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Abstract. When a volcano is monitored using only a single
discipline or a single seismic station, it becomes important
to harvest information from the limited data set. Changes in
the seismic complexity could reveal a dynamic change due
to magma propagation. We evaluated permutation entropy
(PE) and phase permutation entropy (PPE) to monitor the
2014–2015 Holuhraun eruption in Iceland. These methods
provide fast and robust quantification of time series complex-
ity. We additionally calculated the instantaneous frequency
(IF), commonly used to monitor the frequency changes in a
non-stationary signal; the root-mean square (RMS); and the
root-median square (RMeS) of the seismic amplitude. We
observed distinct changes in the temporal variation in PE,
PPE, and IF, which are consistent with the changing state
from quiescence to magma propagation and then to erup-
tion. During the eruption, PE and PPE fit the lava discharge
rate, showing their potential to forecast the duration of the
eruption. While one parameter may be more sensitive to one
stage, the other may respond better to another stage. There-
fore, combining them may provide more reliable informa-
tion. Cluster analysis of these combined parameters shows
clusters consistent with the expert interpretation, confirming
the power of these parameters to distinguish different erup-
tion stages.

1 Introduction

A volcano should be monitored using at least four to six
seismic stations (Wassermann, 2012; Saccorotti and Lokmer,
2021; Moran et al., 2008). Yet many volcanoes are only mon-

itored by a few seismic stations (Thompson et al., 2015).
Monitoring a volcano using one seismic station hinders the
classification of the recorded volcano–seismic signals and
their location. However, it provides the opportunity to mon-
itor the temporal evolution of both transient and continuous
seismic features, which can give an overview of the state of a
volcano. Furthermore, when a volcano observatory starts op-
erating with a single seismic station and more seismometers
are only added later, seismic analysis of a single station is
important to establish a continuous baseline of monitoring.

An example of single-station monitoring is estimating the
temporal change in seismic velocity (dv/v), which can be
influenced by magma intrusion, using ambient noise inter-
ferometry (Brenguier et al., 2008). Ambient noise interfer-
ometry can be applied to data from a single station using ei-
ther cross-component correlation (De Plaen et al., 2016) or
autocorrelation (De Plaen et al., 2019). As a volcanic state
can change quickly in a crisis, a high temporal resolution of
monitoring is crucial for making a short-term prediction. The
estimation of dv/v can be done in a short time window, such
as minutes; however, it requires a dense network (Illien et al.,
2023). The dv/v changes also do not always relate to magma
intrusions, as the physical properties of the crustal rocks can
also be influenced by atmospheric pressure and temperature
(Hillers et al., 2015), changes in groundwater level (Sens-
Schönfelder and Wegler, 2006), and ground freezing (Stein-
mann et al., 2020).

Entropy is a term that is broadly used to measure the level
of disorder of a system, e.g., in thermodynamics (Cropper,
1986), statistical mechanics (Wehrl, 1978), and information
theory (Shannon, 1948). In nature, a state that is not balanced
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will always shift to reach equilibrium, and this process can
be associated with increasing entropy (Posadas et al., 2023).
In seismology, increasing entropy can be related to the irre-
versible transition of unbalanced stress and strain in the crust,
culminating in earthquakes (De Santis et al., 2011; Posadas
et al., 2021, 2023). The changes in entropy can be linked to
the seismic cycle of earthquakes (Posadas et al., 2023), where
the entropy increases and reaches its maximum value at or
shortly after the main shock, followed by a drop and then
stabilization during the relaxation period (De Santis et al.,
2011; Posadas et al., 2021, 2023).

One of the methods to estimate entropy using the am-
plitude of a time series is permutation entropy (Bandt and
Pompe, 2002). Glynn and Konstantinou (2016) calculated
permutation entropy (PE) based on seismic time series to find
a precursor prior to the 1996 Gjálp eruption in Iceland. In
principle, PE is estimated using one station. When several
stations are available, PE can be estimated from them to ver-
ify whether its temporal evolution is consistent at all stations.
During the propagation of magma to the surface, magma will
interact with the varying surrounding rocks at depth and cre-
ate different seismic signals with different complexities. As
magma reaches the surface, magma interaction with the shal-
low subsurface can generate a tremor and/or a long-period
signal. When a pre-eruptive tremor and/or long-period signal
is present, it exhibits a more regular oscillation and is nar-
row banded in frequency, and hence PE is reported to drop
(Konstantinou et al., 2022).

While PE can detect a seismic precursor occurring days
before an eruption (Glynn and Konstantinou, 2016), PE is
also reported to be sensitive to fast changes. Sudibyo et al.
(2022) calculated PE for 63 eruptions of Strokkur Geyser
in Iceland, where the duration of a typical eruptive cycle is
3.7±0.9 min (Eibl et al., 2020). PE can resolve the typically
observed four phases of Strokkur’s eruptive cycle, which last
several seconds to several minutes (Eibl et al., 2021), and the
1 s long processes therein at a high resolution (Sudibyo et al.,
2022).

Apart from the amplitude, another useful property of the
continuous seismic recording is the phase information. In-
stantaneous phase, along with the other seismic attributes,
has been utilized in seismic reflection to map geological dis-
continuities in the shallow subsurface since the 1970s (Taner
et al., 1979). In seismology, the instantaneous phase is used,
e.g., in seismic tomography (Bozdağ et al., 2011) and noise
suppression in ambient noise cross-correlation (Schimmel
et al., 2011; De Plaen et al., 2019). Kang et al. (2021) intro-
duced the use of the instantaneous phase to calculate phase
permutation entropy (PPE), which has also been shown to be
sensitive to dynamic changes in a signal. Here we use the
application of PE and PPE to detect the dynamic changes be-
fore, during, and after the 2014–2015 Holuhraun eruption,
Iceland.

Different observable parameters from various methods are
required to form a robust forecasting framework. Under-

standing which parameters to use and how they can represent
the process in the system can help improve the framework’s
accuracy and reduce the computational cost. Here we also
assess the derivative of the instantaneous phase known as in-
stantaneous frequency, IF (Boashash, 1992), which is com-
monly used to perform time–frequency analysis for a non-
stationary signal.

