Articles | Volume 24, issue 9
https://doi.org/10.5194/nhess-24-3225-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-3225-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Andrew Brown
CORRESPONDING AUTHOR
ARC Centre of Excellence for Climate Extremes, The University of Melbourne, Melbourne, Australia
School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
Andrew Dowdy
ARC Centre of Excellence for Climate Extremes, The University of Melbourne, Melbourne, Australia
School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
Todd P. Lane
ARC Centre of Excellence for Climate Extremes, The University of Melbourne, Melbourne, Australia
School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
Related authors
Andrew Brown, Claire Vincent, and Ewan Short
EGUsphere, https://doi.org/10.5194/egusphere-2025-4848, https://doi.org/10.5194/egusphere-2025-4848, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed software to identify sea breezes from weather model output, using three different methods, and applied these to four models for a 6-month period over Australia. We tested each method using case studies and statistics of sea breeze occurrences, finding that a method that identifies atmospheric moisture fronts performs well. Some potential errors are demonstrated due to detection of other frontal systems, but this method could be useful for robustly analyzing sea breezes from models.
Andrew Brown, Claire Vincent, and Ewan Short
EGUsphere, https://doi.org/10.5194/egusphere-2025-4848, https://doi.org/10.5194/egusphere-2025-4848, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed software to identify sea breezes from weather model output, using three different methods, and applied these to four models for a 6-month period over Australia. We tested each method using case studies and statistics of sea breeze occurrences, finding that a method that identifies atmospheric moisture fronts performs well. Some potential errors are demonstrated due to detection of other frontal systems, but this method could be useful for robustly analyzing sea breezes from models.
Claire L. Vincent and Andrew J. Dowdy
Atmos. Chem. Phys., 24, 10209–10223, https://doi.org/10.5194/acp-24-10209-2024, https://doi.org/10.5194/acp-24-10209-2024, 2024
Short summary
Short summary
We investigate how wind speed at the height of a wind turbine changes during El Niño and La Niña years and with season and time of day in southeastern Australia. We found that El Niño and La Niña can cause average wind speed differences of around 1 m s-1 in some regions. The highest wind speeds occur in the afternoon or evening around mountains or the coast and during the night for inland areas. The results help show how placement of wind turbines can help balance electricity generation.
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024, https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
Short summary
In response to flood risk, design flood estimation is a cornerstone of infrastructure design and emergency response planning, but design flood estimation guidance under climate change is still in its infancy. We perform the first published systematic review of the impact of climate change on design flood estimation and conduct a meta-analysis to provide quantitative estimates of possible future changes in extreme rainfall.
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022, https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Short summary
Coral reefs have been found to produce the climatically relevant chemical compound dimethyl sulfide (DMS). It has been suggested that corals can modify their environment via the production of DMS. We use an atmospheric chemistry model to test this theory at a regional scale for the first time. We find that it is unlikely that coral-reef-derived DMS has an influence over local climate, in part due to the proximity to terrestrial and anthropogenic aerosol sources.
Sonya L. Fiddes, Matthew T. Woodhouse, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 21, 5883–5903, https://doi.org/10.5194/acp-21-5883-2021, https://doi.org/10.5194/acp-21-5883-2021, 2021
Short summary
Short summary
Coral reefs are known to produce the aerosol precursor dimethyl sulfide (DMS). Currently, this source of coral DMS is unaccounted for in climate modelling, and the impact of coral reef extinction on aerosol and climate is unknown. In this study, we address this problem using a coupled chemistry–climate model for the first time. We find that coral reefs make a minimal contribution to the aerosol population and are unlikely to play a role in climate modulation.
