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Abstract. Adaptation to an increasingly dry regional climate
requires spatially explicit information about current and fu-
ture risks. Existing drought risk studies often rely on expert-
weighted composite indicators, while empirical evidence on
impact-relevant factors is still scarce. The aim of this study
is to investigate to what extent hazard and vulnerability in-
dicators can explain observed agricultural drought impacts
via data-driven methods. We focus on the German federal
state of Brandenburg, 2013–2022, including several consec-
utive drought years. As impact indicators we use thermal–
spectral anomalies (land surface temperature (LST) and the
normalized difference vegetation index (NDVI)) on the field
level, and empirical yield gaps from reported statistics on the
county level. Empirical associations to the impact indicators
on both spatial levels are compared. Extreme gradient boost-
ing (XGBoost) models explain up to about 60 % of the vari-
ance in the yield gap data (best R2

= 0.62). Model perfor-
mance is more stable for the drought years and when using
all crops for training rather than individual crops. Meteoro-
logical drought in June and soil quality are selected as the
strongest impact-relevant factors. Rye is empirically found
to be less vulnerable to drought than wheat, even on poorer
soils. LST /NDVI only weakly relates to our empirical yield
gaps. We recommend comparing different impact indicators
on multiple scales to proceed with the development of em-
pirically grounded risk maps.

1 Introduction

Agricultural drought risk mapping is essential for the spatial
prioritization of adaptation actions and measures and par-
ticularly to raise awareness of stakeholders throughout the
social–ecological system (Mishra and Singh, 2011; Blauhut,
2020; Kim et al., 2021). In the light of climate change,
droughts are expected to occur at a higher frequency and
unprecedented magnitudes, which poses a major challenge
for risk management (Hanel et al., 2018; Hari et al., 2020;
Satoh et al., 2022; Kreibich et al., 2022). Risk in this context
can be conceptualized as the potential for negative impacts,
assembled from hazard, exposure, and vulnerability compo-
nents – while definitions of terms have shifted over the years,
the recent guideline by the Intergovernmental Panel on Cli-
mate Change (IPCC) is very clear on that matter (Reisinger
et al., 2020). A sound understanding of hazard thresholds
and vulnerability conditions associated with impacts under
droughts (hereinafter “impact-relevant factors”) is thus ur-
gently needed to provide reliable risk maps and move to-
wards impact-based forecasting (Sutanto et al., 2019). How-
ever, many drought risk maps are still being produced by
more or less arbitrary weighting of indicators to produce a
composite score (Kim et al., 2015; Dabanli, 2018; Kim et al.,
2021; Khoshnazar et al., 2023), sometimes based on expert
opinion (Frischen et al., 2020; Abdullah et al., 2021; Stephan
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et al., 2023a), or by process-based models for individual agri-
cultural crops (Söder et al., 2022). A review of international
examples found that drought studies in particular often nei-
ther define their target of investigation in sufficient detail nor
include any sort of validation, thereby making the results dif-
ficult to interpret and use (Hagenlocher et al., 2019). Such ag-
gregated indicators could harm more than they help by mask-
ing important differences between areas (Jhan et al., 2020).
For Brandenburg, our study region, Ihinegbu and Ogunwumi
(2022) produced a drought event map based on weighting
of the normalized difference vegetation index (NDVI), land
surface temperature (LST), and rainfall, without considering
vulnerability or impacts. We suggest that drought risk map-
ping should be more closely related to investigations of ac-
tual hazard–impact relationships.

Droughts are natural hazards with a relatively slow-onset
character, although there has recently been more scientific
attention paid to flash droughts (Alencar and Paton, 2022).
Purely meteorological droughts, soil moisture droughts, hy-
drological low flow in rivers, and socio-economic droughts
that have consequences for the broader population and might
lead to water conflicts are distinguished (Wilhite and Glantz,
1985). For agriculture, direct biophysical drought impacts ar-
guably start once water availability restricts plant growth.
Depending on the drought intensity, duration, and timing
within the plant phenological stage, crop health is affected,
which translates into yield levels, product quality, and ulti-
mately prices also being affected (Santini et al., 2022). His-
torically, droughts are associated with famine and high death
tolls (Mishra et al., 2019; Contreras, 2019). With modern
disaster response, the impacts usually stay on the economic
level, but monetary loss can also have severe consequences
for individuals, businesses, and entire regions, and these con-
sequences should be anticipated and managed proactively
(Erfurt et al., 2019; Krishnamurthy et al., 2022). While there
are mechanisms to partially compensate for losses due to
extreme events (European Commission, 2023), a notable
residual business risk remains with farms – potentially lead-
ing to stress and anxiety experienced by farmers (Austin
et al., 2018; Abunyewah et al., 2024). Indirect effects are
then propagated along the value chain and within the af-
fected region. More than EUR 100 billion has been attributed
to drought events between 1986 and 2016 in the European
Union (Blauhut et al., 2016), and severe increases in eco-
nomic impacts are projected for climate change scenarios
without adaptation (Naumann et al., 2021). In the German
federal state of Brandenburg, our study region, the local gov-
ernment spent EUR 72 million on compensation to farm-
ers for drought-related losses in 2018 alone, accounting for
about 45 % of the actual claims of that year (MLUK, 2019).
This, however, was only the beginning of a prolonged multi-
year drought (Boeing et al., 2022). As an area that has his-
torically been water-rich, Brandenburg now needs to prepare
for a drier future (Kahlenborn et al., 2021; MLUK, 2023),
making it an interesting case for an empirical study.

Methods for empirically investigating impact-relevant fac-
tors for natural hazards range from simple regression to state-
of-the-art algorithms from the field of (explainable) artificial
intelligence (AI and, for explainable artificial intelligence,
XAI). Investigated impacts include, for example, damage to
buildings from river floods (Merz et al., 2013), debris flows
(Jakob et al., 2012), or compound events (Brill et al., 2020),
as well as casualties from floods (Tellman et al., 2020) and
heat (Şalap-Ayça and Goto, 2023) or the occurrence of wild-
fires (Kondylatos et al., 2022). There have been similar at-
tempts to uncover impact-relevant factors from text reports
of past droughts (Stahl et al., 2016; Blauhut et al., 2016;
de Brito et al., 2020; Sodoge et al., 2023; Stephan et al.,
2023b) and from yield anomalies for selected crops (Sutanto
et al., 2019; Peichl et al., 2021; Tanguy et al., 2023). Despite
these recent efforts, empirical evidence on regional impact-
relevant factors and nonlinearities of actual observed drought
impacts is still rather scarce (Bachmair et al., 2016; Sutanto
et al., 2019; Peichl et al., 2021; Tanguy et al., 2023). The
application of AI methods in particular has led to consid-
erable advances in terms of drought hazard monitoring and
forecasting in recent years (Prodhan et al., 2022; Kowalski et
al., 2023; Zhang et al., 2024). While these methods are very
promising, they rely on the availability of (big) data covering
the processes of interest. On the topic of vulnerability and
impact-relevant factors, a key bottleneck of such data-driven
studies is the availability of impact data.

One potential solution to solve the data availability issue
is the use of remote sensing data products, from which indi-
cators of crop health can be derived. While there are various
potential indicators for mapping drought impacts on crops,
the ratio between LST and NDVI is a particularly well es-
tablished observable metric for that purpose (McVicar and
Bierwirth, 2001; Karnieli et al., 2010; Crocetti et al., 2020).
The middle of the growing season is generally regarded as
the most decisive time of observation (Ghazaryan et al.,
2020). Reinermann et al. (2019) used remote sensing time
series from 2000 to 2018 and detected negative vegetation
anomalies in Germany during summer months, particularly
in the drought year 2018. The strength of correlation between
drought indicators and yields was found to increase over time
(Lüttger and Feike, 2018). However, most data-driven stud-
ies using earth observation merely model the occurrence of
drought or treat anomalies of spectral indicators as “observed
impact” without proper comparison to yields (Houmma et al.,
2022).

