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Abstract. Accurate prediction and assessment of extreme
flood events are crucial for effective disaster preparedness,
response, and mitigation strategies. One crucial factor influ-
encing the intensity and magnitude of extreme flood events
is precipitation. Precipitation patterns, particularly during in-
tense weather phenomena such as hurricanes, can play a sig-
nificant role in triggering widespread flooding over densely
populated areas. Traditional flood prediction models typi-
cally rely on single-source precipitation data, which may
not adequately capture the inherent variability and uncer-
tainty associated with extreme events due to certain limi-
tations in the precipitation generation framework, availabil-
ity, or both spatial and temporal resolutions. Moreover, in
coastal regions, the complex interaction between local pre-
cipitation, river flows, and coastal processes (i.e., storm tide)
can result in compound flooding and amplify the overall im-
pact and complexity of flooding patterns. This study presents
an implementation of the global copula-embedded Bayesian
model averaging (BMA) (Global Cop-BMA) framework for
improving the accuracy and reliability of extreme flood mod-
eling. The proposed framework integrates a collection of
precipitation products with different spatiotemporal resolu-
tions to account for uncertainty in forcing data for hydro-
dynamic modeling and generating probabilistic flood inun-
dation maps. The methodology is evaluated with respect to
Hurricane Harvey, which was a catastrophic weather event
characterized by intense precipitation and compound flood-
ing processes over the city of Houston in the state of Texas
in 2017. The results show a significant improvement in pre-
dictive accuracy compared to those based on a single pre-
cipitation product (e.g., the Nash–Sutcliffe efficiency (NSE)
performance of a single quantitative precipitation estimation

(QPE) is in the range of 0.695 to 0.846, while the Cop-BMA
yields an NSE of 0.858), demonstrating the merits of the
Global Cop-BMA approach. Furthermore, this research ex-
tends its impact by generating probabilistic flood extension
maps that account not only for the primary influence of pre-
cipitation as a flood driver but also for the intricate nature of
compound flooding processes in coastal environments.

1 Introduction

The inherent uncertainty associated with hydrodynamical
modeling, exacerbated by complex and often non-linear re-
lationships, presents a challenge to the accurate prediction
of extreme flood events (Jafarzadegan et al., 2023). This un-
certainty is frequently linked to diverse categories of errors
encompassing inputs, such as the resolution and availabil-
ity of topobathymetric data (Alipour et al., 2022; Liu and
Merwade, 2018; Savage et al., 2016), as well as the qual-
ity and precision of boundary conditions derived from hy-
drological models, other types of hydraulic and/or hydrody-
namic models, or hydrometric measurements at monitoring
stations (Abbaszadeh et al., 2019, 2022b; Jafarzadegan et al.,
2021a, b; Oruc Baci et al., 2023). Beyond these factors, addi-
tional sources of uncertainty arise from inherent errors within
numerical models, including the type and dimensions of the
model, governing equations, assumptions, simplifications of
physical processes, and the construction of the computational
domain (Bates, 2022; Liu et al., 2019; Teng et al., 2017).

Bayesian model averaging (BMA) has been used in the
past 2 decades as a statistical framework for improving
the reliability of hydrological or meteorological models by
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quantifying and reducing uncertainties arising from different
models (e.g., Duan et al., 2007; Han and Coulibaly, 2017;
Parrish et al., 2012; Raftery et al., 2005). BMA enables the
incorporation of multiple model predictions, each possessing
its own strengths and limitations, into a unified probabilistic
framework. Through this process, BMA techniques provide
a robust means of generating ensemble predictions that not
only capture the inherent variability of the system but also
account for model uncertainties, parameter uncertainties, and
data uncertainties. BMA applications have expanded into
other domains, such as flood inundation models, aiming to
achieve more accurate estimation of flood extent and water
level while accounting for different sources of uncertainty
during flood events (Huang and Merwade, 2023; Liu and
Merwade, 2018, 2019; Moftakhari et al., 2017). The main
limitation of BMA in hydrological applications is the use of
the same marginal distributions in the construction of joint
probabilities and that it is generally assumed that the data
and the conditional probability distribution function (PDF)
of the data follow a Gaussian distribution. Copula-embedded
Bayesian model averaging (Cop-BMA) represents an ad-
vancement, distinguishing itself from the traditional BMA
formulation, by constructing the joint distribution indepen-
dently of the marginal distributions of the individual vari-
ables of analysis (Madadgar and Moradkhani, 2014). This
distinction positions Cop-BMA as a more reliable tool for
considering uncertainty from the marginal distribution of the
analyzed data.

With the advancements in computational modeling, novel
tools have emerged to optimize and enhance outcomes while
incorporating new variables into the analysis. The incorpora-
tion of precipitation data directly into hydrodynamic models
via rain-on-grid (RoG) functionality stands among the inno-
vative features that is gaining recognition by hydrodynamic
modelers by allowing for the incorporation of spatiotempo-
rally varied precipitation data into the computational domain.
Among these various hydrodynamic models is the Hydro-
logic Engineering Center’s River Analysis System (HEC-
RAS) developed by the United States Army Corps of Engi-
neers (USACE, 2022). It has the capability to simulate flood-
ing conditions in both 1D and 2D. Although some investi-
gations have explored the integration of RoG into the HEC-
RAS 2D hydrodynamic model and assessed its performance
(Costabile et al., 2020; David and Schmalz, 2021; Zeiger
and Hubbart, 2021), a significant gap remains in compre-
hensively exploring the utility of RoG in result evaluation,
comparisons with analogous computational models, and the
analysis of uncertainties generated from its incorporation as a
boundary condition. Currently, multiple regional and global
precipitation data and products are available, exhibiting a
wide range of spatial and temporal resolutions. These valu-
able data assets offer the opportunity to enhance the accuracy
of hydrodynamic flood modeling to higher levels of detail,
although incorporating this type of information introduces
an additional layer of uncertainty, prompting the need to ac-

count for these variations to enhance the accuracy of estimat-
ing both the extent and the depth of flooding.