From 16 August 2014, seismicity migrated for 2 weeks
from the subglacial Bárðarbunga volcano in northeastern
Iceland: first to the southeast, then to the northeast for
about 48 km, at a depth of 5 to 9 km (Ágústsdóttir et al.,
2016, 2019). This seismicity is interpreted as having been
induced by a dike intrusion, which is divided into four seg-
ments, S1 to S4 (Woods et al., 2019), and which culminated
in an eruption that formed the Holuhraun lava flow field (see
Fig. 1a and b). Along the dike path, three cauldrons formed
on the ice surface, possibly indicating small subglacial erup-
tions (Eibl et al., 2017b; Reynolds et al., 2017). After the
dike reached Holuhraun, a short-lived eruption occurred dur-
ing the night on 29 August 2014 and was followed by a 6-
month-long eruption from 31 August 2014 at the same site.
Another subglacial eruption possibly occurred on 3 Septem-
ber 2014 (Eibl et al., 2017b), and another subaerial eruption
took place from 5 to 7 September 2014 between the ice cap
and the main lava flow field (Pedersen et al., 2017; Eibl et al.,
2017a). The spatial chronology is shown in Fig. 1a, while the
chronology timeline is shown in Fig. 1b.

This 2014–2015 Holuhraun eruption was exceptionally
well monitored by combining a variety of disciplines. In
terms of eruption forecasting, this eruption is interesting due
to several subglacial eruptions, three subaerial eruptions, and
the extensive dike formation. In addition, a dense network of
72 seismometers (Woods et al., 2018) was distributed around
the growing lava flow field, providing a wealth of data. The
lack of recorded shallow seismicity prior to the eruptions
(Sigmundsson et al., 2015) raises the question of whether
the final magma movement is aseismic or generated a pre-
eruptive tremor as suggested by Eibl et al. (2017b).

In this paper, we first introduce PE (Sect. 2.2) and PPE
(Sect. 2.3), along with other quantification methods consist-
ing of instantaneous frequency (IF) (Sect. 2.4), the root-mean
square (RMS), and the root-median square (RMeS) of seis-
mic amplitude (Sect. 2.5); the time-averaged discharge rate
(TADR) (Sect. 2.6); and k-means clustering (Sect. 2.7). Syn-
thetic tests to evaluate the performance of PE and PPE are
provided in Sect. 3.1. Additionally, we provide an expla-
nation of the parameters utilized to calculate PE and PPE
(Sect. 3.2) as well as IF, RMS, and RMeS (Sect. 3.3). We
calculated PE, PPE, IF, RMS, and RMeS from February 2014
to December 2015 (Sudibyo et al., 2024). We then compare
the temporal variations in PE, PPE, and IF with the RMS of
the seismic amplitude and the hypocentral distances to the
station (Sect. 4). Furthermore, we discuss the temporal vari-
ation in PE, PPE, and IF during the repose time (Sect. 5.2),
during the dike propagation (Sect. 5.3), and during the erup-
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Figure 1. Overview of the unrest, followed by the 2014–2015
Holuhraun eruption, Iceland. (a) The recorded earthquakes from
the catalog of Ágústsdóttir et al. (2019) are represented by the
black dots, the activated dike segments reported by Woods et al.
(2019) are represented by the lines S1 to S4, the erupted lava flow
field from Voigt et al. (2021); Voigt and Hamilton (2021) is shown
by the gray shaded area, the main vents are the yellow stars, the
southern vent is the light-green star, the location of the seismic sta-
tions FLUR and KVER are marked by the black triangles, and the
weather station at Kárahnjúkar is shown by the black inverted trian-
gle. Panel (b) shows the temporal information on the dike propaga-
tion (Woods et al., 2019), observation of the cauldrons (Eibl et al.,
2017b; Reynolds et al., 2017), the main eruption, and the southern
vent eruption (Eibl et al., 2017a).

tion (Sect. 5.4). During the eruption, we compare them with
the lava effusive rate (also Sect. 5.4). We show the clustering
of PE, PPE, IF, and log(RMeS) in Sect. 5.5 before we provide
our conclusion.

2 Method

2.1 Seismic network

A dense seismic network (network code Z7) was maintained
in the area of the 2014–2015 Holuhraun eruption (White,
2010). A total of 50 stations were running long enough
to record the seismicity from the first half of 2014 to the
end of 2015. Based on its proximity to the dike and erup-
tion vents and on the data availability, we chose the FLUR
station for further analysis. This station is located about
32.7 km north of Bárðarbunga and about 9.1 km southwest
of the Holuhraun lava flow field. At FLUR, a Guralp CMG-
3ESP broadband sensor recorded at a sampling frequency of
100 Hz. For comparison we used the KVER station, which
is located about 14 km southeast of the lava flow field. At
KVER, a Guralp CMG-6T broadband seismometer recorded
at a 100 Hz sampling rate. The locations of these two stations
are shown in Fig. 1a.

2.2 Permutation entropy (PE)

PE quantifies the probability distribution of ordinal patterns
in a time window. An ordinal pattern is a vector representing
the relative order of the amplitudes. For example, a sequence
of {0.32, 1.0, 2.7, 3.5, 5.0} is represented by the ordinal pat-
tern of {0, 1, 2, 3, 4}, while {3.1, 2.2, 1.1, 3.8, 5.0} is repre-
sented by {2, 1, 0, 4, 5}. To reconstruct an ordinal pattern, we
down sample the time series using an embedding dimension
m and a delay time τ . The embedding dimension m is the
total number of samples in the sequence, and the delay time
τ is the time gap between samples. The vector of the ordinal
pattern is first constructed, [xs, (xs+τ), . . ., (xs+(m−1)τ )].
The next ordinal patterns then are reconstructed by contin-
uously shifting xs one sample forward until the last ordinal
pattern reaches the end of the window.

Then, we calculate PE as

PE=
−1

logm!

m!∑
k=1

pk logpk, (1)

where pk is the probability of the ordinal pattern k. pk is
determined by the relative frequency Nk/N , where Nk is the
number of patterns k observed in the window and N the total
number of ordinal patterns in the window. Equation (1) is
then normalized by the maximum number of different ordinal
patterns logm!, leading to a PE between 0 and 1.

An example of the PE calculation is illustrated in Fig. 2.
Figure 2a shows a 5 h long seismic time series recorded by
the vertical component at the FLUR station, Iceland. This
seismic waveform has been bandpass-filtered between 0.5
and 10 Hz. We first divided the time series into 1 h long win-
dows without overlap. We then used m= 7 and τ = 0.04 s
to reconstruct the ordinal patterns (Fig. 2b). Note that the τ
used in Fig. 2 is for illustration purposes, while the real anal-
ysis in this paper uses the parameters mentioned in Sect. 3.2.
Finally, in each 1 h window, we calculated the respective PE
(Fig. 2e).