Cited articles
Allen, J. T.: Climate Change and Severe Thunderstorms, in: Oxford Research Encyclopedia of Climate Science, vol. 1, Oxford University Press, 65 pp., ISBN 9780190228620, https://doi.org/10.1093/acrefore/9780190228620.013.62, 2018. a
Allen, J. T. and Karoly, D. J.: A climatology of Australian severe thunderstorm environments 1979–2011: Inter-annual variability and ENSO influence, Int. J. Climatol., 34, 81–97, https://doi.org/10.1002/joc.3667, 2014. a, b
Allen, J. T., Karoly, D. J., and Walsh, K. J.: Future Australian Severe Thunderstorm Environments. Part II: The Influence of a Strongly Warming Climate on Convective Environments, J. Climate, 27, 3848–3868, https://doi.org/10.1175/JCLI-D-13-00426.1, 2014. a
Ashley, W. S., Haberlie, A. M., and Gensini, V. A.: The Future of Supercells in the United States, B. Am. Meteorol. Soc., 104, E1–E21, https://doi.org/10.1175/BAMS-D-22-0027.1, 2023. a, b
Atkins, N. T. and Wakimoto, R. M.: Wet Microburst Activity over the Southeastern United States: Implications for Forecasting, Weather Forecast., 6, 470–482, https://doi.org/10.1175/1520-0434(1991)006<0470:WMAOTS>2.0.CO;2, 1991. a
Belušić Vozila, A., Belušić, D., Telišman Prtenjak, M., Güttler, I., Bastin, S., Brisson, E., Demory, M. E., Dobler, A., Feldmann, H., Hodnebrog, O., Kartsios, S., Keuler, K., Lorenz, T., Milovac, J., Pichelli, E., Raffa, M., Soares, P. M., Tölle, M. H., Truhetz, H., de Vries, H., and Warrach-Sagi, K.: Evaluation of the near-surface wind field over the Adriatic region: local wind characteristics in the convection-permitting model ensemble, Clim. Dynam., 62, 4617–4634, https://doi.org/10.1007/s00382-023-06703-z, 2023. a
Bergemann, M., Lane, T. P., Wales, S., Narsey, S., and Louf, V.: High‐resolution simulations of tropical island thunderstorms: Does an increase in resolution improve the representation of extreme rainfall?, Q. J. Roy. Meteor. Soc., 148, 3303–3318, https://doi.org/10.1002/qj.4360, 2022. a, b
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Hirst, A., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N., Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R., Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S., Hill, R., Harris, C., and Puri, K.: The ACCESS coupled model: description, control climate and evaluation, Aust. Meteorol. Ocean., 63, 41–64, https://doi.org/10.22499/2.6301.004, 2013. a
Blumberg, W. G., Halbert, K. T., Supinie, T. A., Marsh, P. T., Thompson, R. L., and Hart, J. A.: Sharppy: An open-source sounding analysis toolkit for the atmospheric sciences, B. Am. Meteorol. Soc., 98, 1625–1636, https://doi.org/10.1175/BAMS-D-15-00309.1, 2017. a
Bolgiani, P., Fernández-González, S., Valero, F., Merino, A., García-Ortega, E., Sánchez, J. L., and Martín, M. L.: Simulation of Atmospheric Microbursts Using a Numerical Mesoscale Model at High Spatiotemporal Resolution, J. Geophys. Res.-Atmos., 125, 1–23, https://doi.org/10.1029/2019JD031791, 2020. a
Brown, A.: andrewbrown31/BARPA: Release for paper publication (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.13800857, 2024.
