Articles | Volume 24, issue 7
https://doi.org/10.5194/nhess-24-2577-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-2577-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flood occurrence and impact models for socioeconomic applications over Canada and the United States
Manuel Grenier
Department of Mathematics, Université du Québec à Montréal, Montréal, QC, Canada
Climatic Hazards and Advanced Risk Modelling, Co-operators General Insurance Company, Québec, QC, Canada
Mathieu Boudreault
CORRESPONDING AUTHOR
Department of Mathematics, Université du Québec à Montréal, Montréal, QC, Canada
David A. Carozza
Department of Mathematics, Université du Québec à Montréal, Montréal, QC, Canada
Jérémie Boudreault
Climatic Hazards and Advanced Risk Modelling, Co-operators General Insurance Company, Québec, QC, Canada
Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC, Canada
Sébastien Raymond
Climatic Hazards and Advanced Risk Modelling, Co-operators General Insurance Company, Québec, QC, Canada
Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec, QC, Canada
Related authors
No articles found.
Aude Garin, Francesco S. R. Pausata, Mathieu Boudreault, and Roberto Ingrosso
Weather Clim. Dynam., 6, 1379–1397, https://doi.org/10.5194/wcd-6-1379-2025, https://doi.org/10.5194/wcd-6-1379-2025, 2025
Short summary
Short summary
As tropical cyclones move poleward, they can transform into extratropical cyclones, a process known as extratropical transition. These storms can pose serious risks to human lives and cause damage to infrastructure along the northeastern coasts of the US and Canada. Our study investigates the impacts of climate change on the frequency, intensity, and location of extratropical transitions, revealing that transitioning storms may become more destructive in the future but may not be more frequent.
Gabriel Morin, Mathieu Boudreault, and Jorge Luis García-Franco
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-460, https://doi.org/10.5194/essd-2023-460, 2023
Revised manuscript not accepted
Short summary
Short summary
The rainfall from tropical cyclones often causes severe impacts due to flooding. Research including flood-risk assessment, vulnerability as well as climate science and meteorology all require estimates of rainfall from tropical cyclones to understand the causes, predictability and mechanisms for the disasters caused by these phenomena. This dataset provides key statistics of tropical cyclone rainfall estimated from global datasets from 1979–2023.
Seth Bryant, Heather McGrath, and Mathieu Boudreault
Nat. Hazards Earth Syst. Sci., 22, 1437–1450, https://doi.org/10.5194/nhess-22-1437-2022, https://doi.org/10.5194/nhess-22-1437-2022, 2022
Short summary
Short summary
The advent of new satellite technologies improves our ability to study floods. While the depth of water at flooded buildings is generally the most important variable for flood researchers, extracting this accurately from satellite data is challenging. The software tool presented here accomplishes this, and tests show the tool is more accurate than competing tools. This achievement unlocks more detailed studies of past floods and improves our ability to plan for and mitigate disasters.
Cited articles
Andreadis, K. M., Wing, O. E., Colven, E., Gleason, C. J., Bates, P. D., and Brown, C. M.: Urbanizing the floodplain: global changes of imperviousness in flood-prone areas, Environ. Res. Lett., 17, 104024, https://doi.org/10.1088/1748-9326/ac9197, 2022. a
Bates, P.: Fundamental limits to flood inundation modelling, Nature Water, 1, 566–567, 2023. a
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017. a
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Scientific Data, 5, 1–12, https://doi.org/10.1038/sdata.2018.214, 2018. a
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019a. a
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., van Dijk, A. I. J. M., McVicar, T. R., and Adler, R. F.: MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment, B. Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019b. a
Bernhofen, M. V., Cooper, S., Trigg, M., Mdee, A., Carr, A., Bhave, A., Solano-Correa, Y. T., Pencue-Fierro, E. L., Teferi, E., Haile, A. T., Yusop, Z., Alias, N. E., Sa'adi, Z, Ramzan, M. A. B., Dhanya, C. T., and Shukla, P.: The role of global data sets for riverine flood risk management at national scales, Water Resour. Res., 58, e2021WR031555, https://doi.org/10.1029/2021WR031555, 2022. a