2.3 Phase permutation entropy (PPE)

A seismic time series, denoted as x(t), can be regarded as
the real component of the seismic analytic signal X(t)=
x(t)+ iy(t), where y(t) is the imaginary component ob-
tained by applying the Hilbert transform to x(t) (Gabor,
1946; Taner et al., 1979; Barnes, 1992). The Hilbert trans-
form is the equivalent of a linear filter, where the amplitudes
of a signal are unchanged but their phases are shifted by
−(π/2) (Feldman, 2011). Scipy is a free and open source
Python library (Virtanen et al., 2020) that provides a tool
to compute the analytic signal from a time series. The func-
tion scipy.signal.hilbert implements the step defined by Ga-
bor (1946) in computing an analytic signal X(t) as follows:
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Figure 2. The overview of PE and PPE calculation. (a) A seismic time series of 5 h from the vertical component of the FLUR station, filtered
between 0.5 and 10 Hz. (b) The amplitude of the waveform starting at the red arrow in panel (a) with two consecutive ordinal patterns {0,
3, 6, 5, 4, 2, 1} and {1, 4, 6, 5, 3, 2, 0}. (c) The analytic signal reconstructed from the same part of the signal in the complex plane. (d) The
unwrapped instantaneous phase of the analytical signal in panel (c) with two examples of consecutive ordinal patterns {0, 1, 2, 3, 4, 5,
6}. Note that the linear trend of the instantaneous phase leads to fewer different ordinal patterns than the seismic amplitude data. (e) The
estimated PE and PPE for the waveform in panel (a).

1. Fourier transforming the real component,

2. zeroing the amplitude for negative frequencies and dou-
bling the amplitude for positive frequencies, and

3. inverting the Fourier transform.

The instantaneous phase can be defined as the degree of
the X(t) rotation. The instantaneous phase θ(t) is calculated
using

θ(t)= tan−1
(
y(t)

x(t)

)
. (2)

PPE was introduced by Kang et al. (2021) to calculate a
wave complexity using the instantaneous phase of an analytic
signal. In calculating PPE, we reconstruct the ordinal pat-
tern using the instantaneous phase, which is obtained from
Eq. (2). Unlike Kang et al. (2021), who used the wrapped
instantaneous phase from −π to π to construct the ordi-
nal pattern, here we use the unwrapped instantaneous phase.
For reference, a sine wave will have a linear increase in the
unwrapped instantaneous phase, producing only one ordinal
pattern. Its respective PPE value is thus 0.

An example of PPE calculation for a seismic time series
(Fig. 2a) is shown in Fig. 2c, d, and e. We first obtain the
analytic signal (Fig. 2c). We then estimate the instantaneous

phase and reconstruct the ordinal patterns (Fig. 2d). Finally,
we estimate the PPE from the probability of the reconstructed
ordinal patterns (Fig. 2e).

2.4 Instantaneous frequency (IF)

The instantaneous frequency (IF(t)) is defined as the deriva-
tive of the instantaneous phase θ(t),

IF(t)=
1

2π
d
dt
θ(t). (3)

2.5 Root-mean square (RMS) and root-median square
(RMeS) of the seismic amplitude

The root-mean square (RMS), the root of the mean squared
seismic amplitude, is commonly used in volcano monitoring
to continuously estimate the average seismic energy.

RMS=

√
1
n

∑
i

x2
i (4)

In some cases where both volcano–tectonic (VT) events
and tremors are present, VT events will dominate the RMS
and conceal the tremor in the RMS time series. Calculating
the root of the median squared seismic amplitude (RMeS)
will emphasize the tremor energy more (Eibl et al., 2017a).
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RMS and RMeS are calculated using a 1 h window length
without overlapping. For x2 values sorted by size, RMeS is
calculated as follows:

RMeS=


√
x2
(n+1)/2 if n is odd√

0.5(x2
n/2+ x

2
n/2+1) if n is even.

(5)

2.6 Time-averaged discharge rate (TADR)

Coppola et al. (2016) exploited the intermediate-infrared
data acquired by multiple sensors from multiple satellites.
These infrared data can be used to identify the thermal ra-
diation emitted by volcanic eruption processes. The inten-
sity of the thermal anomaly is known as volcanic radiative
power (VRP). During an effusive eruption, VRP can be used
to calculate the time-averaged lava discharge rate (TADR) in
m3 s−1:

TADR=
VRP
crad

, (6)

where crad (J m−3) is the radiant density representing the ef-
ficiency of the lava body at modulating the heat.

2.7 k-means clustering

k-means is a non-supervised clustering method to find K
numbers of clusters, each consisting of sets of points that are
evenly spaced in a D-dimensional Euclidian space (Bishop,
2006). The D dimension is determined from D numbers of
seismic parameters used. We describe the data set of each
seismic parameter as xn =X1, . . .,XN . The steps to assign
each data point of D seismic parameters into k clusters
are elaborated as follows. We introduce an initial set of D-
dimensional vectors µk , which represent the center of the
cluster k, where k = 1, . . .,k. We then need to find an assign-
ment such that the sum of the squares of the distances (J )
of the data points X1, . . .,XN to its closest vector µk is at a
minimum:

J =

N∑
n=1

K∑
k=1

rnk||xn−µk||
2, (7)

where rnk = 1 if the data points xn are assigned to cluster k
and rnk = 0 otherwise.

Finding the values of rnk and µk where J is at a minimum
is done by iteration using three successive steps. Initially, we
randomly choose the initial value of µk . Second, we mini-
mize J with respect to rnk while keeping a fixed µk . Then,
we minimize J with respect to µk while keeping rnk fixed
(Bishop, 2006).

2.8 Weather data

A weather station located in Kárahnjúkar, about 59.7 km
from the FLUR station (Fig. 1a), provides weather data as a

reference for the analysis during the repose time. The station
was installed at 639 m above sea level and measures 10 m
above the Earth’s surface. It measures the average of the last
10 min wind speed and the last 1 min temperature. The data
are provided by the Icelandic Meteorological Office and are
available by email request.

3 Synthetic tests and the application to seismic data

3.1 Synthetic tests

Sudibyo et al. (2022) tested different delay times τ to ob-
tain optimum PE for stationary signals with different band-
widths. For a noisy stationary signal, PE is less affected by
noise when τ is not too small nor equal to the fundamental
period. τ is related to the frequency of the signal. When the
frequency of a non-stationary signal changes, it will influ-
ence the calculated PE, as the calculation uses a fixed τ . This
behavior was not investigated in detail in the previous study.