Based on these identified gaps, the aim of this study is
twofold: (1) we investigate the recent drought years in Bran-
denburg by combining indicators on hazard, vulnerability,
and impacts from multiple data sources and (2) we derive
empirical relationships of hazard and vulnerability indicators
to the different impact indicators by data-driven methods.
Additionally, an interactive web map was developed to as-
sist in the exploration of the components of regional drought
risk. The findings provide new insights into the complexity
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of the impact–hazard–vulnerability relationship of agricul-
tural droughts for our study region in Brandenburg, as well
as into limitations of currently available datasets. This has
implications for the modelling and monitoring of agricultural
drought.

2 Material and methods

2.1 Approach and study area

To achieve our two objectives, we select a set of indicators
based on a literature analysis, including impact indicators on
two different levels: the field level and the county level. Spa-
tiotemporal patterns are investigated by visual inspection. We
then conduct data-driven analyses to identify hazard and vul-
nerability indicators empirically associated with the impact
indicators on both levels (Fig. 1). These data-driven analyses
consist of correlation checks, machine learning regression,
and model inspection techniques. In addition to this paper,
we provide an interactive web-based visualization tool to fos-
ter the exploration of data beyond the printed figures.

As the study region we choose the German federal state
of Brandenburg, which has a relevant agricultural sector that
has been affected by drought in recent years and where re-
ported yields as well as high-spatial-resolution data on grown
crops are available. Brandenburg is characterized by flat to-
pography, sandy soils, and lakes stemming from the latest
ice age, as well as former peatland areas that have been
drained over centuries for the purpose of obtaining arable
land (LBGR, 2010). The climate is continental and com-
parably dry for German standards, with averaged precip-
itation around 600 mm a−1 and evapotranspiration around
500 mm a−1, including smaller subregions with negative wa-
ter balances (Germer et al., 2011). Regional climate projec-
tions indicate a further reduction in precipitation during the
crop growing season, i.e. harsher conditions for agriculture
(Kahlenborn et al., 2021; MLUK, 2023). Soil water is gener-
ally expected to decrease in the region (Holsten et al., 2009).
Agriculture in Brandenburg is primarily rainfed though, and
current priorities of regional water management suggest that
the uptake of large-scale irrigation will not be a realistic op-
tion in the near future (MLUK, 2023). Despite this setting,
the agricultural sector is very important for the region and its
population in its 18 counties (in German, Landkreise, cor-
responding to NUTS 3 regions), with about 1× 106 ha of
land, one-third of the state, used for arable farming (MLUK,
2023). The agricultural sector of Brandenburg has also been
identified as highly vulnerable to drought in European-scale
studies (de Stefano et al., 2015; Blauhut et al., 2016).

2.2 Exposure and vulnerability indicators

Spatially explicit information about exposure, i.e. cropped
agricultural land, is derived from the Integrated Administra-
tion and Control System (IACS), which provides field-level

data on crops for farms that have applied for annual pay-
ments within the EU’s Common Agricultural Policy (CAP)
(Leonhardt et al., 2023). These shapes provide the basis of
our field-level analysis. We selected 12 of the most important
crop types in Brandenburg in terms of area of production for
which matching information in the yield reports and average
values per LBG (agricultural production area, abbreviation
from the German, Landbaugebiet) are available (Table A1).
In some cases we only used the winter variety; in other cases
we had to merge summer and winter varieties to match the
yield reports (Table A2). The 12 crops used in this study are
winter wheat, rye, triticale, oat, winter barley, winter canola,
grain maize, sunflower, potatoes, lupines, peas, and sugar
beet. The total cropped area covered by our 12 selected crop
types fluctuated in the investigated time period (2013–2022)
between about 638 000 and 686 000 ha, with no clear trend.
The largest unconsidered fraction is silage maize, which is
mostly used as fodder and is thus not consistently covered
in the reported statistics. Rye is among the most commonly
found crops in the region and is regarded as a reliable source
of income on sandy soils even with little precipitation (LBV,
2024). Wheat is considered more demanding but commands
higher prices. Cultivation of potatoes and sugar beet has been
drastically reduced over recent decades, partially owing to
the increasingly dry climate (LBV, 2024). Farm-level prod-
uct prices were purchased from the company Agrarmarkt
Informations-Gesellschaft mbH (AMI) (see LELF, 2021, for
publicly available data until 2020).

Vulnerability indicators attempt to capture the relevant
characteristics that shape the relationship between hazard in-
tensity and impacts. We compiled a list of environmental and
socio-economic indicators and their assumed direction of in-
fluence on agricultural drought vulnerability (cf. Walz et al.,
2018; Meza et al., 2019; Frischen et al., 2020; Zhou et al.,
2022; Stephan et al., 2023a). A gridded estimate of agricul-
tural soil quality (in German, Ackerzahl, AZL) is available at
5 m resolution (Schmitz and Müller, 2020). Based on AZL,
five different LBGs are classified, for which average yields
for the most important crops are published (LELF, 2016).
As a specific water-related indicator, we include the plant-
available water capacity (in German, nutzbare Feldkapazität,
NFK) (BGR, 2015a). To capture potential water accumu-
lation in the landscape, we further derived the topographic
wetness index (TWI) from a digital elevation model (BKG,
2017). We extracted mean values of AZL, NFK, and TWI per
agricultural field for the available point in time, assuming
that they do not change over time. Other indicators, in par-
ticular the socio-economic datasets, were only available per
county for Brandenburg. This restricted their use to simple
correlation analysis with impact indicators on the same spa-
tial level. Large parts of Brandenburg are classified as a “dis-
advantaged area” due to rather poor soils – the exception here
being the north-eastern counties Uckermark and Märkisch-
Oderland. These two counties also exhibit the highest scores
for secured succession (along with Potsdam), despite long-
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Figure 1. Workflow of the presented study.

known problems with general unemployment in Uckermark
(10.7 % in the year 2022). Smaller strips and patches of high-
quality LBG-1 soils are found in the west (Fig. 2). The spatial
distribution of crop types partially reflects these patterns; e.g.
winter wheat is typically grown on high-quality soils, making
it the dominant crop type in the abovementioned areas, while
rye is most common throughout the rest of Brandenburg on
poorer sandy soils.

2.3 Hazard indicators: SPEI and SMI

The Standardized Precipitation Evaporation Index (SPEI)
captures both precipitation and potential evaporation and has
evolved into one of the most commonly used meteorolog-
ical drought indicators in recent years (Vicente-Serrano et
al., 2010; Rossi et al., 2023; Tanguy et al., 2023). Monthly
values of SPEI-1 (1-month accumulation SPEI) used in this
study are at a 10 km grid resolution from 2013 to 2022, based
on the E-OBS dataset (Cornes et al., 2018). The calculation
details are described in Zhang et al. (2024). As the harvest
of the main crops in the region typically starts in July, we
used data for the months March to July. Negative SPEI val-
ues indicate meteorological water deficit. In addition to the
monthly SPEI, a metric of the growing-season drought mag-
nitude was computed as the sum of SPEI-1<−0.5 over the
period between March and July (SPEI-Magnitude) (cf. Wang
et al., 2021 for SPEI thresholds).