Brown, A. and Dowdy, A.: Severe convection-related winds in Australia and their associated environments, Journal of Southern Hemisphere Earth System Science, 71, 30–52, https://doi.org/10.1071/ES19052, 2021b. a, b, c, d
Brown, A., Dowdy, A., Lane, T. P., Su, C.-H., Stassen, C., and Ye, H.: Simulated severe convective wind events and environments from the Bureau of Meteorology Atmospheric Regional Projections for Australia (BARPA), Zenodo [data set], https://doi.org/10.5281/zenodo.10521067, 2024. a
Bryan, G. H. and Morrison, H.: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics, Mon. Weather Rev., 140, 202–225, https://doi.org/10.1175/MWR-D-11-00046.1, 2012. a
Chan, S. C., Kendon, E. J., Fowler, H. J., Kahraman, A., Crook, J., Ban, N., and Prein, A. F.: Large-scale dynamics moderate impact-relevant changes to organised convective storms, Communications Earth & Environment, 4, 8, https://doi.org/10.1038/s43247-022-00669-2, 2023. a
Chen, J., Dai, A., Zhang, Y., and Rasmussen, K. L.: Changes in Convective Available Potential Energy and Convective Inhibition under Global Warming, J. Climate, 33, 2025–2050, https://doi.org/10.1175/JCLI-D-19-0461.1, 2020. a
Clark, A. J., Gallus, W. A., Xue, M., and Kong, F.: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles, Weather Forecast., 24, 1121–1140, https://doi.org/10.1175/2009WAF2222222.1, 2009. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Deser, C., Phillips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: The role of internal variability, Clim. Dynam., 38, 527–546, https://doi.org/10.1007/s00382-010-0977-x, 2012. a
Done, J., Davis, C. A., and Weisman, M.: The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting (WRF) model, Atmos. Sci. Lett., 5, 110–117, https://doi.org/10.1002/asl.72, 2004. a
Dowdy, A.: Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world, Sci. Rep., 6, 1–10, https://doi.org/10.1038/srep20874, 2016. a
Dowdy, A.: Climatology of thunderstorms , convective rainfall and dry lightning environments in Australia, Clim. Dynam., 54, 3041–3052, https://doi.org/10.1007/s00382-020-05167-9, 2020. a
Dowdy, A., Brown, A., Pepler, A., Thatcher, M., Rafter, T., Evans, J., Ye, H., Su, C.-H., Bell, S., and Stassen, C.: Extreme temperature, wind and bushfire weather projections using a standardised method, in: Bureau Research Report – BRR055, ISBN 978-1-925738-32-2, http://www.bom.gov.au/research/publications/researchreports/BRR-055.pdf (last access: 2 February 2024), 2021. a, b, c
Durañona, V., Sterling, M., and Baker, C. J.: An analysis of extreme non-synoptic winds, J. Wind Eng. Ind. Aerod., 95, 1007–1027, https://doi.org/10.1016/j.jweia.2007.01.014, 2007. a
El Rafei, M., Sherwood, S., Evans, J. P., and Ji, F.: Analysis of extreme wind gusts using a high-resolution Australian Regional Reanalysis, Weather and Climate Extremes, 39, 100537, https://doi.org/10.1016/j.wace.2022.100537, 2023. a, b
Fujita, T. T.: The downburst microburst and macroburst, Tech. rep., University of Chicago, https://swco-ir.tdl.org/handle/10605/262010 (last access: 2 February 2024), 1985. a
Geerts, B.: Estimating Downburst-Related Maximum Surface Wind Speeds by Means of Proximity Soundings in New South Wales, Australia, Weather Forecast., 16, 261–269, https://doi.org/10.1175/1520-0434(2001)016<0261:EDRMSW>2.0.CO;2, 2001. a
Gensini, V. A. and Brooks, H. E.: Spatial trends in United States tornado frequency, npj Climate and Atmospheric Science, 1, 38, https://doi.org/10.1038/s41612-018-0048-2, 2018. a
Gensini, V. A. and Mote, T. L.: Downscaled estimates of late 21st century severe weather from CCSM3, Climatic Change, 129, 307–321, https://doi.org/10.1007/s10584-014-1320-z, 2015. a, b