Comparisons of various precipitation products have been
integral in the assessment of quantitative precipitation esti-
mation (QPE) techniques, particularly within the context of
precipitation generation and its subsequent impacts. These
evaluations encompass an array of data sources, such as ob-
servations from satellites, ground-based gauges, radar mea-
surements, reanalysis products, and combinations thereof,
all contributing to the nuanced understanding of precipita-
tion patterns (e.g., Gavahi et al., 2023; Nelson et al., 2016;
Wootten and Boyles, 2014). In addition to these comparisons,
studies have researched the details of QPE techniques and
products during extreme hydrometeorological events. The
case of Hurricane Harvey serves as a prime example (Brauer
et al., 2020; Gao et al., 2021; Habibi et al., 2021; Omranian
et al., 2018). This event exhibited the importance of accu-
rate precipitation estimation, given its critical role in extreme
flooding. However, the differences between observed and de-
rived precipitation values emphasize the presence of inher-
ent errors and biases within precipitation products. Conse-
quently, relying solely on one dataset for QPE could poten-
tially lead to an incomplete representation of the complex
conditions encountered during such extreme events (Gavahi
et al., 2023).

The impact of Hurricane Harvey was deeply felt along the
Texan coastline. It brought with it an approximate accumu-
lated precipitation of over 1500 mm in the vicinity of Beau-
mont, TX, and resulted in estimated losses of USD 125 bil-
lion based on the 2017 Consumer Price Index (Blake and
Zelinsky, 2018). Given the significance of this hurricane
and the widespread damage it caused across the state of
Texas, considerable efforts have been undertaken to model
and quantify the extent and depths of the flooding it gen-
erated. Various approaches, including numerical hydrody-
namic models (Huang et al., 2021; Jafarzadegan et al., 2021a;
Muñoz et al., 2022; Noh et al., 2019; Saksena et al., 2020; Se-
bastian et al., 2021; Stephens et al., 2022; Valle-Levinson et
al., 2020; Wing et al., 2019), as well as combinations of dif-
ferent methodologies or type of models, have been employed
(Chen et al., 2021, 2022; Dullo et al., 2021).

By combining hydrodynamic modeling results driven with
different precipitation datasets, Bayesian multi-modeling
techniques have the potential to account for uncertainties
in precipitation products and enhance the flood inundation
mapping skills. This article presents an approach that incor-
porates both deterministic and probabilistic methods in the
study of the Hurricane Harvey event. On the deterministic
front, the numerical results of the HEC-RAS 2D 6.3.1 hy-
drodynamic model, incorporating RoG, are evaluated to best
describe the hydrodynamic behavior of rivers, coastal pro-
cesses, and floodplain processes with a computationally af-
fordable model. In parallel, a probabilistic approach is em-
ployed to use eight distinct precipitation products as forcing
data to the hydrodynamic model to estimate an ensemble of
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flood extent and water depth in response to this hurricane-
induced flood event. The deterministic approach provides a
single representation of flood extents and depths based on
predefined inputs and parameters, offering a clear under-
standing of the potential inundation scenario evaluated. How-
ever, it fails to adequately capture the uncertainty associated
with flood modeling, potentially leading to underestimation
or overestimation of flood extents in other scenarios consid-
ering highly sensitive input parameters, which can impact the
accuracy of results (Di Baldassarre et al., 2010; Bates et al.,
2004).

Probabilistic flood inundation mapping incorporates prob-
abilistic techniques to assess and quantify uncertainty, pro-
viding a more comprehensive understanding of the range of
potential flood outcomes and associated risks. It allows for
the integration of different datasets and input values, accom-
modating a wider range of initial and boundary conditions
and improving the robustness of flood predictions (Merwade
et al., 2008; Di Baldassarre et al., 2010). Often this approach
requires conducting numerous simulations to assess parame-
ter uncertainty, leading to a substantial consumption of com-
putational resources. Consequently, there is a preference for
utilizing models that make substantial flow assumptions to
conduct these simulations more efficiently and reduce com-
putational cost.

Overall, this study aims to (1) investigate the impacts
of different precipitation data in the simulation of extreme
floods, such as hurricane Harvey using HEC-RAS 2D, and
(2) quantify the uncertainties associated with different pre-
cipitation products by generating probabilistic flood inunda-
tion maps using the global copula Bayesian (Global Cop-
BMA) multi-modeling technique.

2 Methods

The methodology employed in this study centers on numer-
ical hydraulic modeling and the assessment of flood extent
and water elevation using the global copula Bayesian (Global
Cop-BMA) multi-modeling technique. Figure 1 represents
the main steps required for the implementation of the pro-
posed methodology. First, the HEC-RAS 2D hydrodynamic
model is set up, incorporating data such as roughness, bound-
ary conditions (discharges, water levels, and precipitation),
and terrain. In this step, the HEC-RAS 2D model is driven
with different precipitation products to generate a collection
of flood inundation maps. Second, the Cop-BMA technique
is employed to combine the flood maps and produce a sin-
gle probabilistic flood inundation map that accounts for the
uncertainties associated with different precipitation products.

2.1 Hydrodynamic modeling

Flood extent and depth maps are typically obtained by per-
forming 1D or 2D hydrodynamic modeling that numerically

Figure 1. Flowchart of the proposed methodology for probabilistic
flood inundation mapping.

solves the Saint-Venant or shallow-water equations respec-
tively. Each of these models possesses its own advantages
and limitations in terms of computational complexity, as-
sumptions of flow nature, practicality, accuracy, and preci-
sion (Bates, 2022; Teng et al., 2017). Among these options,
2D models offer a notable compromise, enabling flood mod-
eling with a satisfactory level of detail while maintaining a
manageable computational cost compared to their 3D coun-
terparts. Furthermore, as compared to 1D models, they fa-
cilitate the calculation of water levels across floodplains in a
more intricate and physically plausible manner over complex
geometries.

While a variety of 2D models, both open source and com-
mercially licensed, exist, the current study utilizes the HEC-
RAS 2D model version 6.3.1. This choice is motivated by
HR2D’s open accessibility and significant improvements,
such as the integration of subgrid concepts for mesh re-
finement and the incorporation of shallow-water equations
(SWEs). These enhancements mark a distinct advancement
over previous versions, making HR2D a suitable candidate
for flood modeling. Notably, it surpasses its predecessors,
which were employed in studies involving Hurricane Har-
vey’s impact on the city of Houston (Garcia et al., 2020; Jiang
et al., 2023; Scotti et al., 2020).

