Articles | Volume 24, issue 11
https://doi.org/10.5194/nhess-24-4075-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-4075-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dynamical changes in seismic properties prior to, during, and after the 2014–2015 Holuhraun eruption, Iceland
Maria R. P. Sudibyo
CORRESPONDING AUTHOR
Institute for Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam-Golm, Germany
Eva P. S. Eibl
Institute for Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam-Golm, Germany
Sebastian Hainzl
Institute for Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam-Golm, Germany
Physics of Earthquakes and Volcanoes, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Matthias Ohrnberger
Institute for Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam-Golm, Germany
Related authors
No articles found.
Nele Inken Käte Vesely, Eva Patrica Silke Eibl, Gilda Currenti, Mariangela Sciotto, Giuseppe Di Grazia, Matthias Ohrnberger, and Philippe Jousset
EGUsphere, https://doi.org/10.5194/egusphere-2025-4412, https://doi.org/10.5194/egusphere-2025-4412, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We compare seismometers with the 6C method, which combines rotational and seismometer data, determining signal directions and wave velocities for short and continuous low-frequency volcanic signals at Mt. Etna. Either the cluster or the rotational sensor reliably detect continuous signal directions, aligning with the observatory data. For short signals, 6C directions deviate more, likely due to a complex underground. Combining both methods' velocity results improves understanding volcanic waves.
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, and Thoralf Dietrich
Earth Surf. Dynam., 11, 933–959, https://doi.org/10.5194/esurf-11-933-2023, https://doi.org/10.5194/esurf-11-933-2023, 2023
Short summary
Short summary
Floods draining beneath an ice cap are hazardous events that generate six different short- or long-lasting types of seismic signals. We use these signals to see the collapse of the ice once the water has left the lake, the propagation of the flood front to the terminus, hydrothermal explosions and boiling in the bedrock beneath the drained lake, and increased water flow at rapids in the glacial river. We can thus track the flood and assess the associated hazards better in future flooding events.
Asim M. Khawaja, Behnam Maleki Asayesh, Sebastian Hainzl, and Danijel Schorlemmer
Nat. Hazards Earth Syst. Sci., 23, 2683–2696, https://doi.org/10.5194/nhess-23-2683-2023, https://doi.org/10.5194/nhess-23-2683-2023, 2023
Short summary
Short summary
Testing of earthquake forecasts is important for model verification. Forecasts are usually spatially discretized with many equal-sized grid cells, but often few earthquakes are available for evaluation, leading to meaningless tests. Here, we propose solutions to improve the testability of earthquake forecasts and give a minimum ratio between the number of earthquakes and spatial cells for significant tests. We show applications of the proposed technique for synthetic and real case studies.
Zahra Zali, Theresa Rein, Frank Krüger, Matthias Ohrnberger, and Frank Scherbaum
Solid Earth, 14, 181–195, https://doi.org/10.5194/se-14-181-2023, https://doi.org/10.5194/se-14-181-2023, 2023
Short summary
Short summary
Investigation of the global Earth's structure benefits from the analysis of ocean bottom seismometer (OBS) data that allow an improved seismic illumination of dark spots of crustal and mantle structures in the oceanic regions of the Earth. However, recordings from the ocean bottom are often highly contaminated by noise. We developed an OBS noise reduction algorithm, which removes much of the oceanic noise while preserving the earthquake signal and does not introduce waveform distortion.
Tomáš Fischer, Pavla Hrubcová, Torsten Dahm, Heiko Woith, Tomáš Vylita, Matthias Ohrnberger, Josef Vlček, Josef Horálek, Petr Dědeček, Martin Zimmer, Martin P. Lipus, Simona Pierdominici, Jens Kallmeyer, Frank Krüger, Katrin Hannemann, Michael Korn, Horst Kämpf, Thomas Reinsch, Jakub Klicpera, Daniel Vollmer, and Kyriaki Daskalopoulou
Sci. Dril., 31, 31–49, https://doi.org/10.5194/sd-31-31-2022, https://doi.org/10.5194/sd-31-31-2022, 2022
Short summary
Short summary
The newly established geodynamic laboratory aims to develop modern, comprehensive, multiparameter observations at depth for studying earthquake swarms, crustal fluid flow, mantle-derived fluid degassing and processes of the deep biosphere. It is located in the West Bohemia–Vogtland (western Eger Rift) geodynamic region and comprises a set of five shallow boreholes with high-frequency 3-D seismic arrays as well as continuous real-time fluid monitoring at depth and the study of the deep biosphere.