González-Alemán, J. J., Insua-Costa, D., Bazile, E., González-Herrero, S., Marcello Miglietta, M., Groenemeijer, P., and Donat, M. G.: Anthropogenic Warming Had a Crucial Role in Triggering the Historic and Destructive Mediterranean Derecho in Summer 2022, B. Am. Meteorol. Soc., 104, E1526–E1532, https://doi.org/10.1175/BAMS-D-23-0119.1, 2023. a
Haberlie, A. M., Ashley, W. S., Battisto, C. M., and Gensini, V. A.: Thunderstorm Activity Under Intermediate and Extreme Climate Change Scenarios, Geophys. Res. Lett., 49, e2022GL098779, https://doi.org/10.1029/2022GL098779, 2022. a, b
Hanley, K. E. and Lean, H. W.: Elucidating the causes of errors in 2.2 km Met Office Unified Model simulations of a convective case over the US Great Plains, Q. J. Roy. Meteor. Soc., 147, 2741–2759, https://doi.org/10.1002/qj.4049, 2021. a
Hanley, K. E., Plant, R. S., Stein, T. H., Hogan, R. J., Nicol, J. C., Lean, H. W., Halliwell, C., and Clark, P. A.: Mixing-length controls on high-resolution simulations of convective storms, Q. J. Roy. Meteor. Soc., 141, 272–284, https://doi.org/10.1002/qj.2356, 2015. a
Hawbecker, P.: Mesoscale, Microscale, and Numerical Models, in: The Oxford Handbook of Non-Synoptic Wind Storms, July 2022, Oxford University Press, 239–262, ISBN 9780190650988, https://doi.org/10.1093/oxfordhb/9780190670252.013.11, 2020. a
Hawbecker, P., Basu, S., and Manuel, L.: Realistic simulations of the July 1, 2011 severe wind event over the Buffalo Ridge Wind Farm, Wind Energy, 20, 1803–1822, https://doi.org/10.1002/we.2122, 2017. a
Holmes, J.: A Re-analysis of Recorded Extreme Wind Speeds in Region A, Australian Journal of Structural Engineering, 4, 29–40, https://doi.org/10.1080/13287982.2002.11464905, 2002. a, b
Johns, R. H. and Hirt, W. D.: Derechos: Widespread Convectively Induced Windstorms, Weather Forecast., 2, 32–49, https://doi.org/10.1175/1520-0434(1987)002<0032:dwciw>2.0.co;2, 1987. a
Jucker, M., Lane, T. P., Vincent, C. L., Webster, S., Wales, S. A., and Louf, V.: Locally forced convection in subkilometre-scale simulations with the Unified Model and WRF, Q. J. Roy. Meteor. Soc., 146, 3450–3465, https://doi.org/10.1002/qj.3855, 2020. a, b
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do convection-permitting regional climate models improve projections of future precipitation change?, B. Am. Meteorol. Soc., 98, 79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017. a
Kendon, E. J., Stratton, R. A., Tucker, S., Marsham, J. H., Berthou, S., Rowell, D. P., and Senior, C. A.: Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale, Nat. Commun., 10, 1794, https://doi.org/10.1038/s41467-019-09776-9, 2019. a
Kendon, E. J., Prein, A. F., Senior, C. A., and Stirling, A.: Challenges and outlook for convection-permitting climate modelling, Philos. T. R. Soc. A, 379, 20190547, https://doi.org/10.1098/rsta.2019.0547, 2021. a, b
Klemp, J. B. and Rotunno, R.: A Study of the Tornadic Region within a Supercell Thunderstorm, J. Atmos. Sci., 40, 359–377, https://doi.org/10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2, 1983. a
Ladwig, W.: wrf-python (Version 1.3.2), GitHub [code], https://doi.org/10.5065/D6W094P1, 2017. a
Lepore, C., Abernathey, R., Henderson, N., Allen, J. T., and Tippett, M. K.: Future Global Convective Environments in CMIP6 Models, Earth's Future, 9, 1–21, https://doi.org/10.1029/2021EF002277, 2021. a, b
Li, J., Qian, Y., Leung, L. R., Chen, X., Yang, Z., and Feng, Z.: Potential Weakening of the June 2012 North American Derecho Under Future Warming Conditions, J. Geophys. Res.-Atmos., 128, e2022JD037494, https://doi.org/10.1029/2022JD037494, 2023. a
Lombardo, F. T. and Zickar, A. S.: Prediction of Non-Synoptic Wind Speeds, in: The Oxford Handbook of Non-Synoptic Wind Storms, September, ISBN 9780190670269, 2020. a