Regarding soil moisture droughts, the model-based Ger-
man drought monitor developed at the Helmholtz Centre for
Environmental Research (UFZ) is the most established re-
gional product (Samaniego et al., 2013; Zink et al., 2016;
Boeing et al., 2022) and has already been used for a simi-
lar purpose (Peichl et al., 2021). Identically to the SPEI data,
we use monthly values and a growing-season aggregation of
drought intensity derived from the soil moisture index (SMI)
for the topsoil (25 cm), again from March to July (Eq. 1). To
add some information on slower long-term drought processes
(i.e. accumulation and lag time), we further include the an-
nual drought magnitude for the total soil (up to 1.8 m depth),
which is temporally aggregated from April to October (SMI-
Total).

SMI=
1

d · A

∑
t0

t
1

∫
A

[
τ −SMI∗i (t)

]
+
, (1)

where τ is the drought threshold; SMI∗ is the raw soil mois-
ture index; and d and A refer to the duration and area of
potential aggregation, respectively. A value of 0 for all SMI-
based features thus means that none of the values were below
the drought threshold τ . We use τ = 0.2 (20th percentile),
which is a common value for drought analysis adopted in the
literature (e.g. US Drought Monitor; Svoboda et al., 2002).
For more details, the interested reader is referred to Boeing
et al. (2022).
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Figure 2. Spatial distribution of agricultural soil quality (LBG). Distribution of winter wheat and rye in the year 2022.

2.4 Impact indicators: crop health observations and
empirical yield gaps

2.4.1 LST / NDVI anomaly

As an indicator of crop health, the ratio of LST to NDVI
between May and June, i.e. roughly in the middle of the
growing season, of each year (2013–2022) was obtained
from Landsat 8 satellite imagery, using all images of the
T1_L2 collection. This dataset already includes processed
LST (Cook et al., 2014). Pre-processing and cloud masking
were conducted within Google Earth Engine (Gorelick et al.,
2017). The temporal aggregation of the satellite data is nec-
essarily a compromise: a comparison between years becomes
more precise when the interval is shorter, but to smooth
out potential variations in overpasses and cloud cover, as
well as disturbances to individual pixels, mean values across
several weeks are generally more trusted (Ghazaryan et al.,
2020). Images were downloaded at a 30 m spatial resolution
and then aggregated on individual fields. A small fraction
of fields had to be discarded due to missing data, e.g. be-
cause of cloud cover, and we continued the statistical analy-
sis with the remaining ones. As different crop types exhibit
characteristic spectra, we further computed the anomalies
of LST /NDVI over the entire observation period stratified
by crop type (Eq. 2). By doing so, the resulting anomalies
(LST /NDVI-anom.) are comparable among different crops.

LST/NDVIanom, f, y =
LST/NDVIc,f,y− LST/NDVIc

LST/NDVIc
(2)

where LST/NDVIc is the area-weighted mean for a given
crop across all years and the subscripts c, f, and y denote
crop, field, and year, respectively.

2.4.2 Empirical yield gaps

We further calculated empirical yield gaps per county for 12
crops for the last 10 years (2013–2022) by subtracting actual
reported yields (total production in tonnes) by the regional
statistical authority (Amt für Statistik Berlin-Brandenburg,
2022) from an estimate of expected yields under non-drought
conditions. We refer to expected yields as the product of
cropped area (per crop type in a given year) and the respec-
tive 5-year average yield (tonnes per hectare) per LBG from
the time 2010–2014. The expected yields are computed on
the field level and then aggregated on the level of counties
to be comparable to the reported yield data. The empirical
yield gap is divided by the expected yield we call the “rel-
ative gap”. A relative gap value of 1 thus implies that all
yield was lost, while a value of −1 implies that double the
expected amount was reported, and a value of 0 indicates a
perfect match between expected and reported numbers. To
correct for differences in the total area reported in IACS as
compared to the yield reports, we added the difference in area
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per crop, multiplied with the average yield per hectare of that
crop within the respective county as derived from the data.
Some minor assumptions had to be made to merge crop types
reported in IACS with the reports like neglecting spelt in the
statistics for wheat (details in Appendix A). Multiplication
of the empirical yield gaps and prices of the respective year
results in a total estimate of monetary loss in euros. As not all
of the 12 considered crops are grown in all regions in every
year, the total monetary loss estimate can be based on par-
tially different crops per region. We assume that this reflects
the real agroeconomic situation in each region.

2.4.3 Comparison to external data

For a plausibility check, we compared the resulting empirical
yield gaps and loss estimates to regional newspaper reports.
For individual crops (rye, wheat, maize, barley), we were
able to additionally calculate the potential production (PP)
and water-limited production (WLP) by the process model
WOFOST at a 2 km grid resolution (Jänicke et al., 2017; de
Wit et al., 2019). If our expected yields from the pre-drought
years are realistic, they should be similar to the potential pro-
duction. Crop growth in WOFOST is modelled from irradi-
ation, temperature, CO2 concentration, plant characteristics,
seeding date, and availability of water. The physically mod-
elled potential production from this simulation matches very
well with the expected yields derived by our empirical ap-
proach for soil quality range LBG-2 in the case of wheat and
barley and LBG-1 in the case of rye (Fig. 3). We are thus
confident that our approach produces estimates in a realistic
range. Only for maize is the modelled potential production
higher than the average values for Brandenburg suggested
on any soil type. This comparison also underlines that it is
important to account for the soil quality range, and thus our
empirical approach appears more realistic than this particu-
lar WOFOST simulation. For further comparison we use the
newspaper-reported impact score by Sodoge et al. (2023) for
the category “agriculture”. All data used are summarized in
Table 1.

2.5 Statistical procedures and algorithms

Exploratory analysis is conducted by calculating descriptive
statistics and correlation matrices and by visual inspection of
spatiotemporal patterns in the data. For the latter, we addi-
tionally provide a simple web app in R Shiny. Changes over
the investigated years are analysed by plotting the shift in sta-
tistical distributions and the temporal evolution of regional
mean values. To investigate empirical relations between our
hazard and vulnerability indicators and our impact indica-
tors, we apply the statistical learning algorithm extreme gra-
dient boosting (XGBoost) (Chen and Guestrin, 2016) com-
bined with the Shapley additive explanations (SHAP) model
inspection technique (Shapley, 1953; Lundberg and Lee,
2017). This combination is widely used in the field of XAI

and has recently been successfully applied in many different
scientific studies to derive insights from complex nonlinear
and interacting datasets (Yang et al., 2021; Jena et al., 2023;
Raihan et al., 2023; Li et al., 2024). XGBoost is an ensem-
ble method based on boosting; i.e. consecutive models are
trained on the residuals of the predecessor, thereby increas-
ing the fit step by step (as opposed to bagging like in ran-
dom forest, where an ensemble is trained in a parallel fashion
and aggregated via majority voting). This iterative analysis
of errors and weight adjustment supposedly leads to models
that reflect actual patterns in the overall data, rather than ran-
dom patterns observed in random bootstrap subsets. We use a
common tree-based model variant to allow for a hierarchical
structure. As the sampling scheme, we implemented nested
cross-validation, with an inner loop for hyperparameter opti-
mization and an outer loop to assess the skill applied to in-
dependent holdout sets (not used in parametrization). SHAP
values were computed for the best model of each nested it-
eration, selected by the highest R2 score for the holdout set.
The SHAP values represent a game-theoretic estimate of the
effect size, where the feature values are treated as players
that can join a coalition game (model). The resulting val-
ues give the expected marginal contribution for each feature
value across all possible coalitions, in the unit of the model
target, and fulfil the efficiency property, meaning that they
sum up to the difference between the overall expected value
and the specific model prediction for a set of feature values.
By computing these SHAP values for all samples used to
construct a model, it is possible to visualize the effect each
feature has within the inspected model. Note that this does
not necessarily imply insights into processes in nature, but
rather it implies insights into empirical relations in the data
as learned by the specific model.