The hydrodynamic model setup is based on three primary
inputs: the terrain, the roughness associated with land cover
and land use types, and the boundary conditions or external
forcings (typically discharge and/or water levels). Recent ad-
vancements in model capabilities have enabled the integra-
tion of additional boundary conditions within the computa-
tional domain. This integration enhances the physical repre-
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sentation of the system, which results in more accuracy and
reduces the reliance on other types of models, such as hy-
drological models. In numerous flooding scenarios, precipi-
tation plays a key role as a substantial portion of this flood
driver transforms into direct runoff, leading to flood inunda-
tion. This phenomenon is typically referred to as the pluvial
impact of flooding and is particularly evident in events like
Hurricane Harvey (Saksena et al., 2020). Hence, the RoG
functionality within HR2D emerges as a pivotal feature to
be incorporated into the methodology.

2.2 Copula Bayesian multi-modeling approach

Among different multi-modeling approaches, Bayesian
model averaging (BMA) has been widely used for combin-
ing multiple model predictions and producing more reliable
results that account for the uncertainty in each model. BMA
produces a predictive probability distribution function (PDF)
of a variable, water surface elevation in this case, which is the
weighted average of the PDFs associated with each model
prediction. The weights reflect the prediction skill of dif-
ferent models. By considering the performance of all inde-
pendent k model predictions (M1,M2, . . . ,Mk), BMA elim-
inates the need to select a single “best” model, thereby pro-
viding a more robust prediction (Madadgar and Moradkhani,
2014). The law of total probability is used to calculate the
distribution of target (predicted) variable y using both ob-
served data and model predictions. Considering the dynamic
nature of these models, the time component is integrated into
the law of total probability as expressed in Eq. (1):
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model prediction being corrected, given the observations, Y ,
during the analyzed period. These weights reflect the perfor-
mance of models in predicting the target variable with a total
sum equal to 1. In summary, the weight w reflects the degree
to which a model aligns with the observed data; that is, mod-
els demonstrating high performance receive higher weights.

With BMA, the assumption that the posterior distribu-
tion follows a Gaussian distribution is commonly used as
p
(
yt |M t

i ,Y
)
∼ g(yt |M t

i σ
2
i ), but this may not be correct in

all cases given the nature of the data used. In these cases,
it is convenient to transform the data from its original space
to a Gaussian space via Box–Cox transformation. Consider-
ing the target variable as water surface elevation, the Yeo–
Johnson power transformation is preferred to account for
negative values. This is particularly relevant in coastal en-
vironments where such values are commonly observed due
to tidal conditions.

To overcome the limitations of BMA associated with the
Gaussian distribution of variables and their joint distribu-
tion, a second solution involves integrating Copula multi-
variate functions into the BMA approach, known as Cop-
BMA. Copulas are functions in the unit cube, which can
link multi-dimensional distributions to their 1D marginals
(Sklar, 1959), and they provide a flexible and powerful tool
for modeling the dependency structure between variables, re-
gardless of their individual marginal distributions and model
dependency. This is particularly valuable in scenarios where
the relationships between variables are complex and may
not follow a simple linear pattern. Cop-BMA modifies the
BMA predictive distribution by relaxing the assumption on
the parametric posterior distribution g(yt |M t

i σ
2
i ), replacing

it with a group of multivariate copula functions. Multiple
copula functions have been applied to post-process hydro-
logical forecasts (Abbaszadeh et al., 2022a; He et al., 2018;
Madadgar et al., 2014; Madadgar and Moradkhani, 2014)
and are used in this study for the estimation of water surface
elevation posterior distribution. Equation (1) is modified to
incorporate copula functions, replacing the posterior distri-
bution p(yt |M t

i Y ) following the procedure from Abbaszadeh
et al. (2022a). Supported by Sklar’s theorem, copulas can ex-
press the joint behavior among correlated variables through
their marginal CDFs, as shown in Eq. (3):

P (x1, . . .,xn)= C[P (x1), . . ., P (xn)]= C(u1, . . . ,un), (3)

where C is the cumulative distribution function (CDF) of the
copula, and P(xi) is the marginal distribution of xi denoted
as ui for the interval [0, 1]. Using the PDF of copula, the joint
probability density function of the variables involved can be
defined as follows:
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p(xi). (4)

The conditional probability distribution of x1 given x2 is de-
fined in Eq. (5):

p(x1 |x2)=
p(x1,x2)

p(x2)
. (5)

Considering the copula joint probability from Eq. (4), Eq. (5)
can be expressed as
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replaced with the conditional probability distribution from
Eq. (6) as
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where c(uytuM t ) represents the PDF of the copula func-
tion. To estimate weight wi , it is required to maximize
the log likelihood function of the vector of parameter θ =
{wi, i = 1, . . .,k} as

l (θ)= log
(∑k

i=1
wi
∑T

t=1
c
(
uyt ,uM t

i

)
·p(yt )

)
. (8)

The expectation–maximization (EM) algorithm, proposed by
Raftery et al. (2005), is used to maximize Eq. (8). This is
achieved through iterative updates of the weights by adjust-
ing a latent variable until a specified tolerance criterion is
met.

In order to probabilistically estimate the flood extent and
depth over a large domain, a comprehensive approach is nec-
essary to spatially characterize the outcomes derived from
different numerical models or, in this context, various hydro-
dynamic simulations with different precipitation products.
This becomes especially crucial when the variables used in
this study, namely the precipitation products and water level
resulting from numerical simulations, exhibit significant spa-
tial variability. Parameter regionalization plays an important
role in identifying clusters or regions where assigning a sin-
gle parameter for the whole domain is not reasonable (Ja-
farzadegan et al., 2020). To estimate weights for these clus-
ters or regions, a global extension of the Cop-BMA has been
developed, following the same procedure as the EM algo-
rithm introduced earlier for the estimation of weights and
likelihood (Yan et al., 2020). Likelihood function (Eq. 8) is
adjusted to consider multiple stations over each cluster:

l (θ)=
∑N

n=1
log

(∑k

i=1
wi
∑T

t=1
c
(
uyt ,uM t

i

)
·p(yt )

)
. (9)

Here, N refers to the number of stations per cluster.

3 Study area and data

The Galveston Bay area is located in southeastern Texas on
the Gulf Coastal Plain and covers parts of Brazoria, Cham-
bers, Galveston, Harris, and Liberty counties. As the largest
estuary in the state, it exhibits a notable level of urbaniza-
tion in the western zone, primarily attributed to the city of
Houston. The city has several bayous and creeks that flow
mostly southeastward into Galveston Bay. To the north is the
San Jacinto River, which flows from the discharge of Lake
Houston spillway to the south.