Cited articles
Ágústsdóttir, T., Woods, J., Greenfield, T., Green, R. G., White, R. S., Winder, T., Brandsdóttir, B., Steinthórsson, S., and Soosalu, H.: Strike-slip faulting during the 2014 Bárðarbunga-Holuhraun dike intrusion, central Iceland, Geophys. Res. Lett., 43, 1495–1503, https://doi.org/10.1002/2015GL067423, 2016. a, b
Ágústsdóttir, T., Winder, T., Woods, J., White, R. S., Greenfield, T., and Brandsdóttir, B.: Intense Seismicity During the 2014–2015 Bárðarbunga-Holuhraun Rifting Event, Iceland, Reveals the Nature of Dike-Induced Earthquakes and Caldera Collapse Mechanisms, J. Geophys. Res.-Sol. Ea., 124, 8331–8357, https://doi.org/10.1029/2018JB016010, 2019. a, b, c, d, e, f
Amigó, J. M., Zambrano, S., and Sanjuán, M. A.: Combinatorial detection of determinism in noisy time series, Europhys. Lett., 83, 60005, https://doi.org/10.1209/0295-5075/83/60005, 2008. a
Bandt, C. and Pompe, B.: Permutation Entropy: A Natural Complexity Measure for Time Series, Phys. Rev. Lett., 88, 174102 https://doi.org/10.1103/PhysRevLett.88.174102, 2002. a
Barnes, A. E.: The calculation of instantaneous frequency and instantaneous bandwidth, Geophysics, 57, 1520–1524, 1992. a
Berger, S., Schneider, G., Kochs, E. F., and Jordan, D.: Permutation entropy: Too complex a measure for EEG time series?, Entropy, 19, 692, https://doi.org/10.3390/e19120692, 2017. a
Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals, P. IEEE, 80, 520–538, 1992. a
Bormann, P. and Wielandt, E.: Seismic Signals and Noise, in: New Manual of Seismological Observatory Practice 2 (NMSOP2), edited by: Bormann, P., Deutsches GeoForschungsZentrum GFZ, Potsdam, https://doi.org/10.2312/GFZ.NMSOP-2_ch4, 2013. a, b, c, d
Bozdağ, E., Trampert, J., and Tromp, J.: Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements, Geophys. J. Int., 185, 845–870, 2011. a
Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., and Nercessian, A.: Towards forecasting volcanic eruptions using seismic noise, Nat. Geosci., 1, 126–130, https://doi.org/10.1038/ngeo104, 2008. a
Coppola, D., Laiolo, M., Cigolini, C., Donne, D. D., and Ripepe, M.: Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system, Geological Society, London, Special Publications, 426, 181–205, 2016. a
Coppola, D., Ripepe, M., Laiolo, M., and Cigolini, C.: Modelling satellite-derived magma discharge to explain caldera collapse, Geology, 45, 523–526, https://doi.org/10.1130/G38866.1, 2017. a, b, c
Cropper, W. H.: Rudolf Clausius and the road to entropy, Am. J. Phys., 54, 1068–1074, 1986. a
Dávalos, A., Jabloun, M., Ravier, P., and Buttelli, O.: The Impact of Linear Filter Preprocessing in the Interpretation of Permutation Entropy, Entropy, 23, 787, https://doi.org/10.3390/e23070787, 2021. a
De Plaen, R. S. M., Lecocq, T., Caudron, C., Ferrazzini, V., and Francis, O.: Single-station monitoring of volcanoes using seismic ambient noise, Geophys. Res. Lett., 43, 8511–8518, https://doi.org/10.1002/2016GL070078, 2016. a
De Plaen, R. S. M., Cannata, A., Cannavo', F., Caudron, C., Lecocq, T., and Francis, O.: Temporal Changes of Seismic Velocity Caused by Volcanic Activity at Mt. Etna Revealed by the Autocorrelation of Ambient Seismic Noise, Front. Earth Sci., 6, 251, https://doi.org/10.3389/feart.2018.00251, 2019. a, b