Boehmke, B. and Greenwell, B.: Gradient boosting, Hands-On Machine Learning with R, Chapman and Hall/CRC, 221–246, https://doi.org/10.1201/9780367816377-12, 2019. a
Breiman, L.: Random Forests, Mach. Learn., 45, 832–844, https://doi.org/10.1023/A:1010933404324, 2001. a
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N. E., Herold, M., and Fritz, S.: Copernicus Global Land Cover, Copernicus Global Land Service, https://land.copernicus.eu/en/products/global-dynamic-land-cover (last access: 24 July 2024), 2020. a
Buizza, R., Hollingsworth, A., Lalaurette, F., and Ghelli, A.: Probabilistic Predictions of Precipitation Using the ECMWF Ensemble Prediction System, Weather Forecast., 14, 168–189, https://doi.org/10.1175/1520-0434(1999)014<0168:PPOPUT>2.0.CO;2, 1999. a
Carozza, D. A. and Boudreault, M.: A global flood risk modeling framework built with climate models and machine learning, J. Adv. Model. Earth Sy., 13, e2020MS002221, https://doi.org/10.1029/2020MS002221, 2021. a, b
Chevuturi, A., Tanguy, M., Facer-Childs, K., Martínez-de la Torre, A., Sarkar, S., Thober, S., Samaniego, L., Rakovec, O., Kelbling, M., Sutanudjaja, E. H., Wanders, N., and Blyth, E.: Improving global hydrological simulations through bias-correction and multi-model blending, J. Hydrol., 621, 129607, https://doi.org/10.1016/j.jhydrol.2023.129607, 2023. a
Davenport, F. V., Burke, M., and Diffenbaugh, N. S.: Contribution of historical precipitation change to US flood damages, P. Natl. Acad. Sci. USA, 118, e2017524118, https://doi.org/10.1073/pnas.2017524118, 2021. a, b
de Bruijn, K. M., Diermanse, F. L. M., and Beckers, J. V. L.: An advanced method for flood risk analysis in river deltas, applied to societal flood fatality risk in the Netherlands, Natural Hazards and Earth System Sciences, 14, 2767–2781, https://doi.org/10.5194/nhess-14-2767-2014, 2014. a
Dottori, F., Alfieri, L., Salamon, P., Bianchi, A., Feyen, L., and Hirpa, F.: Flood hazard map of the World – 100-year return period, European Commission, Joint Research Centre (JRC) [data set], http://data.europa.eu/89h/jrc-floods-floodmapgl_rp100y-tif (last accessL: 24 July 2024), 2016. a
Dottori, F., Szewczyk, W., Ciscar, J.-C., Zhao, F., Alfieri, L., Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, K., Betts, R. A., and Feyen, L.: Increased human and economic losses from river flooding with anthropogenic warming, Nat. Clim. Change, 8, 781–786, https://doi.org/10.1038/s41558-018-0257-z, 2018. a
Falter, D., Dung, N., Vorogushyn, S., Schröter, K., Hundecha, Y., Kreibich, H., Apel, H., Theisselmann, F., and Merz, B.: Continuous, large-scale simulation model for flood risk assessments: proof-of-concept, J. Flood Risk Manag., 9, 3–21, https://doi.org/10.1111/jfr3.12105, 2016. a
Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine, Ann. Statist., 29, 1189–1232, https://doi.org/10.1214/aos/1013203451, 1999. a
Golnaraghi, M., Thistlethwaite, J., Henstra, D., and Stewart, C.: Flood Risk Management in Canada: Building flood resilience in a changing climate, https://www.genevaassociation.org/publication/climate-change-and-environment/flood-risk-management-canada (last access: 18 July 2024), 2020. a
Government of Canada: Adapting to Rising Flood Risk: An Analysis of Insurance Solutions for Canada, Tech. rep., Task Force on Flood Insurance and Relocation, https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/dptng-rsng-fld-rsk-2022/dptng-rsng-fld-rsk-2022-en.pdf (last access: 18 July 2024), 2022. a
Granados Franco, E., Kuritzky, M., Lukacs, R., and Zahidi, S.: The Global Risks Report 2022, https://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2022.pdf (last access: 18 July 2024), 2022. a
Greenwell, B., Boehmke, B., Cunningham, J., Developers, G., and Greenwell, M. B.: Package “gbm”, R package version 2, https://cran.r-project.org/web/packages/gbm/gbm.pdf (last access: 18 July 2024), 2019. a
Grenier, M., Boudreault, M., Carozza, D. A., Boudreault, J., and Raymond, S.: Flood Occurrence and Impact Models for Socioeconomic Applications over Canada and the United States (Supplementary Material), Zenodo [data set], https://doi.org/10.5281/zenodo.10201817, 2023. a, b