3.1 Model setup

The HEC-RAS 2D model is built through the RAS Map-
per tool version 6.3.1 with shallow-water equations and the
Eulerian–Lagrangian method (SWE–ELM) formulation for
governing equations. It has a total geometry extension of
5514.8 km2 with 396 063 computational cells and a spatial
resolution of 200× 200 m refined to 75× 75 m or less in the
Houston area (Garcia et al., 2020; Scotti et al., 2020). The

unstructured meshing approach used in this study results in
proper characterization of terrain complexities in urban ar-
eas while maintaining a reasonable computational time. For
unsteady flow analysis in the HR2D setup, an hourly simu-
lation time window is defined between 16 August 2017 and
3 September 2017. The 2D flow domain is defined consider-
ing the most significant discharge contributions to the Galve-
ston Bay area (Fig. 2). The main highways in the Houston
area, including Texas 8 Beltway and Interstate 610, serve
as critical watershed boundaries for hydrodynamical mod-
eling in the urban regions. Therefore, an additional major ef-
fort was made to incorporate break lines along these features
in Houston. This allows for proper hydro-enforcement and
enhances hydraulic connectivity between the computational
cells.

The NCEI’s Continuously Updated Digital Elevation
Model (CUDEM) bathymetric and topographic DEM, with
a 1/9 arcsec resolution (National Centers for Environmental
Information, 2014), is used as the topography data. Since a
fraction of the study area is highly urbanized, there is not in-
formation on all the bridges, culverts, and the geometry of the
artificial channels. Topographic adjustments are made within
RAS Mapper to guarantee and preserve the hydraulic char-
acteristics of the streams.

Manning roughness coefficients are spatially assigned us-
ing the 2019 National Land Cover Database (Dewitz and
U.S. Geological Survey, 2021). To reduce the spatial com-
plexity of various land covers in the study area, the land cover
map is simplified into five groups of developed and urban
areas, forests and wetlands, open water, navigational areas,
and barren land (crops, pasture, agriculture). In previous re-
search conducted by Muñoz et al. (2022), they used Latin
hypercube sampling and tested various Manning roughness
values for different land cover categories during the Hurri-
cane Harvey event. We use their calibrated parameters as a
reference for the HR2D model setup. These values are ad-
justed slightly during the calibration period, 7 d before the
occurrence of Hurricane Harvey. It is worth mentioning that
our simulations were performed on a desktop computer with
an Intel Core i7-7700 CPU at 3.60 GHz and 32 GB RAM,
averaging about 7 h per simulation for the time window.

3.2 Discharge and tidal forcings

Hourly discharge data from the U.S. Geological Survey
(2016) are used for most of the streams incorporated within
the HR2D model. Missing data for some gauges are esti-
mated by considering their correlation with other gauges lo-
cated upstream. The U.S. Army Engineer Research and De-
velopment Center (ERDC) has provided the daily discharge
time series data for Dickinson Bayou, Chocolate River, and
Trinity River. San Jacinto River discharge values are esti-
mated using gauge height time series from the USGS gauge
Lk Houston nr Sheldon, TX (08072000). As the down-
stream boundary condition, the hourly still-water elevation
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Figure 2. Study area map with discharge, still-water surface elevation, and wind stations as boundary conditions. NLCD land covers are
incorporated as Manning’s roughness in the HEC-RAS 2D model. Basemap: ESRI World Imagery.

data from the National Oceanic and Atmospheric Adminis-
tration (NOAA) Galveston Bay Entrance station are selected.
Table 1 summarizes the boundary conditions applied to the
HR2D model.

3.3 Precipitation and wind forcings

Extensive efforts have been dedicated to the detailed com-
parison and evaluation of diverse precipitation datasets gen-
erated on a regional or global scale. Within this framework,
researchers have rigorously examined the total precipitation
outputs derived from various sources, their alignment with
alternative datasets, and their consistency with gauge-based
measurements.

The investigation into the spatial and temporal patterns
of extreme precipitation events, particularly during Hurri-
cane Harvey, has become essential due to the event’s catas-
trophic impact (Fagnant et al., 2020; Wang et al., 2018).
Researchers have taken a comprehensive approach, encom-
passing a broad spectrum of precipitation products, which
include both remote-sensing- and model-based estimations.
The comparison often extends to not only the total accumu-
lated precipitation but also its spatiotemporal distribution, in-
tensity, and duration. This multifaceted evaluation aims to
discern the differences in performance, uncover potential bi-

ases, and ascertain the overall reliability of these estimates
(Brauer et al., 2020; Chen et al., 2020; Gao et al., 2021;
Habibi et al., 2021; Omranian et al., 2018).

In this study, an evaluation of seven distinct precipitation
products is made, across the temporal and spatial resolutions
that are conducive to capturing the intricacies of hydraulic
routing through HR2D. The precipitation products consid-
ered for Cop-BMA assessment include the following:

1. the Climate Prediction Center MORPHing technique
(CMORPH) (Xie et al., 2019)

2. Daily Surface Weather Data on a 1 km Grid (Daymet)
(Thornton et al., 2022)

3. ERA5 (Muñoz Sabater, 2019)

4. Integrated Multi-satellitE Retrievals for GPM (IMERG)
(Huffman et al., 2019)

5. Multi-Radar Multi-Sensor (MRMS) (Zhang et al.,
2016)

6. NCEP Stage IV precipitation data (Du, 2011)

7. the North American Land Data Assimilation System
version 2 (NLDAS-2) (Xia et al., 2009).
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Table 1. Summary of discharge and still-water surface elevation boundary conditions used in the model setup.

Gauge station name Source Code/ID Use

Galveston Bay Entrance NOAA 8771341 Still-water surface elevation downstream

Sims Bayou at Houston USGS 08075500 Discharge, data estimated with values using USGS gauge 08075400

Brays Bayou at Houston USGS 08075000 Discharge

Buffalo Bayou at Houston USGS 08074000 Discharge

Whiteoak Bayou at Houston USGS 08074500 Discharge

Greens Bayou nr Houston USGS 08075900 Discharge

Garners Bayou nr Humble USGS 08076180 Discharge

Berry Bayou at Nevada USGS 08075605 Discharge

Little Whiteoak Bayou at Trimble St. USGS 08074540 Discharge

Clear Ck nr Friendswood USGS 08077600 Discharge

San Jacinto River nr Sheldon USGS 08072050 Discharge, data estimated with height values over weir using USGS
gauge 08072000

Cedar Bayou nr Crosby USGS 08067500 Discharge

Halls Bayou USGS 08076500 Discharge

Hunting Bayou USGS 08075763 Discharge

Goose Ck nr McNair USGS 08067520 Discharge

To facilitate analysis and modeling, these datasets undergo
preprocessing in the Hydrologic Modeling System (HEC-
HMS) software to generate .dss files, thus facilitating their
integration into the HEC-RAS unsteady flow meteorological
data.