Donaldson, C., Winder, T., Caudron, C., and White, R. S.: Crustal seismic velocity responds to a magmatic intrusion and seasonal loading in Iceland’s Northern Volcanic Zone, Science Advances, 5, eaax6642, https://doi.org/10.1126/sciadv.aax6642, 2019. a
Eibl, E. P. S., Bean, C. J., Jónsdóttir, I., Höskuldsson, A., Thordarson, T., Coppola, D., Witt, T., and Walter, T. R.: Multiple coincident eruptive seismic tremor sources during the 2014–2015 eruption at Holuhraun, Iceland, J. Geophys. Res.-Sol. Ea., 122, 2972–2987, https://doi.org/10.1002/2016JB013892, 2017a. a, b, c, d, e
Eibl, E. P. S., Bean, C. J., Vogfjörd, K. S., Ying, Y., Lokmer, I., Möllhoff, M., O’Brien, G. S., and Pálsson, F.: Tremor-rich shallow dyke formation followed by silent magma flow at Bárðarbunga in Iceland, Nat. Geosci., 10, 299–304, https://doi.org/10.1038/ngeo2906, 2017b. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Eibl, E. P. S., Hainzl, S., Vesely, N. I., Walter, T. R., Jousset, P., Hersir, G. P., and Dahm, T.: Eruption interval monitoring at Strokkur geyser, Iceland, Geophys. Res. Lett., 47, e2019GL085266, https://doi.org/10.1029/2019GL085266, 2020. a
Eibl, E. P. S., Müller, D., Walter, T. R., Allahbakhshi, M., Jousset, P., Hersir, G. P., and Dahm, T.: Eruptive Cycle and Bubble Trap of Strokkur Geyser, Iceland, J. Geophys. Res.-Sol. Ea., 126, e2020JB020769, https://doi.org/10.1029/2020JB020769, 2021. a, b, c
Feldman, M.: Hilbert transform in vibration analysis, Mech. Syst. Signal Pr., 25, 735–802, 2011. a
Glynn, C. C. and Konstantinou, K. I.: Reduction of randomness in seismic noise as a short-term precursor to a volcanic eruption, Sci. Rep., 6, 37733, https://doi.org/10.1038/srep37733, 2016. a, b
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hibert, C., Mangeney, A., Polacci, M., Muro, A. D., Vergniolle, S., Ferrazzini, V., Peltier, A., Taisne, B., Burton, M., Dewez, T., Grandjean, G., Dupont, A., Staudacher, T., Brenguier, F., Kowalski, P., Boissier, P., Catherine, P., and Lauret, F.: Toward continuous quantification of lava extrusion rate: Results from the multidisciplinary analysis of the 2 January 2010 eruption of Piton de la Fournaise volcano, La Réunion, J. Geophys. Res.-Sol. Ea., 120, 3026–3047, https://doi.org/10.1002/2014JB011769, 2015. a
Hillers, G., Ben-Zion, Y., Campillo, M., and Zigone, D.: Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise, Geophys. J. Int., 202, 920–932, https://doi.org/10.1093/gji/ggv151, 2015. a, b
Illien, L., Sens-Schönfelder, C., and Ke, K.-Y.: Resolving minute temporal seismic velocity changes induced by earthquake damage: the more stations, the merrier?, Geophys. J. Int., 234, 124–135, 2023. a
Kang, H., Zhang, X., and Zhang, G.: Phase permutation entropy: A complexity measure for nonlinear time series incorporating phase information, Physica A, 568, 125686, https://doi.org/10.1016/j.physa.2020.125686, 2021. a, b, c
Konstantinou, K. I., Rahmalia, D. A., Nurfitriana, I., and Ichihara, M.: Permutation entropy variations in seismic noise before and after eruptive activity at Shinmoedake volcano, Kirishima complex, Japan, Earth Planets Space, 74, 175, https://doi.org/10.1186/s40623-022-01729-9, 2022. a, b, c
