Articles | Volume 24, issue 8
https://doi.org/10.5194/nhess-24-2647-2024
https://doi.org/10.5194/nhess-24-2647-2024
Research article
 | 
02 Aug 2024
Research article |  | 02 Aug 2024

Probabilistic flood inundation mapping through copula Bayesian multi-modeling of precipitation products

Francisco Javier Gomez, Keighobad Jafarzadegan, Hamed Moftakhari, and Hamid Moradkhani

Related authors

The value of visualization in improving compound flood hazard communication: A new perspective through a Euclidean Geometry lens
Soheil Radfar, Georgios Boumis, Hamed R. Moftakhari, Wanyun Shao, Larisa Lee, and Alison N. Rellinger
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2024-7,https://doi.org/10.5194/gc-2024-7, 2024
Preprint under review for GC
Short summary
Towards a Robust Hydrologic Data Assimilation System for Hurricane-induced River Flow Forecasting
Peyman Abbaszadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-209,https://doi.org/10.5194/hess-2024-209, 2024
Revised manuscript accepted for HESS
Short summary
Quantifying cascading uncertainty in compound flood modeling with linked process-based and machine learning models
David F. Muñoz, Hamed Moftakhari, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 28, 2531–2553, https://doi.org/10.5194/hess-28-2531-2024,https://doi.org/10.5194/hess-28-2531-2024, 2024
Short summary
Real-time coastal flood hazard assessment using DEM-based hydrogeomorphic classifiers
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435, https://doi.org/10.5194/nhess-22-1419-2022,https://doi.org/10.5194/nhess-22-1419-2022, 2022
Short summary
Sequential data assimilation for real-time probabilistic flood inundation mapping
Keighobad Jafarzadegan, Peyman Abbaszadeh, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 25, 4995–5011, https://doi.org/10.5194/hess-25-4995-2021,https://doi.org/10.5194/hess-25-4995-2021, 2021
Short summary

Related subject area

Hydrological Hazards
The 2018–2023 drought in Berlin: impacts and analysis of the perspective of water resources management
Ina Pohle, Sarah Zeilfelder, Johannes Birner, and Benjamin Creutzfeldt
Nat. Hazards Earth Syst. Sci., 25, 1293–1313, https://doi.org/10.5194/nhess-25-1293-2025,https://doi.org/10.5194/nhess-25-1293-2025, 2025
Short summary
Recent large-inland-lake outbursts on the Tibetan Plateau: processes, causes, and mechanisms
Fenglin Xu, Yong Liu, Guoqing Zhang, Ping Zhao, R. Iestyn Woolway, Yani Zhu, Jianting Ju, Tao Zhou, Xue Wang, and Wenfeng Chen
Nat. Hazards Earth Syst. Sci., 25, 1187–1206, https://doi.org/10.5194/nhess-25-1187-2025,https://doi.org/10.5194/nhess-25-1187-2025, 2025
Short summary
Modelling urban stormwater drainage overflows for assessing flood hazards: application to the urban area of Dakar (Senegal)
Laurent Pascal Malang Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Nat. Hazards Earth Syst. Sci., 25, 1095–1112, https://doi.org/10.5194/nhess-25-1095-2025,https://doi.org/10.5194/nhess-25-1095-2025, 2025
Short summary
Dynamics and impacts of monsoon-induced geological hazards: a 2022 flood study along the Swat River in Pakistan
Nazir Ahmed Bazai, Mehtab Alam, Peng Cui, Wang Hao, Adil Poshad Khan, Muhammad Waseem, Yao Shunyu, Muhammad Ramzan, Li Wanhong, and Tashfain Ahmed
Nat. Hazards Earth Syst. Sci., 25, 1071–1093, https://doi.org/10.5194/nhess-25-1071-2025,https://doi.org/10.5194/nhess-25-1071-2025, 2025
Short summary
Monte Carlo-based sensitivity analysis of the RIM2D hydrodynamic model for the 2021 flood event in western Germany
Shahin Khosh Bin Ghomash, Patricio Yeste, Heiko Apel, and Viet Dung Nguyen
Nat. Hazards Earth Syst. Sci., 25, 975–990, https://doi.org/10.5194/nhess-25-975-2025,https://doi.org/10.5194/nhess-25-975-2025, 2025
Short summary

Cited articles

Abbaszadeh, P., Moradkhani, H., and Daescu, D. N.: The Quest for Model Uncertainty Quantification: A Hybrid Ensemble and Variational Data Assimilation Framework, Water Resour. Res., 55, 2407–2431, https://doi.org/10.1029/2018WR023629, 2019. 
Abbaszadeh, P., Gavahi, K., Alipour, A., Deb, P., and Moradkhani, H.: Bayesian Multi-modeling of Deep Neural Nets for Probabilistic Crop Yield Prediction, Agr. Forest Meteorol., 314, 108773, https://doi.org/10.1016/j.agrformet.2021.108773, 2022a. 
Abbaszadeh, P., Muñoz, D. F., Moftakhari, H., Jafarzadegan, K., and Moradkhani, H.: Perspective on uncertainty quantification and reduction in compound flood modeling and forecasting, iScience, 25, 105201, https://doi.org/10.1016/j.isci.2022.105201, 2022b. 
Alipour, A., Jafarzadegan, K., and Moradkhani, H.: Global sensitivity analysis in hydrodynamic modeling and flood inundation mapping, Environ. Modell. Softw., 152, 105398, https://doi.org/10.1016/j.envsoft.2022.105398, 2022. 
Andreas, E. L., Mahrt, L., and Vickers, D.: A New Drag Relation for Aerodynamically Rough Flow over the Ocean, J. Atmos. Sci., 69, 2520–2537, https://doi.org/10.1175/JAS-D-11-0312.1, 2012. 
Download
Short summary
This study utilizes the global copula Bayesian model averaging technique for accurate and reliable flood modeling, especially in coastal regions. By integrating multiple precipitation datasets within this framework, we can effectively address sources of error in each dataset, leading to the generation of probabilistic flood maps. The creation of these probabilistic maps is essential for disaster preparedness and mitigation in densely populated areas susceptible to extreme weather events.
Share
Altmetrics
Final-revised paper
Preprint