It is important to emphasize that while the primary focus
of this research is to assess the integration of precipitation
data in compound flood events, certain limitations exist. No-
tably, NLDAS and Daymet products do not provide coverage
for terrain areas near the coastline, particularly in the south-
ern region of the model domain, which includes Galveston
and Texas City. This geographical limitation underscores the
need for careful consideration when interpreting and gener-
alizing the findings within these specific regions.

In addition to the seven precipitation products men-
tioned above, rain gauge (RG) data, provided by the Har-
ris County Flood Warning System (HCFWS) portal (https:
//www.harriscountyfws.org/, last access: 15 October 2023),
are integrated into the study as comparison for modeling
results. The Houston metropolitan region comprises a net-
work of 188 gauge stations distributed across the county.
For this study, a subset of 20 stations is selected within the
study domain, ensuring the availability of continuous rain-
fall data specifically during the occurrence of Hurricane Har-
vey over the city of Houston. To facilitate the integration of
these rain gauge measurements as spatially distributed data,
the inverse-distance-squared weighting (IDW) interpolation

method is employed (Chen and Liu, 2012). This technique
allows for the estimation of precipitation values at locations
that do not have direct measurements by considering the spa-
tial proximity and inverse distances between available gauge
stations.

Hurricane Harvey had a significant impact on the Galve-
ston Bay region, manifesting itself as a tropical storm char-
acterized by varying maximum wind speeds. These speeds
ranged from 78.5 to 34.6 km h−1, spanning the entrance of
Galveston to downtown Houston. Given the considerable
length of the Galveston estuary, incorporating wind forc-
ing into the study is essential to comprehensively account
for its hydrodynamic behavior over the surface of the wa-
ter. Hourly wind velocity and direction data were integrated
from specific NOAA stations across the study area. These
stations include Galveston Bay Entrance (8771341), Eagle
Point (8771013), Morgans Point (8770613), and Manchester
(8770777). These meteorological boundary conditions are
introduced into the HR2D model to accurately simulate the
effects of wind within the hydrodynamic system. The La-
grangian reference framework and the drag formulation of
Andreas et al. (2012) are selected. Similar to precipitation
data, the IDW method is also selected for wind spatial inter-
polation along the study area.
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Figure 3. Spatial distribution accumulated precipitation of the seven different precipitation datasets, rain gauge data, and their coverage over
the study area during the Harvey event from 23 August 2017 to 3 September 2017.

Table 2. Spatial and temporal details of the eight precipitation products used in this study.

Precipitation product Spatial resolution Temporal Observations
(approx.) resolution

NLDAS-2 12.5 km× 12.5 km Hourly Do not cover coastal domain

Daymet 1 km× 1 km Daily Do not cover coastal domain

CMORPH 7.77 km× 7.77 km 30 min

IMERG 11.1 km× 11.1 km 30 min

ERA5 31 km× 31 km Hourly

MRMS 1 km× 1 km Hourly

NCEP Stage IV 4.76 km× 4.76 km Hourly

Rain gauges 1 km× 1 km 15 min Do not cover coastal domain∗

∗Rain interpolated between 20 rain gauges within HEC-RAS.

4 Results and discussion

The simulations conducted within the HR2D model involved
fixed Manning coefficients, ensuring that the water sur-
face elevation is solely influenced by the applied precipi-
tation forcing. A model warm-up period is set from 16–
23 August 2017. The results during this interval are exclu-
sively used to calibrate the roughness coefficients in com-
parison to observational data. Comprehensive assessment of
the model’s performance is conducted over the period from

23 August to 3 September 2017, with hourly results. This
temporal scope encompasses the passage of Hurricane Har-
vey and the subsequent recession of the water levels.

Figure 4 presents hourly hydrographs of observed water
surface elevation (WSE) data alongside simulated outputs for
various validation stations (information on validation stations
is in Table S1 in the Supplement). The simulation results
highlight that relying on a single QPE does not lead to consis-
tent responses across the evaluated hydrographs. It becomes
apparent that some stations experience an overestimation of
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water levels, while in other areas within the region, the re-
sponse tends towards underestimation for the same product.
A notable case is observed with the Daymet product, which
has a finer spatial resolution (1 km× 1 km), yet its daily pre-
cipitation values struggle to capture the hourly fluctuations
evident in the observed data. Notably, the hydrograph results
derived from the Daymet product exhibit a step-like behav-
ior on a daily scale in several validation stations, particularly
within the upper reaches of the modeled watersheds.

Among several validation stations, a discernible alignment
between observed values and ensembles generated by dif-
ferent precipitation datasets can be observed. However, it is
crucial to acknowledge that in certain instances, the variabil-
ity among ensembles can exceed 2 m across different prod-
ucts, and certain ensembles fail to accurately replicate the
behavior of observed values. These observations underscore
the challenges involved in accurately reproducing the tempo-
ral and spatial patterns of precipitation, especially in regions
characterized by complex topography and intricate water-
shed characteristics and influenced by structural uncertainty
or parametrization within the HR2D model. Additionally, in-
land initial infiltration processes that might have occurred
during the Hurricane Harvey event could have impacted the
results of water surface elevation at gauges in modeled water-
sheds and were not considered in the hydrodynamic model.
Furthermore, in highly urbanized systems, drainage systems
play a significant role during storm events. Due to the lim-
itations of the employed model, such hydrosystems are not
included in the simulations, adding a layer of uncertainty due
to the model structure and the type of physical processes in-
volved.

4.1 Global Cop-BMA flood elevation and mapping
extent

With the integration of the Cop-BMA approach, it becomes
feasible to enhance the accuracy of flood depth estimates at
each validation station. Nonetheless, the generation of results
while considering their spatial distribution along a large do-
main can be streamlined through clustering techniques.