Moran, S. C., Freymueller, J. T., LaHusen, R. G., McGee, K. A., Poland, M. P., Power, J. A., Schmidt, D. A., Schneider, D. J., Stephens, G., Werner, C. A., and White, R. A.: Instrumentation recommendations for volcano monitoring at US volcanoes under the National Volcano Early Warning System, US Geological Survey Scientific Investigations Report, 5114, 47, https://doi.org/10.3133/sir20085114, 2008. a
Pedersen, G., Höskuldsson, A., Dürig, T., Thordarson, T., Jonsdottir, I., Riishuus, M., Óskarsson, B., Dumont, S., Magnússon, E., Gudmundsson, M. T., Sigmundsson, F., Drouin, V. J. P. B., Gallagher, C., Askew, R., Gudnason, J., Moreland, W. M., Nikkola, P., Reynolds, H. I., and Schmith, J.: Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland, J. Volcanol. Geoth. Res., 340, 155–169, https://doi.org/10.1016/j.jvolgeores.2017.02.027, 2017. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Posadas, A., Morales, J., Ibañez, J., and Posadas-Garzon, A.: Shaking earth: Non-linear seismic processes and the second law of thermodynamics: A case study from Canterbury (New Zealand) earthquakes, Chaos Solitons Fract., 151, 111243, https://doi.org/10.1016/j.chaos.2021.111243, 2021. a, b
Prawirodirdjo, L., Ben-Zion, Y., and Bock, Y.: Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series, J. Geophys. Res.-Sol. Ea., 111, B02408, https://doi.org/10.1029/2005JB003716, 2006. a, b
Reynolds, H. I., Gudmundsson, M. T., Högnadóttir, T., Magnússon, E., and Pálsson, F.: Subglacial volcanic activity above a lateral dyke path during the 2014–2015 Bárdarbunga-Holuhraun rifting episode, Iceland, B. Volcanol., 79, 38, https://doi.org/10.1007/s00445-017-1122-z, 2017. a, b, c
Saccorotti, G. and Lokmer, I.: Chapter 2 – A review of seismic methods for monitoring and understanding active volcanoes, Forecasting and planning for volcanic hazards, risks, and disasters, Elsevier, 25–73, https://doi.org/10.1016/B978-0-12-818082-2.00002-0, 2021. a
Schimmel, M., Stutzmann, E., and Gallart, J.: Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale, Geophys. J. Int., 184, 494–506, 2011. a
Sens-Schönfelder, C. and Wegler, U.: Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia, Geophys. Res. Lett., 33, L21302, https://doi.org/10.1029/2006GL027797, 2006. a
Shannon, C. E.: A mathematical theory of communication, Bell Syst. Tech. J., 27, 379–423, 1948. a
Sigmundsson, F., Hooper, A., Hreinsdóttir, S., Vogfjörd, K. S., Ófeigsson, B. G., Heimisson, E. R., Dumont, S., Parks, M., Spaans, K., Gudmundsson, G. B., Drouin, V., Árnadóttir, T., Jónsdóttir, K., Gudmundsson, M. T., Högnadóttir, T., Fridriksdóttir, H. M., Hensch, M., Einarsson, P., Magnússon, E., Samsonov, S., Brandsdóttir, B., White, R. S., Ágústsdóttir, T., Greenfield, T., Green, R. G., Hjartardóttir, A. R., Pedersen, R., Bennett, R. A., Geirsson, H., La Femina, P. C., Björnsson, H., Pálsson, F., Sturkell, E., Bean, C. J., Möllhoff, M., Braiden, A. K., and Eibl, E. P. S.: Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland, Nature, 517, 191–195, https://doi.org/10.1038/nature14111, 2015. a, b, c
Steinmann, R., Hadziioannou, C., and Larose, E.: Effect of centimetric freezing of the near subsurface on Rayleigh and Love wave velocity in ambient seismic noise correlations, Geophys. J. Int., 224, 626–636, https://doi.org/10.1093/gji/ggaa406, 2020. a
