Articles | Volume 24, issue 9
https://doi.org/10.5194/nhess-24-3225-2024
https://doi.org/10.5194/nhess-24-3225-2024
Research article
 | 
24 Sep 2024
Research article |  | 24 Sep 2024

Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia

Andrew Brown, Andrew Dowdy, and Todd P. Lane

Related authors

Multi-scale variability of southeastern Australian wind resources
Claire L. Vincent and Andrew J. Dowdy
Atmos. Chem. Phys., 24, 10209–10223, https://doi.org/10.5194/acp-24-10209-2024,https://doi.org/10.5194/acp-24-10209-2024, 2024
Short summary
A systematic review of climate change science relevant to Australian design flood estimation
Conrad Wasko, Seth Westra, Rory Nathan, Acacia Pepler, Timothy H. Raupach, Andrew Dowdy, Fiona Johnson, Michelle Ho, Kathleen L. McInnes, Doerte Jakob, Jason Evans, Gabriele Villarini, and Hayley J. Fowler
Hydrol. Earth Syst. Sci., 28, 1251–1285, https://doi.org/10.5194/hess-28-1251-2024,https://doi.org/10.5194/hess-28-1251-2024, 2024
Short summary
The contribution of coral-reef-derived dimethyl sulfide to aerosol burden over the Great Barrier Reef: a modelling study
Sonya L. Fiddes, Matthew T. Woodhouse, Steve Utembe, Robyn Schofield, Simon P. Alexander, Joel Alroe, Scott D. Chambers, Zhenyi Chen, Luke Cravigan, Erin Dunne, Ruhi S. Humphries, Graham Johnson, Melita D. Keywood, Todd P. Lane, Branka Miljevic, Yuko Omori, Alain Protat, Zoran Ristovski, Paul Selleck, Hilton B. Swan, Hiroshi Tanimoto, Jason P. Ward, and Alastair G. Williams
Atmos. Chem. Phys., 22, 2419–2445, https://doi.org/10.5194/acp-22-2419-2022,https://doi.org/10.5194/acp-22-2419-2022, 2022
Short summary
Coral-reef-derived dimethyl sulfide and the climatic impact of the loss of coral reefs
Sonya L. Fiddes, Matthew T. Woodhouse, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 21, 5883–5903, https://doi.org/10.5194/acp-21-5883-2021,https://doi.org/10.5194/acp-21-5883-2021, 2021
Short summary
Cloud, precipitation and radiation responses to large perturbations in global dimethyl sulfide
Sonya L. Fiddes, Matthew T. Woodhouse, Zebedee Nicholls, Todd P. Lane, and Robyn Schofield
Atmos. Chem. Phys., 18, 10177–10198, https://doi.org/10.5194/acp-18-10177-2018,https://doi.org/10.5194/acp-18-10177-2018, 2018
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024,https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024,https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024,https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024,https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Surprise floods: the role of our imagination in preparing for disasters
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024,https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary

Cited articles

Allen, J. T.: Climate Change and Severe Thunderstorms, in: Oxford Research Encyclopedia of Climate Science, vol. 1, Oxford University Press, 65 pp., ISBN 9780190228620, https://doi.org/10.1093/acrefore/9780190228620.013.62, 2018. a
Allen, J. T. and Karoly, D. J.: A climatology of Australian severe thunderstorm environments 1979–2011: Inter-annual variability and ENSO influence, Int. J. Climatol., 34, 81–97, https://doi.org/10.1002/joc.3667, 2014. a, b
Allen, J. T., Karoly, D. J., and Walsh, K. J.: Future Australian Severe Thunderstorm Environments. Part II: The Influence of a Strongly Warming Climate on Convective Environments, J. Climate, 27, 3848–3868, https://doi.org/10.1175/JCLI-D-13-00426.1, 2014. a
Ashley, W. S., Haberlie, A. M., and Gensini, V. A.: The Future of Supercells in the United States, B. Am. Meteorol. Soc., 104, E1–E21, https://doi.org/10.1175/BAMS-D-22-0027.1, 2023. a, b
Atkins, N. T. and Wakimoto, R. M.: Wet Microburst Activity over the Southeastern United States: Implications for Forecasting, Weather Forecast., 6, 470–482, https://doi.org/10.1175/1520-0434(1991)006<0470:WMAOTS>2.0.CO;2, 1991. a
Download
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Altmetrics
Final-revised paper
Preprint