For this purpose, the K-means method is used to parti-
tion the 30 validation stations along the study area from dif-
ferent sources (USGS, NOAA, and HCFWS) into three pri-
mary clusters, a selection determined by applying the elbow
method to identify the optimal K value. Clustering is imple-
mented by utilizing a flood range metric, defined as the dif-
ference between the peak value and the initial observed value
at the beginning of the Hurricane Harvey evaluation period.
In this method, each validation station is associated with an
area of influence, which is delineated based on topographic
attributes and often coincides with watershed concentration
points. In some instances, engineering expertise is employed
to supplement the delineation process. Figure 5 shows the
spatial configuration of validation stations, their correspond-
ing areas of influence, and the resultant clustering regions

within the study area. This strategic clustering allows for a
more focused and structured analysis, facilitating the extrac-
tion of meaningful insights from the ensemble data generated
by different precipitation products.

A crucial step in implementing Global Cop-BMA is to
fit marginal distributions of observed and simulated data
and determine the copula parameters that define the under-
lying correlation structure of the multivariate distribution.
To fit marginal distributions, an array of probability distri-
butions undergo testing. This comprehensive evaluation in-
cludes a variety of distributions such as Cauchy, Gumbel,
alpha, beta, Gaussian, exponential, gamma, lognormal, gen-
eralized Pareto, generalized extreme, Weibull, and others.
Given the intrinsic nature of the data in this study, which
comprise water surface elevation data in coastal environ-
ments, it is essential to choose statistical distributions that
accommodate both positive and negative values within their
range of support. Parameter estimation for each distribu-
tion is performed using the maximum likelihood estimation
(MLE) technique. To identify the most suitable marginal dis-
tribution, the sum of squared errors (SSEs) is employed to
facilitate the selection process, choosing the distribution that
provides the lower SSE value.

Table 3 provides a summary of the optimal fits of marginal
distributions for various outcomes of the hydrodynamic mod-
eling. The outcomes are categorized by each precipitation
product and grouped according to their respective clusters.
The table also includes the estimated value of SSE between
the empirical CDF and the fitted CDF values.

Upon identifying the optimal marginal distributions, the
subsequent stage of the Global Cop-BMA framework in-
volves the selection of a copula function. This copula func-
tion serves as a vital link, effectively connecting the CDFs
of model simulations with observed data. Among various
copula options, the most pertinent selection is the one that
efficiently captures the inherent dependence structure be-
tween the variables being analyzed. In this study, five dis-
tinct copula functions are evaluated: Gumbel, Clayton, and
Frank from the class of Archimedean copulas and Gaus-
sian and Student’s t from the elliptical group. Copulas are
constructed and evaluated using the marginal distributions
of the observed data and each of the precipitation product
modeling results of water surface elevation per cluster as
c
(
uy,uMk

)
. The fitting and selection process was conducted

using the Akaike information criterion (AIC) and copula
cross-validation criterion (xv-CIC) (Grønneberg and Hjort,
2014) using the copula package implemented in R (Hofert et
al., 2023), where the copula fit with the lowest value of AIC
and higher xv-CIC was selected. Table 4 shows the selected
copulas for the seven QPEs evaluated in HR2D simulations
over the three clusters. Calculated values for AIC and xv-CIC
are presented in Table S2 in the Supplement.

After applying the EM algorithm, it becomes feasible to
compute the hydrograph generated for each station based on
the estimated weights for each cluster. The averaged errors of
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Figure 4. Hydrographs of simulated water surface elevation (WSE) by the HEC-RAS 2D model using eight different precipitation datasets
along with the observed WSE values observed for Hurricane Harvey. Each subplot represents the result at different validation stations where
ID refers to stations in the Harris County Flood Warning System.

Figure 5. Location of validation stations, areas of influence, and clustering regions in the study area. The entire domain is clustered into three
regions of coastal, transitional, and upper areas. Basemap: ESRI World Imagery.
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Table 3. Summary of marginal distribution fitting results per precipitation product and sum of squared errors for the best distribution.

Precipitation Transitional cluster Upper cluster Coastal cluster

product Best SSE Best SSE Best SSE
marginal (m) marginal (m) marginal (m)

CMORPH Pearson type 3 1.236 Beta 2.104 Beta 0.827
Daymet Exponential 2.115 Beta 2.201 Beta 0.886
ERA5 GenPareto 0.919 Beta 2.738 Beta 0.744
IMERG GenPareto 1.415 Beta 2.822 Beta 2.534
NCEP Stage IV Gamma 2.559 Beta 3.274 Gamma 0.775
MRMS Pearson type 3 2.111 Beta 3.073 Pearson type 3 0.730
NLDAS Gamma 1.936 Beta 3.089 Beta 0.768
Observed data Pearson type 3 3.325 Beta 3.853 Gamma 1.457

Table 4. Summary of copula fitting results per cluster for each pre-
cipitation product used in the HEC-RAS 2D model simulations.

Precipitation Transitional Upper Coastal
product cluster cluster cluster

CMORPH Gumbel Gumbel Student’s t
Daymet Gumbel Gumbel Student’s t
ERA5 Gumbel Gaussian Student’s t
IMERG Gumbel Gumbel Student’s t
NCEP Stage IV Gumbel Gumbel Student’s t
MRMS Gumbel Gumbel Student’s t
NLDAS Gumbel Gumbel Student’s t

simulations using different QPEs against observations from
validation stations are shown in Fig. 6, featuring rain gauge
simulation errors and estimations for the Global Cop-BMA
approach per cluster. Notably, this method exhibits better re-
sults in its responses to different precipitation products and
clusters, leading to an enhanced accuracy in water level es-
timations, particularly during peak periods, compared to the
range of modeling water surface elevation outputs from the
analyzed QPE such as Daymet or ERA5, which exhibit larger
averaged errors. This demonstrates Cop-BMA’s capability
to generate results that closely correspond to the observed
values at the validation stations. It is important to highlight
that if all models consistently overestimate or underestimate,
Global Cop-BMA may not lead to significant improvement
in the result (e.g., NOAA 8770613, USGS 08074710, USGS
08072050 in Fig. 4; coastal cluster in Fig. 6). Despite its ad-
vanced weighting mechanism, Global Cop-BMA’s effective-
ness relies on the diversity and accuracy of the model ensem-
ble. Therefore, while it enhances the integration of diverse
model outputs, its capability to improve results may be lim-
ited when all models exhibit similar differences compared to
the observations at certain sections of the hydrograph. The
process of selecting validation stations within each cluster
holds a significant influence over the subsequent calculation
of weights using the BMA methods. The choice of metric or

clustering technique can yield distinct combinations of vali-
dation stations, subsequently leading to varying weight dis-
tributions.