In total our dataset contains 437 476 agricultural fields
across 18 counties. With 12 crop types and 10 years, the the-
oretical maximum number of data points on the county level
is 2160, from which missing entries have to be removed (not
all crops grown in all counties in all years). Predictive fea-
tures on the field level are the indicator values. Some feature
engineering is necessary to convert the field-level data into
features on the county level. It is reasonable to assume that
damaging processes are more dependent on extreme condi-
tions than on the mean value over a large area. To retain
as much information about the hazard distributions as pos-
sible, we computed the relative affected area exceeding (or
not exceeding) specified thresholds in regular intervals (Ap-
pendix B). This manual feature engineering resulted in a total
of 68 features on the county level.
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Table 1. Indicators and data sources.

Category Abbreviation Indicator description Spatial res. Data source and references

Hazard SPEI (monthly)
SPEI-Magnitude

Standardized Precipitation Evaporation In-
dex, sum of SPEI<−0.5, March–July

10 km Cornes et al. (2018), Zhang et al. (2024)

SMI (monthly)
SMI-Magnitude
SMI-Total

Soil moisture index, topsoil (25 cm)
Topsoil, March–July
Total soil (max 1.8 m), April–October

4 km Boeing et al. (2022), UFZ Drought
Monitor/Helmholtz Centre for Environmental Research
– https://www.ufz.de/index.php?en=37937 (last access:
15 November 2024)

Exposure – Agricultural land, on which one of the
12 selected crops is reported in the IACS
dataset

Fields (vector) Integrated Administration and Control System (IACS),
MLUK (2022c), Leonhardt et al. (2023)

Impact LST /NDVI
LST /NDVI-anom.

Land surface temperature / normalized dif-
ference vegetation index, mean of May–
June
Anomalies per crop

30 m Landsat 8, collection
Landsat/LC08/C02/T1_L2, courtesy of the United
States Geological Survey (USGS) and accessed via
Google Earth Engine – https://developers.google.com/
earth-engine/datasets/catalog/LANDSAT_LC08_C02_
T1_L2#description (last access: 15 November 2024)

Empirical yield gap
Relative yield gap

Expected− reported
(Expected− reported) / expected,
where “expected” is based on 5-year aver-
age hectare yields per LBG and the annual
area is in hectares

County 5-year average hectare yield per LBG: LELF (2016)
Reported: Amt für Statistik Berlin-Brandenburg (2022),
compiled by PHLA – https://github.com/pedroalencar1/
CropYield_BBr (last access: 15 November 2024)

Loss estimate Sum (empirical yield gap× farm-level
price), for all crops reported in a county per
year

County Farm-level prices: AMI; cf. LELF
(2021) for publicly available data until 2020

PP
WLP
Modelled gap

Potential production from a crop model
Water-limited production
PP−WLP

2 km WOFOST: de Wit et al. (2019)
Forcing: Jänicke et al. (2017)

Newspaper-
reported impacts

Number of newspaper articles reporting
agricultural drought impacts (text-mining-
based)

County Sodoge et al. (2023)

Environmental
vulnerability

AZL
LBG

Agricultural soil quality (Ackerzahl),
five-class ordinal range (Landbaugebiet)

5 m Schmitz and Müller (2020)
LELF (2021)

TWI Topographic wetness index 200 m BKG (2017)

NFK Plant-available water (nutzbare Feldkapaz-
ität)

250 m BGR (2015a)

– Soil depth County BGR (2015b)

– Soil water erosion County BGR (2014a)

– Soil wind erosion County BGR (2014b)

– Water exchange frequency County BGR (2015c)

– Forest ratio County Statistische Ämter des Bundes und der Länder (2020a)

– Farmland ratio County Statistische Ämter des Bundes und der Länder (2020a)

– Protected area County LfU (2020)

– Disadvantaged area County MLUK (2022b)

– Livestock health County Statistische Ämter des Bundes und der Länder (2020b)

Socio- – Secured succession County Statistische Ämter des Bundes und der Länder (2020b)

economic – Poverty County Amt für Statistik Berlin Brandenburg (2019b)

Vulnerability – Education County Statistische Ämter des Bundes und der Länder (2021)

– Unemployment County Statistische Ämter des Bundes und der Länder (2022)

– Social dependency County Eurostat (2021)

– Agricultural population density County Eurostat (2021), Statistische Ämter des Bundes und der
Länder (2010)

– GDP per farmer County Eurostat (2022), Statistische Ämter des Bundes und der
Länder (2010)

– GDP per capita County Eurostat (2021, 2022)

– Agricultural dependency for livelihood County Statistische Ämter des Bundes und der Länder (2020d)

– Public participation (voting) County Amt für Statistik Berlin-Brandenburg (2019a)

– Investments in disaster risk reduction (less
favoured areas)

County MLUK (2022a)
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Figure 3. Comparison on the field level of (a) wheat, (b) rye, (c) barley, and (d) maize. The original resolution of the crop model is 2 km.

3 Results and discussion

3.1 Spatiotemporal patterns of hazard, vulnerability,
and impact indicators

3.1.1 Temporal evolution on the state level

The temporal evolution of mean indicator values for the
whole of Brandenburg suggests that the investigated decade
can be divided into a pre-drought phase (2013–2017) and
a drought phase (2018–2022) (Fig. 4). In 2013 and 2014,
SMI-Total is close to 0, observed vegetation health is at its
maximum (i.e. negative LST /NDVI-anom.), essentially no
impact-related statements are captured in the newspaper text-
mining data, and our economic calculation even estimates an
excess of about EUR 100 million compared to expectations.
Particularly 2014 made headlines with record-breaking (pos-
itive) yields (Agrarheute, 2014). However, the crop model
WOFOST still estimates a gap between potential produc-
tion and water-limited production in that year, and also in
SPEI-Magnitude there is some drought signal visible. We
interpret this as locally and temporally constrained meteo-
rological effects that did not propagate to the soil and con-
sequently did not have a negative effect on crop health and
yields. The year 2017 was then rather wet, which is re-
flected in SPEI, LST /NDVI, and the media impact state-
ments. However, the soil drought only declined slightly ac-
cording to SMI. From 2018, a multi-year drought started.
There seems to be a temporal lag of 1 year between meteoro-
logical and soil moisture drought indicators, likely reflecting
the propagation from atmospheric conditions to the deeper
soil layers. This is also visible in data for the year 2021,
where SPEI-Magnitude indicates there was a good meteo-
rological water balance, but soil moisture drought remained.
Interesting to note though is that the satellite observations of
crop health peak in the same year as SMI-Total, 2019, while
the estimated economic loss (12 crops), as well as the crop
model (for wheat) and newspaper-reported impacts, exhibits
peaks at the meteorological drought maximum in 2018. The
distribution of LST /NDVI-anom. has been shifting towards

higher values in recent years – not only the median but also
the upper tail of the distribution became heavier (Fig. 5).
This upper part of the distribution is where we expect im-
pacts like reduced yields. The most notable exposure changes
over the decade are decreasing trends for rye (−30 %), trit-
icale (−22 %), winter canola (−26 %), sugar beet (−33 %),
and lupines (−38 %) and increases in winter wheat (+19 %),
winter barley (+28%), oat (+44 %), peas (+132 %), and sun-
flower (+145 %) (Fig. 6). Changes in crop choice may par-
tially reflect a response to experienced crop-damaging con-
ditions but are also driven by unconsidered factors such as
fertilizer or market prices (e.g. Albers et al., 2017). Our total
loss estimate from the 12 crops for Brandenburg in 2018 is
EUR 132 million, which comes close to the official numbers:
EUR 72 million in compensation was issued by the state, and
this sum was considered to account for about 45 % of actual
claims (which would translate to a loss of EUR 160 million
when taken at face value) (MLUK, 2019).