Here we investigated the effects of the differences in PE
and PPE calculation on three different synthetic signals.
First, we generated a chirp signal with increasing frequency
from 1 to 10 Hz and a sampling rate of 400 Hz (Fig. 3a) and
then added a de-meaned uniform noise (Fig. 3d). Further-
more, we also tested the noise itself (Fig. 3g). We used the
Numpy library (Harris et al., 2020) to create the chirp signal
and the noise and then calculated the PE and PPE for ev-
ery 1 s window length. We use m= 5, which is the highest
m possible to calculate PE and PPE based on the number of
samples for the 1s window length.

In this test, we focus on how changing the frequency could
affect the PE and PPE calculation. We tested different τ from
the shortest possible length to 0.5 s, which is the Nyquist pe-
riod of the high-frequency corner of the signal. Figure 3b and
e show that using τ > 0.25 s, which is half of the Nyquist
period, generates artifacts in the PE of the higher frequen-
cies. Figure 3b shows that the PE of the chirp signal in-
creases when the frequency increases. This is due to the less
repeating ordinal patterns reconstructed when the frequency
increases. The opposite behavior is shown in Fig. 3e for the
noisy chirp. Noise increases the PE (Fig. 3h). Due to the fixed
τ , the ordinal pattern samples relatively more noise at lower
frequencies. When the frequency increases, the length of the
ordinal patterns gets closer to the signal’s wavelength and
the signal-to-noise ratio increases, resulting in a lower PE at
a higher frequency.

PPE utilizes the instantaneous phase. The unwrapped in-
stantaneous phase of a chirp signal is always increasing
(Fig. S1a in the Supplement), producing only one ordinal
pattern, resulting in PPE= 0. In the case of the noisy chirp,
the noise contains non zero-crossing amplitude and generates
tangled rotation in its analytical signal, as shown in Figs. 2c,
S1f, and S1j. These tangled rotations have decreasing phase
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Figure 3. Synthetic test (a) time series of a chirp signal, (b) PE, and (c) PPE. (d–f) The same as panels (a)–(c) but for a noisy chirp signal.
(g–i) The same as panels (a)–(c) but for noise.

angles, which generate different ordinal patterns (Fig. S1h
and S1l), hence increasing PPE.

A common practice to reduce noise and isolate the signal
of interest is filtering. We tested how PE and PPE change
if noise gets filtered. Figure S2 shows a decrease in PE and
PPE in the filtered noise, with a wider bandwidth possessing
higher PE and PPE than a narrower bandwidth.

3.2 Parameter selection in calculating PE and PPE of
seismic time series

The parameters required to calculate PE and PPE are window
length, embedding dimension m, and delay time τ . To deter-
mine the window length, we need to fulfill two requirements:
the minimum number of samples required by the embedding
dimensionm and the targeted resolution in the temporal vari-
ation in PE and PPE. To calculate PE and PPE, the number of
samples in a window has to be more thanm!, wherem! is the
maximum number of possible ordinal patterns reconstructed
from the embedding dimension m. In the case of a noisy sig-
nal, it is advised to use a window length longer than 5 ·m!
(Amigó et al., 2008) to cover all possible patterns generated
by the noise. Following their suggestion, for m= 7 we need
a minimum sample of 25 200 points or 252 s. As seismic pre-
cursors can range from hours to days prior to an eruption, we
chose a 1 h window length, which also fulfills the require-
ments of the number of samples needed by the embedding
dimension mentioned. The delay time τ needs to be smaller
than the Nyquist period of the targeted signal (Berger et al.,
2017), and our synthetic test recommends a τ < 0.5 Nyquist

period (see Fig. 3b and e). Our interest lies in the frequency
between 0.5 and 10 Hz, which covers the frequency band of
the tremor between 0.8 to 2.5 Hz (Eibl et al., 2017b) and ex-
cludes the repeating noise at frequencies above 10 Hz. The
Nyquist period for a 10 Hz signal is 0.05 s, and we chose
τ = 0.02 s.

We processed 2 years of seismic data recorded at the ver-
tical component of the FLUR station from January 2014 to
December 2015, covering the repose period, the unrest, and
the eruption. We used Obspy to read the seismic data and
to apply a fourth-order Butterworth bandpass filter. A But-
terworth filter does not create ripples in the passband, which
is important to avoid artificial ordinal patterns. We activated
the zero-phase option in the Butterworth filtering to obtain
no phase shift in the filtered seismogram. All plotting is done
using Matplotlib. A comparison between the two stations,
FLUR and KVER, shows similar temporal variations in PE
and PPE at both stations (Fig. S3).

3.3 Calculation of IF, RMS, and RMeS

We also used the vertical component from the FLUR sta-
tion for the IF, RMS, and RMeS calculations and adapted
the same 0.5–10 Hz frequency band used for the IF calcu-
lation. First, we estimated the instantaneous phase for every
seismic data sample, and then we calculated IF from every
two consecutive instantaneous phases. We then calculate the
mean IF for every 1h window to obtain the same resolution
as the PE and PPE. In this paper, we refer the hourly mean
IF as the IF. The calculation of RMS and RMeS also uses the
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same 1h window length and is within the frequency from 0.5
to 10 Hz.

3.4 Parameter selection in k-means clustering

We performed a clustering analysis to assess the ability of
the seismic parameters calculated to discriminate between
the different processes before and during the eruption. We
used PE, PPE, and IF to generate a three-dimensional Eu-
clidian space and added RMS or RMeS to generate a four-
dimensional Euclidian space. The lava discharge rate is not
used in the clustering since it is only available during the
eruption. We generated three clusters representing the major
events: quiescence, dike propagation, and eruption in these
spaces using scikit-learn (Pedregosa et al., 2011). To validate
the result, we also clustered the data based on the timeline
of the eruption processes consisting of (i) quiescence, (ii) the
propagation of four dike segments (Woods et al., 2019), and
(iii) the presumed sub-glacial eruption (Eibl et al., 2017b)
and the subaerial eruption (Eibl et al., 2017a). We then cal-
culated by expert interpretation how many points in clusters
fall into the equivalent k-means clusters and normalized them
by the total points in each interpreted cluster. This quantifi-
cation is expressed in the confusion matrix. By choosing the
confusion matrix with the highest score, we can choose the
best clustering result. The resulting confusion matrices for
different combinations of seismic parameters are shown in
Tables S1 to S5 of the Supplement.