Figure 7 shows the calculated weights for the Global Cop-
BMA method across the three analyzed clusters. The weights
show the contributions of each QPE within different clusters.
The distinct distribution of weights between the three clusters
reflects their unique strategies in handling uncertainties and
variations among different precipitation products.

As depicted in Fig. 7, the distribution of weights per
cluster exhibits greater variability. In the transitional clus-
ter, CMORPH, Daymet, ERA5, and NCEP Stage IV have
weights below 0.1, as these four products generated underes-
timated responses in the hydrographs for most stations within
this cluster. Weights center around the precipitation from
MRMS, IMERG, and NLDAS QPEs. Within the upper clus-
ter, a different weight distribution among the QPEs is ob-
servable, with minimal influence from CMORPH, Daymet,
MRMS, and NLDAS QPEs. A higher difference is observ-
able in the three more dominant QPEs, where NCEP Stage
IV has a weight of 0.663 compared to the 0.144 of IMERG
and 0.174 of ERA5 QPEs. For the coastal cluster, precipita-
tion from the Stage IV QPE also holds the greatest weight
(0.753) compared to the rest of the QPEs, which hold weight
values below 0.1. Within this cluster, minimal discernible
differences exist between QPE water surface elevation results
for the stations, as seen in Fig. 4 (NOAA stations 8771013
and 8770613) and Fig. 6.

The evaluation of model performance in validation sta-
tions is measured through different metrics, including Nash–
Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), Kling–
Gupta efficiency (KGE) (Kling et al., 2012), root mean
square error (RMSE), and mean bias error (MBE). The for-
mulations of these metrics, which collectively provide in-
sights into different facets of model accuracy, are summa-
rized in Table 4. These metrics serve as quantitative mea-
sures to assess the model’s capability in capturing the ob-
served variations in water surface elevation during the Hurri-
cane Harvey event and subsequent recession phase.
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Figure 6. Averaged error time series of validation stations per cluster of simulated water surface elevation (WSE) by the HEC-RAS 2D
model using QPE datasets and Global Cop-BMA approach results (black) against observed WSE during Hurricane Harvey.

Figure 8 provides a comprehensive overview of collec-
tive performance metrics of the HR2D model across the
seven QPE simulations and the rain gauge simulation and
the Global Cop-BMA multi-modeling results for the seven
QPEs evaluated at 30 validation stations over the 11 d sim-
ulation period. In general, the inundation modeling driven
by different products consistently exhibits NSE performance
with mean values ranging between 0.695 and 0.846. In terms
of KGE performance, the interquartile ranges for QPEs dis-
play broader ranges, and the medians for Daymet and ERA5
products fall below 0.8, in contrast to other simulations.

Notably, the Cop-BMA approach exhibits slightly higher
performance metrics compared to the QPE products, NSE
has an average of 0.858, and its total variability is lower
compared to single precipitation products. The KGE metric
has a similar result with an average value of 0.852. The av-
eraged RMSE for Cop-BMA is 0.561 m, which is smaller
than all the single QPEs except for the rain gauge simula-
tion, which is only 3 cm lower. The averaged MBE for single
QPEs ranged between −0.018 and 0.23 m, while the Global
Cop-BMA method results in an averaged value of 0.049 m.
Among individual products, the rain gauge outperforms all
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Figure 7. Summary of calculated weights of the different precipitation products used within the Global Cop-BMA approach. The weight
calculation task is implemented in each cluster separately.

Table 5. Summary of four main performance metrics used in this study for validating predicted time series of WSE compared to observed
values.

Evaluation metric Equation

Root mean square error RMSE=

√∑N
i=1(yi−ŷi)

2

N

Mean bias error MBE= 1
N

N∑
i=1
(ŷi − yi)

Nash–Sutcliffe efficiency NSE= 1−
∑N
i=1(ŷi−yi)

2∑N
i=1(yi−y)

2

Kling–Gupta efficiency KGE= 1−
{[

cov(y,ŷs)
σoσs

− 1
]2
+

[(
σs
σo

)
− 1

]2
+

[(
ys
y

)
− 1

]2
} 1

2

N – total time steps, i – time step, yi – observed data, y – mean of observed data, ŷi – model simulation, ys – mean of model
simulations, σ0 – standard deviation of observed data, σs – standard deviation of model simulations.

spatially distributed precipitation datasets and comes clos-
est to matching the performance of the Cop-BMA method.
This highlights that reanalysis gridded precipitation prod-
ucts may have higher errors when compared to in situ rain
observations and allows Global Cop-BMA to generate QPE
post-processed results with observed precipitation from rain
gauges that are closer to modeling results. This methodol-
ogy could be replicated in areas where measured precipita-
tion is not available and obtains better performance metrics,
accounting for the uncertainties from this input. Another fac-
tor is that our study area encompasses only a few grid cells
of some reanalysis products, making the advantages of using
spatially distributed data less apparent. Overall, the global
Cop-BMA approach offers two advantages over individual
products: first, it improves and diminishes the variability
of performance metrics over different locations, underscor-

ing the robustness of the proposed approach. Second, it ac-
counts for uncertainties associated with individual precipi-
tation products and generates probabilistic flood inundation
maps as a post-processing methodology.

Utilizing the defined areas of influence and the established
clusters, a crucial step for probabilistic flood inundation map-
ping involves the creation of a mask that applies the calcu-
lated weights of each QPE and rain gauge product. The re-
sulting water depth simulations from the HR2D model are
then exported in raster format. Employing raster calculator
functions, the probability of flooding can be quantified us-
ing binary flood raster maps. In these maps, pixels hold a
value of 0 to denote the absence of water and 1 if water is
present. Figure 9 presents the computed flood depth and the
corresponding estimated flood probability using the weights
calculated with the Global Cop-BMA method for the mod-
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Figure 8. Boxplot of four performance metrics for different precipitation products (blue) and Global Cop-BMA results (red). The boxes
represent the distribution of performance metrics across the validation stations.

eled area close to downtown Houston. This approach offers
a probabilistic understanding of the potential flooding sce-
nario, providing decision-makers and stakeholders with valu-
able insights into the likely extent and severity of flooding.