Our empirical yield gaps peak in the year 2018 for most
crops in most regions, but the variability between counties
is high for most crops (Fig. 7). Only winter wheat, winter
canola, and winter barley exhibit low to moderate variabil-
ity between counties. Sugar beet is only reported in a few
cases. Plausibility checks against newspaper articles suggest
that our relative gap estimates are in a reasonable range:
yield reduction for individual crops from 25 % to more than
50 % was reported in 2018 and 2019, with winter canola
performing worse in 2019 (Agrarheute, 2018; DLF, 2019).
Grain crops did better in 2022 than 2021, but maize did much
worse (Tagesschau, 2022). The year 2014 on the other hand
is remembered for record-breaking yields with “+24 % com-
pared to the previous 5-year average and 11 % higher than the
previous year”, indicating that 2013 was still well above av-
erage (Agrarheute, 2014), which is captured in our estimates.

3.1.2 Spatiotemporal patterns

A more facetted picture appears when comparing the spa-
tial distributions of hazard and impact indicators alongside
each other for consecutive years (Fig. 8). Essentially the
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Figure 4. Evolution of indicator values over the whole of Brandenburg. Our loss estimate is given in the original values on the left axis. Bars
indicate the number of agricultural impact statements in newspapers on the original scale (left axis). All other indicators were extracted on
agricultural fields, area-weighted, and scaled to fit the same axis. SPEI-Magnitude has only negative values and is thus scaled to [−1, 0].
SMI-Total and the crop-model-based gap (PP−WLP) have only positive values and are thus scaled to [0, 1]. LST /NDVI-anom. has positive
and negative values and is thus scaled to [−1, 1].

Figure 5. Shifting distribution of LST /NDVI anomalies by year.

entire state of Brandenburg was affected by meteorologi-
cal drought in 2018, with the SPEI-Magnitude minimum
registered in the south-west. Soils in the south were al-
ready dry by then, but severe soil moisture drought through-
out the state developed a year later. Contrarily, during the
rather rainy year of 2021, the accumulated soil drought per-
sisted. When another intense meteorological drought struck
in 2022, only the soils in the north had moderately recovered.
Annual distributions of LST /NDVI-anom. exhibit small-
scale variability that is difficult to align with the aggregated
hazard indicators. Patches of high anomalies (i.e. suppos-

edly damaged fields) are found scattered across the state,
while low anomalies (i.e. supposedly healthy crops) appear
to dominate in the areas of good soil quality (see Fig. 2).
The highest economic loss per hectare is mapped in the
southern areas of Spree-Neiße and Oberspreewald-Lausitz
(with the highest absolute loss in Uckermark due to the
large fraction of agricultural land). While the exceptional
years of 2018 and 2019 also caused severe losses in the
north and west of Brandenburg, the south-east ranks high
in the relative loss estimates throughout all of the investi-
gated years. Loss per hectare from our empirical approach is
higher than the crop model estimates by Söder et al. (2022),
who report separate numbers of around EUR 90 per hectare
from summer drought and EUR 60 per hectare from spring
drought in 2018 in the region. Our estimates refer to the
sum of all damaging processes. The socio-economic vul-
nerability indicators and low-resolution maps for all inves-
tigated years can be viewed at https://fabiobrill.shinyapps.
io/agrdrought-explorer-brandenburg/ (Brill, 2024b), while
the high-resolution data can be obtained from Zenodo
(https://doi.org/10.5281/zenodo.13373271, Brill, 2024a).

3.2 Empirical investigation of impact-relevant factors

3.2.1 Relations between indicators on the field level

The spatiotemporal patterns suggest non-trivial and multi-
way interactive relationships between our chosen hazard,
vulnerability, and impact indicators. This is further supported
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Figure 6. Area covered by 12 selected crop types in Brandenburg.

Figure 7. Relative yield gaps per county in percent for the 12 investigated crops.
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Figure 8. Spatiotemporal patterns of aggregated meteorological and soil moisture drought hazard indicators, crop health anomalies, and
county-scale loss estimates per hectare.

by a correlation analysis, which shows that the bivariate lin-
ear relations in the data are mostly weak (Fig. 9). Correla-
tions slightly increase when subdividing the data by crop,
presumably because the relationships are more linear for in-
dividual crops; however the effect is almost negligible (not
shown). The meteorological and soil moisture hazard indi-
cators SPEI and SMI are correlated to each other. Monthly
SPEI and SMI are essentially uncorrelated to LST /NDVI-
anom. in March, very weakly correlated in April, and moder-
ately correlated in May and June. As the LST /NDVI mea-
surements are also from May and June, the additional cor-
relation in July has to be a spurious effect stemming from

the collinearity in the SPEI layers (almost 0.5 between June
and July). Raw NDVI – and therefore also LST /NDVI – is
clearly related to AZL, meaning that crops grown on better
soils tend to be “greener”, with or without drought. This ef-
fect is reduced in the anomalies. TWI and NFK exhibit no
relation except to AZL. The modelled water-limited produc-
tion from WOFOST only weakly relates to LST /NDVI (not
shown).

An XGBoost model trained to predict LST /NDVI-anom.
from monthly hazard indicators SPEI and SMI; aggregated
SMI-Total; and environmental vulnerability factors AZL,
TWI, and NFK, as well as crop type, obtains R2 scores of
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Figure 9. Pearson’s correlation coefficient applied to field-level data. Almost all correlations are statistically significant due to the high
number of samples (n= 437 245 complete observations, 474 966 in total).

around 0.5 (Appendix C). AZL is chosen by the models as
the most important feature, followed by the categorical vari-
able crop type, while the other environmental vulnerability
factors, TWI and NFK, have little influence (Fig. 10). Each
dot in this plot corresponds to a sample, and the SHAP val-
ues represent the feature effects (conditional expectation) on
the predicted quantity, i.e. LST /NDVI-anom. in this case.
Interaction plots for crop types highlight that wheat, canola,
and barley are grown on relatively good soils; lupines on bad
soils; and rye on both (Fig. 11). While the absolute effect
of AZL on the predictions is higher than the effect of crop
type, particularly wheat is modelled as more likely to be im-
pacted compared to other crops despite growing on better
soils (higher AZL).

Some more process understanding about droughts might
be distilled from the SHAP dependence plots (Fig. 12). A
sharp increase in SHAP values is observed for AZL below
35, meaning that vulnerability is higher on soils below that
quality. There is a strong interaction between AZL and SMI-
Total, which on its own shows a weakly S-shaped relation-

ship to the LST /NDVI anomaly. A more or less linear re-
sponse is uncovered for SMI in May, with an offset at 0,
i.e. good vegetation health for no drought in May. Meteo-
rological drought in June seems to have a decisive effect in
the model, judged by a sharp increase in SHAP values for
SPEI<−1. SPEI in March appears to have a damaging ef-
fect under conditions that are too wet (SPEI>+1), which is
in line with previous findings by Peichl et al. (2021).

From a methodological point of view, it is worth men-
tioning that SHAP plots based on the full dataset exhibit far
larger variance on the y axis than preliminary experiments
with only 10 % of the data. One reason for this might be the
spatial resolution of the features, but we assume that it is also
related to the complexity of the regression task. While there
are some clear effects on the centre lines, it also becomes ob-
vious that no single feature explains all the data. Several steps
in our analysis include simplifications; e.g. calculations using
mean values per field imply that an entire field is treated as
a unit. For larger fields it might be realistic that only parts
are affected; however such effects are below the credible res-
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Figure 10. SHAP summary plot.