Guido, B. I., Popescu, I., Samadi, V., and Bhattacharya, B.: An integrated modeling approach to evaluate the impacts of nature-based solutions of flood mitigation across a small watershed in the southeast United States, Nat. Hazards Earth Syst. Sci., 23, 2663–2681, https://doi.org/10.5194/nhess-23-2663-2023, 2023. a
Hastie, T. and Tibshirani, R.: Generalized Additive Models, Chapman & Hall/CRC Monographs on Statistics & Applied Probability, Taylor & Francis, ISBN 9780412343902, 1990. a
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh, M. G., and Gonzalez, M. R.: SoilGrids1km – Global Soil Information Based on Automated Mapping., PLoS ONE, 9, 1–17, https://doi.org/10.1371/journal.pone.0105992, 2014. a
Ho, T. K.: The random subspace method for constructing decision forests, IEEE T. Pattern Anal., 20, 832–844, https://doi.org/10.1109/34.709601, 1998. a
Iglesias, V., Braswell, A. E., Rossi, M. W., Joseph, M. B., McShane, C., Cattau, M., Koontz, M. J., McGlinchy, J., Nagy, R. C., Balch, J., Leyk, S., and Travis, W. R.: Risky development: Increasing exposure to natural hazards in the United States, Earth's Future, 9, e2020EF001795, https://doi.org/10.1029/2020EF001795, 2021. a
Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J. C. J. H., Mechler, R., Botzen, W. J. W., Bouwer, L. M., Pflug, G., Rojas, R., and Ward, P. J.: Increasing stress on disaster-risk finance due to large floods, Nat. Clim. Change, 4, 264–268, https://doi.org/10.1038/nclimate2124, 2014. a
Lamb, R., Keef, C., Tawn, J., Laeger, S., Meadowcroft, I., Surendran, S., Dunning, P., and Batstone, C.: A new method to assess the risk of local and widespread flooding on rivers and coasts, J. Flood Risk Manag., 3, 323–336, https://doi.org/10.1111/j.1753-318X.2010.01081.x, 2010. a
Lehner, B. and Grill, G.: Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems, Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013. a
Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From Spaceborne Elevation Data, Eos T. Am. Geophys. Un., 89, 93–94, https://doi.org/10.1029/2008EO100001, 2008. a
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011. a
Lindersson, S., Brandimarte, L., Mård, J., and Di Baldassarre, G.: Global riverine flood risk – how do hydrogeomorphic floodplain maps compare to flood hazard maps?, Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021, 2021. a
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., and Thieme, M.: Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution, Scientific Data, 6, 1–15, https://doi.org/10.1038/s41597-019-0300-6, 2019. a
Liu, T., Shi, P., and Fang, J.: Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019), Nat. Hazards, 111, 2601–2625, 2022. a
Mason, L., Baxter, J., Bartlett, P., and Frean, M.: Boosting Algorithms as Gradient Descent, in: Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS'99, MIT Press, 512–518, https://proceedings.neurips.cc/paper_files/paper/1999/file/96a93ba89a5b5c6c226e49b88973f46e-Paper.pdf (last access: 24 July 2024), 1999. a
Mazzoleni, M., Mård, J., Rusca, M., Odongo, V., Lindersson, S., and Di Baldassarre, G.: Floodplains in the Anthropocene: A global analysis of the interplay between human population, built environment, and flood severity, Water Resour. Res., 57, e2020WR027744, https://doi.org/10.1029/2020WR027744, 2021. a
Metin, A. D., Dung, N. V., Schröter, K., Vorogushyn, S., Guse, B., Kreibich, H., and Merz, B.: The role of spatial dependence for large-scale flood risk estimation, Nat. Hazards Earth Syst. Sci., 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020, 2020. a
Nordhaus, W.: Geography and macroeconomics: New data and new findings, P. Natl. Acad. Sci. USA, 103, 3510–3517, https://doi.org/10.1073/pnas.0509842103, 2006. a
Nordhaus, W. and Chen, X.: Global Gridded Geographically Based Economic Data (G-Econ), Version 4, NASA Socioeconomic Data and Applications Center (SEDAC) [data set], https://doi.org/10.7927/H42V2D1C, 2016. a
Quinn, N., Bates, P., Neal, J., Smith, A., Wing, O., Sampson, C., Smith, J., and Heffernan, J.: The Spatial Dependence of Flood Hazard and Risk in the United States, Water Resour. Res., 55, 1–32, https://doi.org/10.1029/2018WR024205, 2019. a