Given the limited availability of satellite images and val-
idation information for the complete extent of flooding, the
challenge lies in generating accurate spatial information for
validation purposes over Houston (Saksena et al., 2020).
While the presented approach offers a robust method for
probabilistic flood inundation mapping, the verification of
spatial extent remains a crucial task. The validation tasks
were primarily focused on assessing the performance of
model outputs at validation stations, as depicted in Fig. 5.
This approach enabled us to calculate the performance met-
rics of WSE over a well-distributed network of stations with
remarkable temporal resolution. Data collected from these
validation stations sufficiently capture the hydrograph behav-
ior within the study domain and enable us to quantify flood
extents in a probabilistic manner using the HR2D model
incorporated with the Cop-BMA method. It is worth not-
ing that while a flood inundation map provided by a single
QPE may potentially exhibit greater accuracy compared to
one generated by Cop-BMA, the primary advantage of using
Cop-BMA lies in its ability to generate probabilistic flood

inundation maps while considering uncertainties associated
with various QPE sources. Additionally, the QPE offering
the highest accuracy is not consistently a single product; it
may vary across different study cases and flood event char-
acteristics. Therefore, employing a BMA-based approach
could be a viable strategy to achieve high accuracy while
accounting for uncertainties. Future research efforts may fo-
cus on improving the validation process in other study areas
through the integration of additional data sources and inno-
vative techniques with other sources to validate the entire
extent of flooding more accurately compared with gauging
stations and high water marks, especially in highly urban en-
vironments with rapid urbanization and constant land cover
changes and also over a large and high-resolution computa-
tional domain (Juan et al., 2020; Schubert et al., 2022).

5 Discussions and conclusions

Dynamic simulation of extreme flood events demands a com-
prehensive approach that accounts for the inherent uncer-
tainties and limitations present in both forcing data and nu-
merical models. When conducting scenario analysis by in-
undation modeling driven by different precipitation forcings
across the domain, it is crucial to acknowledge that defini-
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Figure 9. Results of probabilistic flood inundation map using Global Cop-BMA methodology for the Hurricane Harvey event over the
Houston area. (a) The average of water depth maps generated by the Global Cop-BMA approach. (b) The probabilistic flood extent map
provided by Global Cop-BMA.

tively asserting the superiority of one product over another is
not feasible. This is due to their inherent limitations in terms
of spatial and temporal coverage, as well as the estimated
precipitation values given the algorithms or methodologies
used to generate the QPEs. In this study, comprehensive val-
idation was feasible due to the access to a dense network
of stations over Harris County of in situ precipitation data
(rain gauges) and water surface elevation with high tempo-
ral resolution. However, such data are not widely available in
many regions at a comparable density and temporal resolu-
tion. The substantial variability in the modeling results, both
in terms of flood extent and water depth, is evident, lead-
ing to instances of both overestimation and underestimation
throughout the response hydrograph for all assessments con-
ducted by the different precipitation inputs as forcing to the
HR2D model.

The utilization of Bayesian model averaging tools operates
on the premise that there is not a single best model, specif-
ically a precipitation product that fully captures the behav-

ior of the flooding caused by Hurricane Harvey. Similarly,
there is not a single BMA scheme that universally outper-
forms any other approximation (Parrish et al., 2012). It has
been shown that the assumption of data and conditional PDF
following a Gaussian distribution, as imposed by the BMA
approach in many hydrologic applications, may lead to an
oversimplification of extreme event behavior, affecting the
calculated weights and subsequent flood predictions. In this
regard, it has been suggested that the incorporation of cop-
ula functions (Cop-BMA) can enhance the characterization
of model dependence generated by hydrodynamic water sur-
face elevation data distributions and their relationships with
observed data. Results using the Cop-BMA approach show
better distribution of performance variability metrics over the
validation stations and a reduced averaged error per cluster
compared to single QPEs in the evaluated metrics.

Given the sensitivity of weight distributions to the selec-
tion of validation stations and clustering techniques, future
studies could explore the impact of alternative clustering
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methods or metrics on the overall outcomes of the Global
Cop-BMA approach. Such investigations could provide in-
sights into the robustness of the method and its ability to
adapt to varying configurations of validation data. Under-
standing how different clustering strategies influence weight
distributions will contribute to a comprehensive interpreta-
tion of the uncertainty associated with flood predictions and
further refine the decision-making process in flood risk man-
agement.

One advantage of our proposed framework is its flexibil-
ity, allowing for the use of alternative precipitation products
to enhance model simulations. For instance, this framework
can be implemented for operational forecasting purposes
where the quantitative precipitation estimations (QPEs) uti-
lized in this study can be replaced with quantitative precip-
itation forecasts (QPFs) from numerical weather prediction
models such as High-Resolution Rapid Refresh (HRRR),
the North American Mesoscale Forecast System (NAM), the
Global Forecast System (GFS), and the European Centre for
Medium-Range Weather Forecasts (ECMWF), among oth-
ers. Additionally, the proposed framework can be further im-
proved by accounting for uncertainties related to various fac-
tors such as boundary conditions and digital elevation models
(DEMs), which have already been analyzed separately and
individually. The HEC-RAS model can also incorporate the
impact of infiltration during flood events. This involves test-
ing various infiltration methods, such as deficit and constant,
Soil Conservation Service (SCS) curve number, and Green–
Ampt, across different storm events in rural areas with di-
verse land cover. By considering these additional sources of
uncertainty within the modeling process, it is possible to en-
hance the accuracy and reliability of probabilistic flood inun-
dation mapping, providing a more holistic perspective on ex-
treme event simulations. This approach would yield a deeper
understanding of the complex interactions and non-linearity
of multiple factors contributing to flood events, thereby con-
tributing to more robust flood risk assessments and manage-
ment strategies. The challenge of scarce validation data for
flood extents was addressed by generating probabilistic in-
undation maps. These maps assist in decision-making, es-
pecially in coastal regions where risk assessment is particu-
larly complex. However, further research is needed to val-
idate these spatial estimates. This is especially relevant in
coastal regions where the interplay of various forcings makes
it particularly complex to estimate risk scenarios for spe-
cific return periods. One limitation of the employed numeri-
cal model is its inability to directly incorporate the drainage
networks present in urban areas. While the assumption was
that the drainage system was operating at 100 % capacity, fu-
ture research could explore the influence of these systems on
accurately estimating water depth in urban areas at the city
scale. Additionally, considering infiltration processes in hy-
drodynamic modeling when driven by different precipitation
products can improve flood inundation modeling skill.
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