Figure 11. Interaction plot for crop type and AZL.

olution of input data. We acknowledge that particularly for
maize, which is typically harvested from September on, a
longer observation window might be more suitable. Adjust-
ing the remote sensing data to the actual sowing and harvest
dates of each crop might improve the results – however, do-
ing so would further complicate the data pre-processing and
was considered out of scope of this study. Although agricul-
ture in Brandenburg is predominantly rainfed, a future study
could also benefit from spatially explicit information on irri-
gated areas (Ghazaryan et al., 2022).

3.2.2 Relations between indicators on the county level

When arranging the 12 crops by correlation among the rel-
ative gaps (i.e. each sample referring to a county in a given
year), it appears that almost all crops are positively corre-
lated over time, while spatially (and thus spatiotemporally)
several groups emerge (not shown). Correlation between the
newspaper-based “agriculture” impact score by Sodoge et
al. (2023) and our relative economic impact measure (in eu-
ros per hectare) over all 12 crops for the years 2013–2022 is
0.75 for the entire are of Brandenburg and 0.53 on the county
level. When compressing the data to mean values over the
entire time span to merge them with the socio-economic vul-
nerability indicators, the highest correlation of newspaper-
reported impacts is to participation in local politics (0.69).
From our data and analysis, we see no meaningful correlation
between the vulnerability indicators and reported impacts or
calculated losses. A major drawback is the resolution of the
indicators. For this reason, they were not included in the fol-
lowing XGBoost regression analysis.

The statistical learning models trained to predict the em-
pirical yield gaps on the county level obtain R2 scores of
around 0.6 when using all features and all data (Fig. 13).
Models using only LST /NDVI features as predictors per-
form poorly (R2

∼ 0.2). It is quite remarkable that a field-
level (i.e. high-spatial-resolution) observation of crop health
does not provide more useful information for predicting
yield. Models using hazard indicators as predictors perform
better. Monthly values of SPEI are clearly to be preferred
over seasonally aggregated magnitude, and the same is true
for SMI. However, we observe that models using only SPEI
perform slightly better than those using only SMI. One po-
tential reason for this might be that SMI is itself model-
based, which introduces further uncertainty. We find a mi-
nor improvement when using both SPEI and SMI, where
SMI-Total is more relevant than the monthly topsoil layers
(as information complementary to SPEI). The additional im-
provement when adding LST /NDVI features on top is al-
most negligible. Our predictive features explain much more
variance for the drought years 2018–2022 than for the pre-
drought years 2013–2017, as expected. Models trained on
the full dataset exhibit both higher skill and less variance. A
similar effect is observed when training separate models for
the different crop types: individual models for winter wheat
perform better than individual models for rye, but a lumped
model using all crops is much more stable. We explain this by
the higher number of training samples in combination with a
tree-based model structure that exploits similarities between
crops. The R2 skill score of the final model used for inspec-
tion via SHAP plots is 0.62 for the holdout set; i.e. about
60 % of the variance in the empirical yield gaps can be ex-
plained by our drought-related features, while about 40 % re-
mains unexplained. Agricultural crops are highly managed
and face numerous threats, not only droughts. It would be
unreasonable to assume that drought indicators alone could
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Figure 12. SHAP dependence plots for selected features: (a) AZL, (b) TWI (c) SMI Total, (d) SPEI March, (e) SMI May, and (f) SPEI June.
The centre line is derived by a loess regression on the SHAP values. The colour visualizes interaction with a second feature.

fully explain real observed yield data. In a similar published
attempt, Peichl et al. (2021) report that their best model for
winter wheat obtained an R2 of 0.68, which is very close to
our best models – however, they do not report any details on
the variability in this score. Empirical damage models, such
as those used for floods, typically report rather weak model
fits (e.g. Wagenaar et al., 2017; Sieg et al., 2017). In the Eu-
ropean Drought Risk Atlas, Rossi et al. (2023) do not even
report the model fit at all but still uncover plausible impact-
relevant factors for droughts.

Model inspection identifies SPEI below −1 in June as the
most relevant condition in the lumped model for all crops
(Fig. 14) and also in crop-specific models for wheat and rye
(Appendix D). Note that the features on the county level
always refer to the relative affected area above or below a
threshold; e.g. the value of “SPEI June<−1” indicates the
relative area per crop per county affected by SPEI in June
below −1. However, a large fraction of the data indicate that
not exceeding −1 coincided with negative empirical yield
gaps, i.e. higher-than-expected yields. To investigate this in
more detail, we run another model setup using only data
with a positive empirical yield gap (n= 827). Data on the
county level always include mixed effects; i.e. the “empir-
ical yield gap> 0” constraint on the county level implies
not that there are no damaged fields in the data but rather
that damaged fields are outweighed by fields with higher-
than-expected yields within the same county. Features based
on SPEI in June are still among the most important pre-
dictors for such a subset, with thresholds of −0.5 and −1
ranked high (Fig. 14b). Even more severe meteorological

drought conditions (SPEI<−2) are apparently just too rare
in this dataset to be influential on the county level. In March
the threshold of 0 is again selected in the reverse direction,
i.e. indicating damage from conditions that are too wet (cf.
Fig. 15d). Multiple AZL features are selected, confirming
once more that soil quality is a relevant drought vulnerabil-
ity factor (the regression target is already based on expected
yield estimates that account for AZL, so this effect is on top
of that). LST /NDVI as a predictive feature for the empir-
ical yield gaps is of low relevance when using all data but
ranks higher when restricting the training data to positive
yield gaps. In the comparison of crops (Fig. 15a), lupines
clearly stick out, which is explained by the high losses in
the yield data (cf. Fig. 7). The interaction of crop type with
AZL< 36 shows once more that rye is being grown on worse
soils than wheat but still has lower SHAP values with respect
to the regression on impacts. Triticale is on a level similar to
wheat, and canola is even higher. From all these crops, rye is
thus empirically found to be the most robust.

To check the stability of the SHAP values, we repeated the
model fitting several times and inspected the resulting sum-
mary plots. The first features are always crop type and SPEI
in June. Beyond the first few ranks, feature effects become
very similar, and the exact ranks can shift in repeated model
runs (depending on the random data subset and respective
model parameters). The effects for the different crop types
and shapes of the dependence plots also exhibit stable results,
confirmed in multiple setups. Focusing the models on posi-
tive empirical yield gaps can make the feature effects more
linear (Fig. 15b and c). Nonlinear responses in the depen-
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Figure 13. Distributions of the R2 skill score based on 10 repetitions for each setup. (a) Separate models for pre-drought and drought years.
(b) Separate models for individual crop types.

Figure 14. SHAP summary plots for the best model trained on (a) all data and (b) data with an empirical yield gap> 0.

dence plots for single features on the county level are likely
empirical artefacts, as the definition of a feature as a relative
affected area should more or less linearize the physical re-
sponse. Although spatial neighbourhood effects, like a lack
of water in a hydrologically connected area, could introduce
nonlinearities, we assume in general that a more affected area
should lead to more impact, regardless of the criterion.