4 Results

In the following, we will describe the temporal variation in
various features of the seismic waveform in the last 5 d of the
repose time, in the 14 d of earthquake migration, and in the
first 15 d of the main eruption (Fig. 4). We will also describe
the further evolution until March 2015, when the eruption
ended (Fig. 5).

4.1 The earthquake hypocentral distances and RMS of
seismic amplitude

More than 30 000 earthquakes are listed in the earthquake
catalog by Ágústsdóttir et al. (2019). They migrate from the
southeastern rim of the subglacial Bárðarbunga volcano at
29–32 km from the FLUR station and then progress to the
Holuhraun lava field at about 8–12 km from the FLUR sta-
tion (Figs. 1a and 4a). The dike segments S1 to S4 (Woods
et al., 2019) feature distinctly different distance ranges. The
hypocentral distance to our station decreased most quickly
at the beginning of each segment when it formed, and the
distance stalled towards the end of a segment. In segment
S3, the earthquakes moved in several episodes on 18–20 Au-
gust 2014, and later a short quiescence occurred on 22 Au-
gust 2014 at 10:00 UTC. While in segment S4, the earth-
quakes kept moving to the northeast; they remained around

10 km distant from the FLUR station. After the onset of the
main eruption on 31 August 2014, the number of earthquakes
became fewer, and the seismic time series was dominated by
the eruptive tremor.

Consequently, the seismic waveform not only is dom-
inated by earthquakes but also features the seismic vol-
canic tremor. During repose time, the RMS is mostly be-
low 5× 10−7 m s−1. During dike formation, the RMS of the
seismic amplitude is very spiky and is affected by the earth-
quakes (Fig. 4b). RMS increases significantly after S4 starts
on 23 August 2014 and is also dominated by spikes through-
out the segment and the eruptive period. Throughout S4, the
RMS exhibits few fluctuations during 23–24 August, 24–
26 August, and 26 August–1 September 2014. In the erup-
tive period, there is an increase between 2 and 4 September.
Afterward, the RMS amplitude is mostly low and decreases
over time, with spikes throughout the eruptive period.

4.2 The temporal evolution of permutation entropy
(PE)

During the repose time, PE displays strong daily variation
(Fig. 4c). A sharp increase is observed on 16 August 2014
when the earthquakes occur and start to migrate. PE stays
high, mostly above 0.6 during the 2 weeks of the earthquake
migration. Prior to the main eruption on 31 August 2014,
PE exhibits three decreasing trends: segment S1 to S2, S2
to S4, and a more gentle slope during S4 to the onset of the
main eruption. After the main eruption begins, there is a no-
table decrease in PE, followed by a strong drop on 3 Septem-
ber 2014, when PE reaches a value of 0.37. The drop on
3 September represents a local minimum that persists for 1 d.
PE then fluctuates between 4 and 7 September and subse-
quently gets more steady after 10 September 2014. PE gen-
erally declines toward the end of the eruption (Fig. 5a). The
comparison of PE with TADR from Coppola et al. (2017) re-
veals a similar shape for both (Fig. 5a). Note that TADR is
plotted on a log scale, while PE is on a linear scale.

4.3 The temporal evolution of phase permutation
entropy (PPE)

Similar to PE, PPE also exhibits strong daily variation dur-
ing the repose time (Fig. 4d). Interestingly, during the earth-
quake migration, PPE follows a pattern that is anti-correlated
to that of PE and IF. PPE increases from 0.27 in S1 to 0.32
in S2 but drops to 0.224 in the next 2 h. PPE then drops
to 0.14 on 20 August, followed by a sharp increase until
23 August 2014. An abrupt drop occurs on 23 August 2014
when the time segment S4 starts, followed by two succes-
sive increasing trends, which culminate in the eruptions on
29 and 31 August 2014. Before the eruption, another peak
is observed on 22 August 2014 at 10:00 and 26 August at
07:00. These peaks occurred 1 d before the presumed sub-
glacial eruptions on 23 and 27 August 2014. PPE increases
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Figure 4. Overview of the seismic characteristics during the quiescence, eruption-preceding seismicity, and the first 15 d of the eruption:
(a) hypocentral distances of the earthquakes from the FLUR station, (b) RMS, (c) PE, (d) PPE, and (e) IF. RMS, PE, PPE, and IF are
calculated from seismic time series recorded at the vertical component of the FLUR station, filtered between 0.5 and 10 Hz. The segmentation
of the dike (S1–S4, dark-blue to pink horizontal lines), cauldrons observed on the glacier surface (C1–C3, horizontal dark-green lines), the
tremor on 3 September 2014 interpreted as a subglacial eruption (Eibl et al., 2017b) (light blue), the eruption from the southern vent
(horizontal light-green line and light-green star), and the main eruption (horizontal yellow line and yellow stars) are marked in panel (a) and
indicated by dashed vertical lines in all panels.

abruptly right after the main eruption starts. Interestingly, this
is then followed by a pattern that is similar to the pattern
in PE. PPE also drops and reaches the minimum value on
3 September 2014 for 1 d and generally declines towards the
end of the eruption. The trend observed in PPE also aligns
well with the shape of the lava effusion rate (Fig. 5b), with
PE plotted on a linear scale and TADR on a log scale.

4.4 The temporal evolution of the mean instantaneous
frequency (IF)

Before the start of the 2-week migration of earthquakes, the
IF is mostly low, between 0.5 to 0.8 Hz, and exhibits daily
variation (Fig. 4e). An abrupt increase in IF is observed when
the swarm starts on 16 August 2014. IF generally increases
from 16 to 20 August 2014, with values from 3 to 5 Hz during
the propagation of segments S1 to S3. Even though it gener-

ally increases, IF exhibits a quasi-periodic fluctuation with
each period varying from 4 to 12 h. There are two decreas-
ing trends within this fluctuation, which fit the time lengths
of segments S1 and S2. IF was the highest at the beginning
of both segments and dropped continuously towards the end
of the segments. IF is generally higher during S2 than during
S1. IF continues to increase from the beginning of S3 for 2 d
before decreasing towards the beginning of S4. During the
propagation of S4, IF decreases quickly before the onset of
the eruption on 29 August and continues to decrease more
slowly towards the main eruption on 31 August. During the
earthquake migration, IF is anti-correlated with PPE.

