Barker, L. J., Chitson, T., Ekkawatpanit, C., Goodwin, D., Hannaford, J., Holman, I., Pardthaisong, L., Parry, S., Rey Vicario, D., and Visessri, S.: Indicator-to-impact links to help improve agricultural drought preparedness in Thailand, Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, 2023.
Tellman, B., Schank, C., Schwarz, B., Howe, P. D., and de Sherbinin, A.: Using Disaster Outcomes to Validate Components of Social Vulnerability to Floods: Flood Deaths and Property Damage across the USA, Sustainability-Basel, 12, 1–28, https://doi.org/10.3390/su12156006, 2020.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718, https://doi.org/10.1175/2009jcli2909.1, 2010.
Wagenaar, D., de Jong, J., and Bouwer, L. M.: Multi-variable flood damage modelling with limited data using supervised learning approaches, Nat. Hazards Earth Syst. Sci., 17, 1683–1696, https://doi.org/10.5194/nhess-17-1683-2017, 2017.
Walz, Y., Dall, K., Graw, V., Villagran de Leon, J.-C., Haas, S., Kussul, N., and Jordaan, A.: Understanding and reducing agricultural drought risk: Examples from South Africa and Ukraine, Policy Report No. 3, United Nations University – Institute for Environment and Human Security (UNU-EHS), Bonn, 1–29, https://collections.unu.edu/eserv/UNU:6688/PolicyReport_181213_EN_META.pdf (last access: 15 November 2024), 2018.
Wang, Q., Zeng, J., Qi, J., Zhang, X., Zeng, Y., Shui, W., Xu, Z., Zhang, R., Wu, X., and Cong, J.: A multi-scale daily SPEI dataset for drought characterization at observation stations over mainland China from 1961 to 2018, Earth Syst. Sci. Data, 13, 331–341, https://doi.org/10.5194/essd-13-331-2021, 2021.
Wens, M., Johnson, J. M., Zagaria, C., and Veldkamp, T. I. E.: Integrating human behavior dynamics into drought risk assessment – A sociohydrologic, agent-based approach, WIREs Water, 6, e1345, https://doi.org/10.1002/wat2.1345, 2019.
Wilhite, D. A. and Glantz, M. H.: Understanding: the Drought Phenomenon: The Role of Definitions, Water Int., 10, 111–120, https://doi.org/10.1080/02508068508686328, 1985.
Yang, C., Chen. M., and Yuan, Q.: The application of XGBoost and SHAP to examining the factors in freight truck-related crashes: An exploratory analysis, Accid. Anal. Prev., 158, 106153, https://doi.org/10.1016/j.aap.2021.106153, 2021.
Zhang, H., Loaiciga, H. A., and Sauter, T.: A Novel Fusion-Based Methodology for Drought Forecasting, Remote Sens., 16, 828, https://doi.org/10.3390/rs16050828, 2024.
Zhou, R., Jin, J., Cui, Y., Ning, S., Bai, X., Zhang, L., Zhou, Y., Wu, C., and Tong, F.: Agricultural drought vulnerability assessment and diagnosis based on entropy fuzzy pattern recognition and subtraction set pair potential, Alexandria Engineering Journal, 61, 51–63, https://doi.org/10.1016/j.aej.2021.04.090, 2022.
Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schäfer, D., and Marx, A.: The German drought monitor, Environ. Res. Lett., 11, 1–9, https://doi.org/10.1088/1748-9326/11/7/074002, 2016.
Executive editor
The results I find particularly relevant are:
1. While individual crops have specific drought risks, an assessment of the risks across them is a valuable approach.
2. A clear link to meteorological drought in a particular seasonal period can be identified
The results I find particularly relevant are:
1. While individual crops have specific drought...
Short summary
Droughts are a threat to agricultural crops, but different factors influence how much damage occurs. This is important to know to create meaningful risk maps and to evaluate adaptation options. We investigate the years 2013–2022 in Brandenburg, Germany, and find in particular the soil quality and meteorological drought in June to be statistically related to the observed damage. Measurement of crop health from satellites is also related to soil quality and not necessarily to anomalous yields.
Droughts are a threat to agricultural crops, but different factors influence how much damage...
Altmetrics
Final-revised paper
Preprint