3.3 Summary and discussion

3.3.1 Key findings

The main innovation of our study is the comparison of
impact-relevant factors derived from field-level thermal–
spectral ratios to those derived from county-level yield gaps
via consistent XAI methods. Anomalies of LST /NDVI are
shifted to higher values during the drought years, but spa-
tial patterns are rather scattered. The south-east of Branden-
burg ranks high in our per-hectare economic loss estimates
throughout all of the investigated years, although in the ex-
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Figure 15. SHAP dependence plots for selected features on the county level. (a) The effect of crop type and interaction with relative area of
AZL< 36 from a model trained on all data. (b, c) The effect of SPEI in June being <−1 (b) from a model trained on all data and (c) from
a model trained only on positive empirical yield gaps. (d) The effect of SPEI in March being < 0 from a model trained only on positive
empirical yield gaps. (e) The effect of the LST /NDVI anomaly being > 0.5 from a model trained only on positive empirical yield gaps.

ceptional years of 2018 and 2019, high losses are also regis-
tered in the north and west. It is not immediately obvious how
the spatial patterns of the individual hazard and vulnerability
indicators relate to both impact indicators. While other stud-
ies have already presented regression attempts for drought
impacts on individual crops in Germany (Peichl et al., 2021),
crops vs. forest in Thailand (Tanguy et al., 2023), multiple
sectors across Europe (Poljanšek et al., 2021; Rossi et al.,
2023), or modelled economic loss under climate change sce-
narios (Naumann et al., 2021), none of these studies com-
pared impact-relevant factors derived on the field level and
county level from different impact data sources via XGBoost
and SHAP. Through this comparison, we find the importance
of SPEI in June for regressing the observed impacts substan-
tiated by multiple model setups: (1) on the field level, re-
gressing LST /NDVI-anom., the SHAP values of SPEI in
June strongly increase below −1. (2) On the county level,
regressing empirical yield gaps, the relative area affected by
SPEI<−1 is selected as the most important predictive fea-
ture for a model trained on all data, as well as for crop-
specific models (both wheat and rye). (3) Even when remov-
ing all data where the empirical yield gap< 0, i.e. more yield
reported than expected, SPEI features from June still top
the ranking, although several thresholds are selected (mainly
−0.5 and −1). This is of particular concern as current re-
gional climate simulations for Brandenburg project a shift
in the seasonal water balance and intensity of rainfall: more
precipitation than today might arrive in winter, but rainfall
during the summer months is expected to occur in shorter

and more intense downpours, which implies a lower frac-
tion of infiltration and longer times of amplified evaporative
loss between the rain events (Jacob et al., 2014; Coppola et
al., 2021; MLUK, 2023). While uncertainties in these pro-
jections are rather high for the case of summer precipitation,
more robust projections of increasing summer dryness have
been shown for surface soil moisture (Berg et al., 2017; Cook
et al., 2018). We further identify conditions that are too wet
in March as an impact-relevant factor, in agreement with Pe-
ichl et al. (2021).

SMI-Total adds complementary information to monthly
SPEI. No real model improvement is obtained when using
both SPEI and SMI monthly values though. From the con-
sidered vulnerability factors, AZL (i.e. agricultural soil qual-
ity) is by far the most relevant one. There is a clear influ-
ence of AZL on LST /NDVI-anom., with vulnerability ris-
ing at AZL below about 35. LST /NDVI is, somewhat sur-
prisingly, not a good predictor for the empirical yield gaps
in our study. We thus advise caution when interpreting em-
pirical results from a single impact indicator. AZL is also
related to selected crop types. Most notably, wheat is grown
on high-quality soils, while rye is grown predominantly on
low- to medium-quality soils. While this already indicates
that rye tolerates harsher conditions, we find empirically that
rye on poor soil is still more robust under drought condi-
tions in the region than wheat is on good soil – based on
both impact datasets. The cropped area of rye decreased by
about 30 % between 2013 and 2022 in Brandenburg though,
and the area for winter wheat increased by 19 % in the same

Nat. Hazards Earth Syst. Sci., 24, 4237–4265, 2024 https://doi.org/10.5194/nhess-24-4237-2024



F. Brill et al.: Agricultural drought hazard, vulnerability, and impacts in Brandenburg 4253

time. Such choices of crop types simultaneously affect expo-
sure and vulnerability and thus risk.

3.3.2 Limitations and future research

From the monthly hazard features, the models can learn in-
teractions that resemble accumulation – however, we did not
include predictors from a previous year or even longer lag
times. The only information from a longer time period is
SMI-Total (Fig. 8 shows the lag of 1 year compared to SPEI).
As agricultural crops, as opposed to, for example, trees, are
replaced every season, it does not seem logical to include
longer lag times, but future research might investigate this.
Groundwater and streamflow indicators have not been used,
as both are highly managed in Brandenburg, and at the same
time irrigation is very limited (confirmed during a workshop
with local experts at HU Berlin on 25 November 2022), but
we acknowledge that Rossi et al. (2023) found streamflow
indicators relevant in the case of agriculture across Europe.
Further improvements in modelling observed impacts likely
require more detailed spatially explicit data on vulnerability;
land use change; and landscape organization, e.g. hedgerows,
agroforestry systems, and (farm)land management (such as
cover crops, fertilizer use, and irrigation). Agriculture in
Brandenburg is predominantly rainfed, and we found no reli-
able spatially explicit dataset on irrigation. This gap could
be closed in the future via remote sensing studies. Most
socio-economic variables used in our study, and in general in
drought-related vulnerability studies (e.g. Meza et al., 2019;
Stephan et al., 2023a), might exhibit direct influence not on
crop loss but rather on the propagation of indirect impacts
further down the impact chain. Substantiating such theoreti-
cal assumptions with quantitative investigations is an impor-
tant topic for future research that requires novel datasets and
methods, e.g. from the field of socio-hydrology (Wens et al.,
2019).

The choice of impact variables, and the pre-processing
thereof, might introduce biases. The LST /NDVI anomaly is
a commonly used indicator for drought-related crop health,
but other indicators are possible, such as the radar vegetation
index (Kim et al., 2012), hyperspectral metrics (Dao et al.,
2021), fractional cover time series (Kowalski et al., 2023),
or multimodal techniques (Karmakar et al., 2024). Regres-
sions on the county level are based on relative yield gaps. Al-
though we did not identify rapid agrotechnological changes
within the investigated 10 years of yield data, the methodol-
ogy could be improved to account for such potential jumps,
particularly when investigating a longer time series. Directly
regressing economic loss would also be possible and could
lead to different insights (e.g. into the effect of price shocks).
Both impact variables used in our regression are continuous
rather than binary, which could affect the nonlinearities cap-
tured by the models.

We chose the algorithm XGBoost, which, compared to
random forest, limits the amount of variability between the

individual decision trees. It is assumed this avoids erratic be-
haviour, but, on the other hand, it could also limit the po-
tential damaging processes discovered by the models. For
the models on the county level, predictive features were de-
rived by computing the relative area above and below evenly
spaced thresholds. Alternatives here would be to use quan-
tiles or to automate the feature engineering by deep learning
algorithms. Stronger AI methods, not only in the regression
but also in the feature learning step (i.e. deep learning), could
improve the predictive skill. While the R2 scores obtained by
our models are in the range of similar studies (e.g. Peichl et
al., 2021; Tanguy et al., 2023), they are still rather low for
a predictive use case (which was not our aim in this study).
Reasons for this often low to moderate model skill of such
studies include uncertainty in the regression target, the spa-
tial and temporal resolution of the predictors, missing pre-
dictors and/or imperfect feature engineering, and a lack of
representative training samples covering all the nonlineari-
ties and interactions in the natural processes.

3.3.3 Recommendations

To prepare the agricultural sector, rural population, and so-
ciety for an uncertain future climate with an increased fre-
quency of extreme hydrometeorological events, monitoring
systems with early warnings are needed. Given that most
decision-makers, e.g. local authorities, disaster managers, or
farmers, react to information about impacts (Dutt and Gon-
zales, 2010), such monitoring and early warning systems
should be impact-based, rather than being informative only
about hazards. In particular we recommend

1. fostering the implementation of impact-based monitor-
ing and early warning systems for droughts to reduce
impacts;

2. establishing the use of interactive visualization tools in
education and training to advance adaptation;

3. selecting drought-robust crops (farmer responsibility),
e.g. rye over wheat, and avoiding adverse incentives
(policymaker responsibility);

4. providing water storage or other capacities for ad hoc
measures during the decisive summer months (here,
June).