Two sharp drops in IF are also observed at 10:00 on 22 Au-
gust and at 07:00 on 26 August 2014, at the same time as
the two peaks in PPE are observed. Another drop is also ob-
served on 28 August 2014 at 22:00, followed by a sharp in-
crease to the maximum value of 5.6 Hz, marking the onset of
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Figure 5. Overview of the 6-month-long subaerial eruption. Comparison of (a) PE, (b) PPE, (c) IF, and (d) RMeS seismic velocity (all
black) on a linear y axis, with the lava effusion rate (Coppola et al., 2017) plotted on a logarithmic y axis (orange line, scale on right). Note
the different y-axis scales for PE and PPE. All values were calculated using 1 d window length. The dashed line marks the reference line,
obtained from the values of PE, PPE, IF, and RMeS on 8 September 2014, when the eruption starts to stabilize.

the short eruption on 29 August 2014. After the onset of the
main eruption on 31 August 2014, IF drops from 4.2 to 2 Hz.
IF increases slightly from October to November 2014, then
in general decreases to the end of the eruption on 28 Febru-
ary 2015 (Fig. 5c).

5 Discussion

5.1 Factors affecting the complexity quantification in
PE and PPE

The synthetic tests in Sect. 3.1 show that PE, calculated using
fixed m and τ , is higher for a signal with higher-frequency
content compared to one with lower frequencies. A signal
with energy in a broad frequency bandwidth usually pos-
sesses a higher PE (Dávalos et al., 2021; Sudibyo et al., 2022)
and PPE (Fig. S2). Independent of its frequency content, PPE
is more affected by the presence of non-zero-crossing oscilla-
tion in its signal. When a low-frequency signal is superposed
by a weaker signal with a higher frequency, most oscillations
of the higher-frequency part do not cross the zero amplitude.
This oscillation type will cause more complex rotation in its
analytical signal (Fig. S1f), resulting in more ordinal patterns
and higher PPE.

5.2 The influence of atmospheric processes on PE,
PPE, and IF

We investigated the influence of temperature and wind on the
hourly PE, PPE, and IF during different seasons from 2014 to
2015. Seasonal variation including temperature, wind speed,
and air pressure is commonly observed in seismic ambi-
ent noise (Bormann and Wielandt, 2013). Atmospheric pres-
sure and temperature can generate noise at frequencies be-
low 0.05 Hz (Bormann and Wielandt, 2013), while wind can
generate noise at higher bandwidths between 0.5 to 60 Hz
(Bormann and Wielandt, 2013; Withers et al., 1996). Here we
observe strong effects of atmospheric signals on the seismic
characteristics in the repose time before the magma propaga-
tion and after the eruption. It should be noted that the seis-
mic station FLUR and the weather station Kárahnjúkar are
about 57.9 km apart. While we noticed a shift between the
variations in wind speed in comparison with PE, PPE, and IF
of about 1–2 h in the hourly window, this can be considered
negligible.

Wind speed is found to be strongly correlated with the
background noise at frequencies higher than 1 Hz (With-
ers et al., 1996). We observed the strong influence of wind
speed on the RMS of the seismic amplitude during the
whole repose period (Figs. S5h–S12h). Interestingly, we did
not observe the influence of wind on PE, PPE, and IF in
summer. The influence of wind speed on PE, PPE, and IF
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could be seen clearly in spring, especially from February to
May (Figs. S5e–S5g, S9e–S9g, S10e–S10g) when the fastest
wind speed reaches 40 m s−1 in March 2014, in autumn
from September to October (Fig. S11e–S11g), and in winter
(Fig. S12e–S12g). Wind seems to already influence PE and
PPE at the end of the eruption from January to February 2015
when the wind speed reaches about 25 m s−1 and the tremor
amplitude is low, while the IF is less affected (Figs. S8e–S8g
and S9e–S9g). Nevertheless, the wind effects on PE, PPE,
and IF are found to be negligible during the magma propaga-
tion and the main eruption phases.

During the repose time, PE, PPE, and IF show clear daily
cycles with high correlations with the temperature changes,
as shown in Fig. S6a–S6c for the temperatures between June
and August 2014. Similar results are observed for the sum-
mer months of 2015 (Figs. S10a–S10c and S11a–S11c). This
is surprising because the influence of temperature on seis-
mic waves with frequencies higher than 50 MHz is usually
very small and is negligible for most seismological process-
ing. For example, temperature does not seem to influence
the temporal variation in the RMS of seismic amplitude for
the whole observation period (Figs. S5d–S12d). However, PE
and PPE depend only on the order of the consecutive values
of the amplitude and instantaneous phase but not on the mag-
nitudes. A very small difference in the consecutive values can
change the order and create a different ordinal pattern, thus
increasing the calculated entropy. Temperature affects both
the thermo-elasticity of the seismometer, especially the an-
alyzed vertical component (Bormann and Wielandt, 2013),
and the underlying rocks (Prawirodirdjo et al., 2006), gen-
erating a temporal variation that is emphasized in PE and
PPE. However, the temperature effect on PE, PPE, and IF are
found to be negligible during the magma propagation and the
main eruption.

Donaldson et al. (2019) estimated more than 10 years
of variation in relative velocity changes (dv/v) in the
crustal rock of central Iceland, including Bárðarbunga and
Holuhraun. They observed the dv/v to be high in the win-
ter and spring and low in the summer and fall. This sea-
sonal variation is associated with (i) the changes in the elas-
tic loading on the rocks due to the seasonal changes in snow
thickness and the atmospheric pressure and (ii) the annual
variation in the groundwater level. They did not compare
dv/v with the wind speed and temperature. Wind speed is
usually not considered an influence on dv/v, while the at-
mospheric temperature can still affect the dv/v through the
thermo-elasticity of the crustal rocks (Hillers et al., 2015;
Prawirodirdjo et al., 2006). In our 2-year observation, we did
not observe a clear change due to these long-period seasonal
variations. While these seasonal changes in the crustal prop-
erties might affect the variation in PE, PPE, and IF, it seems
to be much weaker compared to the daily variation due to the
atmospheric noise.

5.3 The influence of the magma propagation on PE,
PPE, and IF

PE and IF increase sharply on 16 August 2014. Both values
remain at elevated levels until the onset of the main eruption
on 31 August 2014. In contrast, PPE does not increase, but its
fluctuation gradually decreases until the main eruption. The
high PE and IF are caused by the high dominant frequencies
of earthquakes and their energy distributions in a broad fre-
quency range. We investigated the rotation of their analytic
signals in a complex plane (Fig. S4b). Compared to ambient
noise (Fig. S4a), earthquakes exhibit less complex rotation
and therefore lower PPE.