Ludwig, P., Pinto, J. G., Hoepp, S. A., Fink, A. H., and Gray, S. L.: Secondary cyclogenesis along an occluded front leading to damaging wind gusts: Windstorm Kyrill, January 2007, Mon. Weather Rev., 143, 1417–1437, https://doi.org/10.1175/MWR-D-14-00304.1, 2015. a
Ma, Y., Dietachmayer, G., Steinle, P., Lu, W., Rikus, L., and Sgarbossa, D.: Diagnose Wind Gusts from High Resolution NWP Modelling over Mountainous Regions, Tech. rep., Australian Bureau of Meteorology, ISBN 9781925315929, http://www.bom.gov.au/research/publications/researchreports/BRR-029.pdf (last access: 2 February 2024), 2018. a
Manning, C., Kendon, E. J., Fowler, H. J., Roberts, N. M., Berthou, S., Suri, D., and Roberts, M. J.: Extreme windstorms and sting jets in convection-permitting climate simulations over Europe, Clim. Dynam., 58, 2387–2404, https://doi.org/10.1007/s00382-021-06011-4, 2022. a
Manning, C., Kendon, E. J., Fowler, H. J., and Roberts, N.: Projected increase in windstorm severity and contribution of sting jets over the UK and Ireland, Weather and Climate Extremes, 40, 100562, https://doi.org/10.1016/j.wace.2023.100562, 2023. a
Martinez-Alvarado, O., Gray, S. L., Hart, N. C., Clark, P. A., Hodges, K., and Roberts, M. J.: Increased wind risk from sting-jet windstorms with climate change, Environ. Res. Lett., 13, 044002, https://doi.org/10.1088/1748-9326/aaae3a, 2018. a
McCaul, E. W., Goodman, S. J., LaCasse, K. M., and Cecil, D. J.: Forecasting lightning threat using cloud-resolving model simulations, Weather Forecast., 24, 709–729, https://doi.org/10.1175/2008WAF2222152.1, 2009. a
Pantillon, F., Adler, B., Corsmeier, U., Knippertz, P., Wieser, A., and Hansen, A.: Formation of Wind Gusts in an Extratropical Cyclone in Light of Doppler Lidar Observations and Large-Eddy Simulations, Mon. Weather Rev., 148, 353–375, https://doi.org/10.1175/MWR-D-19-0241.1, 2020. a
Prein, A. F.: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014rg000475, 2015. a, b
Prein, A. F.: Thunderstorm straight line winds intensify with climate change, Nat. Clim. Change, 13, 1353–1359, https://doi.org/10.1038/s41558-023-01852-9, 2023. a
Púčik, T., Groenemeijer, P., Rädler, A. T., Tijssen, L., Nikulin, G., Prein, A. F., Meijgaard, E. v., Fealy, R., Jacob, D., and Teichmann, C.: Future changes in European severe convection environments in a regional climate model ensemble, J. Climate, 30, 6771–6794, https://doi.org/10.1175/JCLI-D-16-0777.1, 2017. a
Raupach, T. H., Martius, O., Allen, J. T., Kunz, M., Lasher-Trapp, S., Mohr, S., Rasmussen, K. L., Trapp, R. J., and Zhang, Q.: The effects of climate change on hailstorms, Nature Reviews Earth & Environment, 2, 213–226, https://doi.org/10.1038/s43017-020-00133-9, 2021. a, b
Seeley, J. T. and Romps, D. M.: The effect of global warming on severe thunderstorms in the United States, J. Climate, 28, 2443–2458, https://doi.org/10.1175/JCLI-D-14-00382.1, 2015. a, b
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and Climate Extreme Events in a Changing Climate, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1513–1766, https://doi.org/10.1017/9781009157896.013, 2021. a
Sherburn, K. D. and Parker, M. D.: Climatology and Ingredients of Significant Severe Convection in High-Shear, Low-CAPE Environments, Weather Forecast., 29, 854–877, https://doi.org/10.1175/WAF-D-13-00041.1, 2014. a
Singh, M. S., Kuang, Z., Maloney, E. D., Hannah, W. M., and Wolding, B. O.: Increasing potential for intense tropical and subtropical thunderstorms under global warming, P. Natl. Acad. Sci. USA, 114, 11657–11662, https://doi.org/10.1073/pnas.1707603114, 2017. a
Soderholm, J., McGowan, H., Richter, H., Walsh, K., Weckwerth, T. M., and Coleman, M.: An 18-year climatology of hailstorm trends and related drivers across southeast Queensland, Australia, Q. J. Roy. Meteor. Soc., 143, 1123–1135, https://doi.org/10.1002/qj.2995, 2017. a