4 Conclusion

Our analysis of spatiotemporal patterns of agricultural
drought hazard, exposure, vulnerability, and impact indica-
tors for Brandenburg in 2013–2022 empirically shows that
the links between these components are complex and, con-
sequently, that risk mapping and monitoring need to be sup-
ported by thorough investigations from multiple datasets. We
present agricultural impact indicators on two spatial levels –
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the crop health indicator LST /NDVI applied to individual
fields and empirical yield gaps on the county level – and ap-
ply XGBoost regression to relate both of them to hazard and
vulnerability indicators. Finding more detailed data on vul-
nerability and farmland management is still challenging but
needed to improve the skill of the models. Stronger remote
sensing indicators of drought impacts, beyond LST /NDVI,
seem necessary as well. Data-driven techniques from the AI
domain can capture complex interactions in human environ-
ments such as agriculture. SHAP plots uncover which factors
drive the prediction of impact indicators in the models. This
does not necessarily relate to causal effects in nature though.
We thus suggest cross-checking results obtained from differ-
ent model setups, different regression targets, and ideally also
different algorithms. Model inspection in this study shows
that features are generally used in a physically meaningful
direction, which is a prerequisite if data-driven models are
to be trusted. Models from both impact datasets agree on
the importance of meteorological drought in June, soil qual-
ity, and the type of crop. No single feature explains all the
data though, and in fact such simplified interpretations are
against the logic of using a strongly nonlinear machine learn-
ing (ML) algorithm to tackle complex regression problems.
Rather than attempting to weight indicators manually, em-
pirical impact data should be the benchmark for evaluating
hazard and vulnerability indicators for the purpose of risk
mapping. Interactive visualization tools should enter the edu-
cation system at all levels to train the risk and climate literacy
of future citizens and demonstrate impacts of hazards rather
than hazards only. Ultimately, interactive impact-based fore-
casting tools would offer a basis for science communication
with policymakers and participatory modelling approaches to
develop better climate policies and raise awareness for feasi-
ble adaptation options.
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Appendix A

Table A1. Average yields [dt ha−1] per LBG in 2010–2014, as used to estimate expected yields. Compiled from LELF (2016).

Crop LBG-1 LBG-2 LBG-3 LBG-4 LBG-5

Winter wheat 77 65 50 38 23
Winter rye 63 55 43 35 25
Summer rye 37∗ 33∗ 25.8∗ 21∗ 15∗

Winter barley 75 63 50 36 25
Oat 55 45 35 27 18
Winter triticale 66 60 48 37 23
Summer triticale 39.6∗ 36∗ 28.8∗ 22.2∗ 13.8∗

Grain maize 90 80 70 60 50
Peas 35 30 25 20 NA
Lupines NA 25 21 18 15
Potatoes 370 350 320 250 220
Potatoes (starch) 450 420 390 320 250
Sugar beet 650 620 580 NA NA
Winter canola 43 38 32 25 20
Summer canola 23 18 14 11 NA
Sunflower 28 25 20 17 15

∗ Assumption, based on 60 % of winter variety. NA: not available.

Table A2. Merging of the crop types between the three datasets: IACS, yield reports, and average yields per LBG. Silage maize was discarded
later, and for sugar beet we did not find prices for 2021–2022.

Crop LBG average yields IACS data Yield reports Assumptions made

Grain maize Grain maize Grain maize Grain maize –

Sunflower Sunflower Sunflower Sunflower –

Sugar beet Sugar beet Sugar beet Sugar beet –

Lupines Lupines Lupines Lupines –

Peas Peas Peas Peas –

Winter barley Winter barley Winter barley Winter barley –

Winter canola Winter canola Winter canola Winter canola –

Oat Oat Winter oat
Summer oat

Oat IACS types merged into “oat”

Potatoes Potatoes
Potatoes (starch)

Potatoes (various)
Potatoes (starch)

Potatoes combined All types merged into “potatoes”

Winter wheat Winter wheat Winter wheat Winter wheat+ spelt Spelt neglected

Rye Winter rye Winter rye
Summer rye

Rye+winter mix LBG values for summer rye assumed to be 60 %
of winter rye; IACS types merged into “rye”;
winter mix neglected

Triticale Winter triticale Winter triticale
Summer triticale

Triticale LBG values for summer triticale assumed to be
60 % of winter triticale; IACS types merged
into “triticale”
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Appendix B

Table B1. Intervals for thresholds.

Indicator category Interval for thresholds (exact values)

SPEI 0.5 (−4∗, −3.5∗, −3∗, −2.5, −2, −1.5, −1, −0.5, 0)
SMI 0.05 (0, 0.05, 0.10, 0.15)
SMI-Total 5 (0, 5, 10, 15, 20, 25, 30, 35)
LST /NDVI-anom. 0.25 (0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50)
AZL LBGs (23, 29, 36, 46)

∗ Only for SPEI-Magnitude.

Appendix C

Table C1. Model setups on the field level (y =LST /NDVI-anom.). The indicators denoted with an “x” are included in the respective setup.
Performance initially assessed on 10 % of the data to check the relative differences.

Setup Crop SPEI- SPEI SMI- SMI Total soil Vulnerability R2 (mean of
type Magnitude monthly Magnitude monthly magnitude AZL, TWI, NFK 10 repetitions)

F1 x x x 0.09
F2 x x x x x 0.17
F3 x x 0.20
F4 x x 0.15
F5 x x x x 0.26
F6 xa x x x 0.25

0.48b

F7 xa x x x x 0.25
0.51b

a As a categorical feature rather than one-hot-encoded. b Re-trained on the full dataset.

Table C2. Model setups on the county level (target is the relative empirical yield gap) using all available samples per setup (scores on holdout
data). The indicators denoted with an “x” are included in the respective setup.

Setup Crop LST /NDVI SPEI- SPEI SMI- SMI SMI- Vulnerability R2 (mean of
type Magnitude monthly Magnitude monthly Total AZL 10 repetitions)

LK1 x x 0.22
LK2 x x 0.41
LK3 x x x x x 0.52
LK4 x x x 0.54
LK5 x x x 0.48
LK6 x x x x 0.53
LK7 x x x x x 0.56
LK8 x x x x x x 0.57
LK9 xa x x x x x 0.53
LK9b xa x x x x x 0.40b

a As a categorical feature rather than one-hot-encoded. b Trained only on samples where empirical yield gap> 0.
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Appendix D

Figure D1. SHAP summary plots for models trained only on (a) wheat and (b) rye.

https://doi.org/10.5194/nhess-24-4237-2024 Nat. Hazards Earth Syst. Sci., 24, 4237–4265, 2024



4258 F. Brill et al.: Agricultural drought hazard, vulnerability, and impacts in Brandenburg

Figure D2. SHAP values for all features of the best model trained on (a) all data and (b) empirical yield gap> 0. Figure 14 in the main paper
only displays the first 15 of these features.
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Code and data availability. All data and scripts needed
to reproduce the figures, as well as the full processed
dataset and scripts used to conduct the pre-processing
and analysis, are publicly available via GitHub at
https://github.com/fabiobrill/brandenburg-drought-study/ (last
access: 20 November 2024) and are permanently archived on
Zenodo at https://doi.org/10.5281/zenodo.13373271 (Brill, 2024a).
Except for the crop prices, which were obtained from AMI under a
commercial license, all other raw data used in this study either are
open (see Table 1) or can be made available upon reasonable re-
quest to the authors. The interactive data exploration app in R Shiny
is also available via the GitHub repository and can be run locally.
An independent publicly hosted version is accessible online:
https://fabiobrill.shinyapps.io/agrdrought-explorer-brandenburg/,
Brill, 2024b.
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