PE and IF increase at the initial start of not only the magma
propagation (segment S1) but also other segments, followed
by a gentle, gradual decrease towards the end of each seg-
ment (Fig. 4a, c). Only for S3 does PE not show this pattern,
while IF shows it for all segments. This pattern may reflect
the magma propagation in the initial phase of each segment
releasing more fracture energy to open the pathways, and
less energy was needed later when the dike only continued
to open until it extended into another segment (Sigmundsson
et al., 2015; Ágústsdóttir et al., 2016, 2019). We checked the
distribution of the earthquake magnitudes and observed that
the magnitudes mostly became smaller temporally when the
segment was ending. However, the RMS signal is too spiky to
clearly show the same trend (Fig. 4d). An equivalent case is
observed in the seismic cycle of tectonic earthquakes, where
the Shannon entropy is found to gradually drop to its ini-
tial state after the main shock during the post-seismic states
(De Santis et al., 2011; Posadas et al., 2023). Here, the main
shock corresponds to the dike migration phase in a segment,
and the post-seismic state corresponds to the dike thickening
after its extension.

The PPE of earthquakes is found to be lower than the PPE
of the ambient noise. Its temporal evolution during the earth-
quake migration exhibits stronger changes than PE. At the
beginning of segments S1 to S4, PPE is low and then in-
creases to the end of the segment. As most of the seismic
moment is released and more earthquakes are generated at
the beginning of each dike segment, PPE first drops and then
increases towards the end of the segment when the num-
ber of earthquakes becomes fewer. During segment S3, PPE
did not drop suddenly but decreased over 2 d until 20 Au-
gust 2014 before increasing to the end of the segment. An
anti-correlated trend is shown by the IF: while it increased
from 18 to 20 August 2014, it decreased back to the end
of segment S3. From 19 to 23 August 2014, the earthquake
migration was reported to stop before changing its direction
from southeast to northeast (Sigmundsson et al., 2015).

A single peak in PPE and a drop in IF are observed on
22 August 2014 at 07:00 to 13:00. These are associated with
small earthquakes during these hours. When the S4 dike seg-
ment formed, the earthquakes reached the closest distance
to the FLUR station, which is about 10 km (Fig. 4e). These
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earthquakes dominate the time series, causing PPE to reach
the lowest point, while the RMS reaches the highest value
(Fig. 4d).

After stopping for 81 h, the dike started to move again and
generated segment S4 on 23 August 2014; it was accompa-
nied by a pre-eruptive tremor (Eibl et al., 2017b). This tremor
could also be associated with the formation of cauldron C1,
which was visually observed on 27 August 2014 (Reynolds
et al., 2017). However, this tremor was concealed by a high
seismicity rate during the lateral movement of segment S4
(Fig. 1). Therefore, it is not seen in PE, PPE, and IF.

There was a lack of shallow seismicity prior to the erup-
tion (Ágústsdóttir et al., 2019; Eibl et al., 2017b). Follow-
ing the earthquakes moving horizontally at depths of 5 to
8 km (Ágústsdóttir et al., 2019; Woods et al., 2019), long-
period (LP) events were detected for about 10 d, starting on
25 August 2014. These LP events had a dominant frequency
of ∼1Hz, had clear P- and S-wave onsets, and occurred at
∼ 4 km in depth (Woods et al., 2018). Eibl et al. (2017b) sug-
gested the possibility of a pre-eruptive tremor that is formed
by repetitive microearthquakes at less than 3 km in depth fol-
lowed by silent magma migration to the surface. However,
by utilizing PE, PPE, and IF, we were not able to observe
any changes that could be related to the pre-eruptive tremor
before the eruption onsets on 29 and 31 August 2014. The
seismic wave generated by earthquakes seems to be domi-
nating the time series, masking other processes, especially
during the last dike segment, S4, when the earthquakes reach
the closest distance to the station and the changes in PE, PPE,
and IF become less significant than in the earlier segments.

Eruption forecasting is easier when the pre-eruptive pro-
cess generates a pattern of distinct seismic events that are
chronologically changing in time and depth. In the case of
Strokkur Geyser, the PE variation can characterize the four
different phases in the geyser’s eruptive cycle (Sudibyo et al.,
2022), which are eruption, conduit refilling, gas accumula-
tion in the bubble trap, and the collapse of the bubbles in
the shallow conduit (Eibl et al., 2021). These different pro-
cesses generate distinct signals with different complexities,
thus resulting in distinct values of the corresponding PE. Fur-
thermore, each phase takes place at separate locations and
depths (Eibl et al., 2021). Therefore, Sudibyo et al. (2022)
not only observed a high correlation between PE and the
hypocentral distance between seismic event’s source and the
seismic station but also used PE to accurately predict the
geyser’s eruptions. Konstantinou et al. (2022) reported a con-
sistently decreasing PE prior to and during three eruptions
in Shinmoedake, a stratovolcano in Japan, which is associ-
ated with the dominant occurrence of the pre-eruptive and
eruptive tremor. In Shinmoedake, as magma moves to a shal-
lower depth and the higher frequency of the seismic events
becomes attenuated, PE drops before the eruption starts.
In contrast, the 2014–2015 Holuhraun eruption is preceded
by 2 weeks of lateral dike propagation dominated by high-
frequency events. Changes in the types of seismic events are

minor during the pre-eruptive process, and the majority of the
events do not move to shallower depth, causing less signif-
icant evolution in the seismic parameters towards the erup-
tion’s onset.

5.4 PE, PPE, and IF reflecting the dynamics of eruptive
tremor

In contrast to the pre-eruptive tremor, the dynamic of the
eruptive tremor is reflected well by the properties of PE, PPE,
and IF. After the main eruption starts, the eruptive tremor
dominates the 6 months of eruption, and we observed de-
creasing values of PE and IF, while PPE increases. Volcanic
tremors have been reported to have a low PE due to their low
dominant frequency and narrow spectral distribution (Kon-
stantinou et al., 2022). The eruptive tremor in Holuhraun
has most energy in a low and narrow frequency band rang-
ing from 0.8 to 2.5 Hz (Eibl et al., 2017b). We investigated
the seismic analytic wave of the eruptive tremor and found
that its rotation is more complex compared to earthquakes
(Fig. S4d). While the presence of noise could increase the
complexity of phase angle rotation, the trend in PPE does not
align with the trend in the ambient noise (Figs. S7 and S8).
Therefore, it is more likely that the calculated PPE represents
the characteristics of the eruptive tremor itself.