Sudibyo, M. R. P., Eibl, E. P., Hainzl, S., and Ohrnberger, M.: 2 years of seismic parameters calculated at FLUR station prior, during, and after the 2014–2015 Holuhraun eruption, Iceland, GFZ Data Services [data set], https://doi.org/10.5880/fidgeo.2024.035, 2024. a, b
Taner, M. T., Koehler, F., and Sheriff, R. E.: Complex seismic trace analysis, Geophysics, 44, 1041–1063, https://doi.org/10.1190/1.1440994, 1979. a, b
Thompson, G., Beer, M., Kougioumtzoglou, I., Patelli, E., and Au, S.: Seismic monitoring of volcanoes, Encyclopedia of Earthquake Engineering, 10, 1–25, 2015. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Voigt, J. R., Hamilton, C. W., Scheidt, S. P., Münzer, U., Höskuldsson, Á., Jónsdottir, I., and Thordarson, T.: Geomorphological characterization of the 2014–2015 Holuhraun lava flow-field in Iceland, J. Volcanol. Geoth. Res., 419, 107278, https://doi.org/10.1016/j.jvolgeores.2021.107278, 2021. a
Voigt, J. R. C. and Hamilton, C. W.: Geomorphological Facies Map for the 2014–2015 Holuhraun Lava Flow-Field in Iceland, University of Arizona Research Data Repository [data set], https://doi.org/10.25422/azu.data.12971129.v3, 2021. a
Wassermann, J.: Volcano Seismology, in: New Manual of Seismological Observatory Practice 2 (NMSOP2), Deutsches GeoForschungsZentrum GFZ, Potsdam, https://doi.org/10.2312/GFZ.NMSOP-2_ch13, 2012. a
Wehrl, A.: General properties of entropy, Rev. Mod. Phys., 50, 221, https://doi.org/10.1103/RevModPhys.50.221, 1978. a
White, R.: Northern Volcanic Zone, International Federation of Digital Seismograph Networks, https://www.fdsn.org/networks/detail/Z7_2010/ (last access: 19 November 2024), 2010. a
Withers, M. M., Aster, R. C., Young, C. J., and Chael, E. P.: High-frequency analysis of seismic background noise as a function of wind speed and shallow depth, B. Seismol. Soc. Am., 86, 1507–1515, https://doi.org/10.1785/BSSA0860051507, 1996. a, b
Woods, J., Donaldson, C., White, R. S., Caudron, C., Brandsdóttir, B., Hudson, T. S., and Ágústsdóttir, T.: Long-period seismicity reveals magma pathways above a laterally propagating dyke during the 2014–15 Bárðarbunga rifting event, Iceland, Earth Planet. Sc. Lett., 490, 216–229, https://doi.org/10.1016/j.epsl.2018.03.020, 2018. a, b, c, d, e
Woods, J., Winder, T., White, R. S., and Brandsdóttir, B.: Evolution of a lateral dike intrusion revealed by relatively-relocated dike-induced earthquakes: The 2014–15 Bárðarbunga–Holuhraun rifting event, Iceland, Earth Planet. Sc. Lett., 506, 53–63, https://doi.org/10.1016/j.epsl.2018.10.032, 2019. a, b, c, d, e, f
Short summary
We assessed the performance of permutation entropy (PE), phase permutation entropy (PPE), and instantaneous frequency (IF), which are estimated from a single seismic station, to detect changes before, during, and after the 2014–2015 Holuhraun eruption in Iceland. We show that these three parameters are sensitive to the pre-eruptive and eruptive processes. Finally, we discuss their potential and limitations in eruption monitoring.
We assessed the performance of permutation entropy (PE), phase permutation entropy (PPE), and...
Altmetrics
Final-revised paper
Preprint