Srivastava, R. C.: A simple model of evaporatively driven downdraft: Application to microburst downdraft, J. Atmos. Sci., 42, 1004–1023, 1985. a
Su, C.-H., Ye, H., Dowdy, A., Pepler, A., Stassen, C., Brown, A., Tucker, S. O., and Steinle, P. J.: Towards ACCESS-based regional climate projections for Australia, Tech. rep., Australian Bureau of Meteorology, ISBN 9781925738339, http://www.bom.gov.au/research/publications/researchreports/BRR-057.pdf (last access: 2 February 2024), 2021. a, b
Thompson, R. L., Mead, C. M., and Edwards, R.: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments, Weather Forecast., 22, 102–115, https://doi.org/10.1175/WAF969.1, 2007. a
Trapp, R. J.: Potential Effects of Anthropogenic Climate Change on Non-Synoptic Wind Storm Hazards, The Oxford Handbook of Non-Synoptic Wind Storms, 144–167, https://doi.org/10.1093/oxfordhb/9780190670252.013.4, 2021. a
Trapp, R. J., Diffenbaugh, N. S., and Gluhovsky, A.: Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations, Geophys. Res. Lett., 36, L01703, https://doi.org/10.1029/2008GL036203, 2009. a
Trapp, R. J., Robinson, E. D., Baldwin, M. E., Diffenbaugh, N. S., and Schwedler, B. R.: Regional climate of hazardous convective weather through high-resolution dynamical downscaling, Clim. Dynam., 37, 677–688, https://doi.org/10.1007/s00382-010-0826-y, 2011. a
Trapp, R. J., Hoogewind, K. A., and Lasher-Trapp, S.: Future changes in hail occurrence in the United States determined through convection-permitting dynamical downscaling, J. Climate, 32, 5493–5509, https://doi.org/10.1175/JCLI-D-18-0740.1, 2019. a
Van de Walle, J., Thiery, W., Brogli, R., Martius, O., Zscheischler, J., and van Lipzig, N. P.: Future intensification of precipitation and wind gust associated thunderstorms over Lake Victoria, Weather and Climate Extremes, 34, 100391, https://doi.org/10.1016/j.wace.2021.100391, 2021. a
Virts, K. S., Wallace, J. M., Hutchins, M. L., and Holzworth, R. H.: Highlights of a new ground-based, hourly global lightning climatology, B. Am. Meteorol. Soc., 94, 1381–1391, https://doi.org/10.1175/BAMS-D-12-00082.1, 2013. a
Wakimoto, R. M.: Forecasting dry microburst activity over the High Plains, Mon. Weather Rev., 113, 1131–1143, 1985. a
Wakimoto, R. M.: Convectively Driven High Wind Events, in: Severe Convective Storms, edited by Doswell, C. A., American Meteorological Society, Boston, MA, 255–298, ISBN 978-1-935704-06-5, https://doi.org/10.1007/978-1-935704-06-5_7, 2001. a, b
Wakimoto, R. M., Murphey, H. V., Davis, C. A., and Atkins, N. T.: High winds generated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds, Mon. Weather Rev., 134, 2813–2829, https://doi.org/10.1175/MWR3216.1, 2006. a
Waskom, M.: seaborn: statistical data visualization, Journal of Open Source Software, 6, 3021, https://doi.org/10.21105/joss.03021, 2021. a
Weisman, M. L., Davis, C., Wang, W., Manning, K. W., and Klemp, J. B.: Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model, Weather Forecast., 23, 407–437, https://doi.org/10.1175/2007WAF2007005.1, 2008. a
Ye, B., Del Genio, A. D., and Lo, K. K.: CAPE variations in the current climate and in a climate change, J. Climate, 11, 1997–2015, https://doi.org/10.1175/1520-0442-11.8.1997, 1998. a
Zhuang, J., raphael dussin, Huard, D., Bourgault, P., Banihirwe, A., Raynaud, S., Malevich, B., Schupfner, M., Filipe, Levang, S., Gauthier, C., Jüling, A., Almansi, M., RichardScottOZ, RondeauG, Rasp, S., Smith, T. J., Stachelek, J., Plough, M., Pierre, Bell, R., Caneill, R., and Li, X.: pangeo-data/xESMF: v0.8.2, Zenodo [code], https://doi.org/10.5281/zenodo.8356796, 2023. a
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
A computer model that simulates the climate of southeastern Australia is shown here to represent...
Altmetrics
Final-revised paper
Preprint