Eibl et al. (2017a) have identified multiple sources gener-
ating the eruptive tremor accompanying the Holuhraun erup-
tion. These sources are associated with fissure locations and
the height of the lava fountain, the growth of the lava flow
field, and intrusions at depth. Hibert et al. (2015) found a
linear correlation between the seismic energy of the tremor
and the lava effusive rate in Piton de la Fournaise volcano
on Réunion Island. Figure 5 shows the comparison of the
magma effusion rate estimated by Coppola et al. (2017) with
the temporal variations in PE, PPE, IF, and seismic root-
median square (RMeS), where we fitted a horizontal dashed
line to the early values of each parameter as a reference and
observed the decreases in the values with time. Both PE
and PPE show an alignment with the magma effusion rate
(Fig. 5b and c). Starting from January 2015, PE and PPE start
to decline faster, which indicates that the eruption is end-
ing. A similar pattern was observed by Sudibyo et al. (2022),
when studying the temporal variation in PE during 63 erup-
tions of Strokkur Geyser, Iceland. During eruptions with two
to four water fountains in quick succession, PE stayed high
and only dropped after the end of the last water fountain of
one eruption.

On 3 September 2014, a strong tremor was recorded for
about 21 h (Eibl et al., 2017b; Woods et al., 2018), which
is assumed to have preceded a sub-glacial eruption deepen-
ing either the C2 (Eibl et al., 2017b) or C1 cauldron (Woods
et al., 2018). We noticed the drop in PE and PPE on 3
September 2014. PE and PPE reach the minimum value at
12:00 for 6 h before they start increasing back to the previ-
ous level at 18:00. The analytic signal shows fewer entangled
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Figure 6. Clustering plots based on the k-means algorithm (a–f) and an expert interpretation (g–l) using PE, PPE, IF, and log(RMeS). Cluster
1 is associated with quiescence; cluster 2 is associated with the eruption and presumed subglacial eruption; and cluster 3 is associated with
the dike segments S1, S2, S3, and S4.

rotations (Fig. S4c) than the main eruption tremor, which is
similar to earthquakes (Fig. S4b) and causes low PPE. The
PE and IF are also low, suggesting that the energy of the
tremor is concentrated in a low and narrow frequency band.
This result supports Eibl et al. (2017b), who suggested that
the tremor is comprised of swarms of microseismicity asso-
ciated with the fracturing of the shallow crust above the dike.

Woods et al. (2018) observed that the tremor on 3 Septem-
ber has a similar spectral content as the LP swarms that were
recorded from 25 August to 2 September 2014. They sug-
gested that the LP swarms could represent magma moving
above the dike, which culminates in a tremor, producing the
sub-glacial eruption. As we cannot resolve the LP swarms
during the mentioned period, we can neither confirm nor re-
ject their interpretation.

PE, PPE, and IF then undergo a fluctuation from 4 to
7 September 2014 (Fig. 4b and c). This fluctuation could
be associated with the opening of two fissures located to
the south of the main eruption, resulting in a minor eruption
from 5 to 7 September 2014. Thereafter, the PE, PPE, and IF
started to be more stable throughout the eruption (Fig. 5a, b
and c).

5.5 Cluster analysis

Analyzing the seismic parameters separately could produce
a limitation when each parameter responds differently to the
different stages of eruption. In this case, combining them
could provide more information on the temporal changes in
the volcano. Figure 6 compares the clusters generated by
the k-means algorithm (panels a–f) and the expert interpre-
tation (panels g–l) using the parameters of PE, PPE, IF, and
log(RMeS). Visually they are highly similar, with cluster 1

Table 1. Confusion matrix between clusters formed by k-means and
expert interpretation using PE, PPE, IF, and log(RMeS) in Fig. 6. It
shows that 96.2% of the data points during quiescence are classified
into cluster 1, 96.4% of the data points during the dike propagation
are classified into cluster 3, and 86.5% of the data points during the
eruption and presumed subglacial eruption are classified into cluster
2. The sum of the values in each row is equal to 1.

Expert interpretation k-means

Cluster 1 Cluster 2 Cluster 3

Quiescence 0.962 0.037 8.29× 10−5

Dike propagation (S1–S4) 0 0.036 0.964
Eruption and presumed 0.122 0.865 0.013
subglacial eruption

corresponding to the quiescence, cluster 3 corresponding to
the dike segments S1 to S4, and cluster 2 corresponding to
the subaerial eruption and presumed subglacial eruption. The
confusion matrix shows that 96.2% of the data points during
quiescence are classified into cluster 1, 96.4% of the data
points during dike propagation are classified into cluster 3,
and 86.5% of the data points in the eruption phase are clas-
sified into cluster 2 by the k-means algorithm (see Table 1).
This score, 86.5%, is the highest score in the eruption clus-
ter in comparison to other clustering results using different
combinations (see Tables S1 to S4).

6 Conclusions

In this study, we assessed the ability of PE, PPE, and IF es-
timated from continuous seismic recordings to characterize
the changing state before, during, and after the 2014–2015
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Holuhraun eruption in Iceland. We observed that tempera-
ture and wind strongly influence PE and PPE during the re-
pose time, but their effects are minor during the dike migra-
tion and eruption. Intense volcano–tectonic earthquakes oc-
curred during the dike propagation with high-frequency con-
tent, complex amplitude motion, and more regular motion
of the instantaneous phase. After the main eruption started,
the signal was dominated by a volcanic tremor with low-
frequency content and more regular amplitude motion but
with more complex motion of the instantaneous phase. The
intense volcano–tectonic earthquakes before the eruption on-
set complicate the prediction of the eruption onset prior to its
occurrence, which could be different when the tremor and/or
low-frequency events are more dominant.

The changes in IF and PPE were stronger than PE prior to
the eruption, but the variations in PE and PPE became more
stable after the eruption started, and their decay indicated the
end of the eruption. Limiting the analysis to only one or two
parameters may not be sufficient, as they capture different
parts of the eruptive process differently. One parameter can
be more sensitive to a certain process than others, and pa-
rameter combinations may improve the monitoring of poten-
tial changes in a volcanic system. Using clustering analysis,
we tested which parameter combination best separates differ-
ent processes. We found that including log(RMeS) provides
more accurate cluster separation than only using PE, PPE,
and IF. We did not investigate how the clusters temporarily
evolve with respect to different eruption stages or whether
there is a sign when the cluster is about to change. Analyzing
the temporal change in a multi-dimensional space requires
different approaches and is reserved for future studies.
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