Rentschler, J., Salhab, M., and Jafino, B. A.: Flood exposure and poverty in 188 countries, Nat. Commun., 13, 1–11, 2022. a
Robinson, N., Regetz, J., and Guralnick, R. P.: EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90 m digital elevation model from fused ASTER and SRTM data, ISPRS J. Photogramm., 87, 57–67, https://doi.org/10.1016/j.isprsjprs.2013.11.002, 2014. a
Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J., Bodner, G., Borga, M., Chaplot, V., Gallart, F., Glatzel, G., Hall, J., Holden, J., Holko, L., Horn, R., Kiss, A., Kohnova, S., Leitinger, G., Lennartz, B., Parajka, J., Perdigao, R., Peth, S., Plavcova, L., Quinton, J. N., Robinson, Mé, Salinas, J. L., Santoro, A., Szolgay, J., Tron, S., van den Akker, J. J. H., Viglione, A., and Bloschl, G.: Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research, Water Resour. Ress., 53, 5209–5219, 2017. a
Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., and Freer, J. E.: A high-resolution global flood hazard model, Water Resour. Res., 51, 7358–7381, https://doi.org/10.1002/2015WR016954, 2015. a
Schumann, G., Giustarini, L., Tarpanelli, A., Jarihani, B., and Martinis, S.: Flood Modeling and Prediction Using Earth Observation Data, Surv. Geophys., 44, 1–26, 2022. a
Stein, L., Pianosi, F., and Woods, R.: Event-based classification for global study of river flood generating processes, Hydrol. Process., 34, 1514–1529, 2020. a
Thornton, M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S., and Wilson, B. E.: Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 4, ORNL DAAC [data set], https://doi.org/10.3334/ORNLDAAC/1840, 2020. a
Thornton, P. E., Running, S. W., and White, M. A.: Generating surfaces of daily meteorological variables over large regions of complex terrain, J. Hydrol., 190, 214–251, https://doi.org/10.1016/S0022-1694(96)03128-9, 1997. a
Thornton, P. E., Shrestha, R., Thornton, M., Kao, S.-C., Wei, Y., and Wilson, B. E.: Gridded daily weather data for North America with comprehensive uncertainty quantification, Scientific Data, 8, 1–17, https://doi.org/10.1038/s41597-021-00973-0, 2021. a
UNDRR: Global Assessment Report on Disaster Risk Reduction 2022: Our World at Risk: Transforming Governance for a Resilient Future. Summary for Policymakers, Tech. rep., United Nations Office for Disaster Risk Reduction, https://www.undrr.org/media/79594/download (last access: 18 July 2024), 2022. a, b
USGS: Explanations for the National Water Conditions, https://water.usgs.gov/nwc/explain_data.html (last access: 3 February 2023), 2016. a
Vestby, J., Schutte, S., Tollefsen, A. F., and Buhaug, H.: Societal determinants of flood-induced displacement, P. Natl. Acad. Sci. USA, 121, e2206188120, https://doi.org/10.1073/pnas.2206188120, 2024. a, b, c
Ward, P. J., Jongman, B., Salamon, P., Simpson, A., Bates, P., De Groeve, T., Muis, S., de Perez, E. C., Rudari, R., Trigg, M. A., and Winsemius, H. C.: Usefulness and limitations of global flood risk models, Nat. Clim. Change, 5, 712–715, https://doi.org/10.1038/nclimate2742, 2015. a
Ward, P. J., Winsemius, H. C., Kuzma, S., Bierkens, M. F., Bouwman, A., De Moel, H., Loaiza, A. D., Eilander, D., Englhardt, J., Erkens, G., Gebremedhin, E. T., Iceland, C., Kooi, H., Ligtvoet, W., Muis, S., Scussolini, P., Sutanudjaja, E. H., Van Beek, R., Van Bemmel, B., Van Huijstee, J., Van Rijn, F., Van Wesenbeeck, B., Vatvani, D., Verlaan, M., Tiggeloven, T., and Luo, T.: Aqueduct Floods Methodology, Technical Note, https://www.wri.org/research/aqueduct-floods-methodology (last access: 18 July 2024), 2020. a
Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J., and Bouwman, A.: A framework for global river flood risk assessments, Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, 2013. a
Wright, M. N., Wager, S., and Probst, P.: Ranger: A fast implementation of random forests, R package version 0.12, 1, https://cran.r-project.org/web/packages/ranger/ranger.pdf (last access: 24 July 2024), 2020. a
Wyncoll, D. and Gouldby, B.: Integrating a multivariate extreme value method within a system flood risk analysis model, J. Flood Risk Manag., 8, 145–160, https://doi.org/10.1111/jfr3.12069, 2015. a
Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based description of floodplain inundation dynamics in a global river routing model, Water Resour. Res., 47, W04501, https://doi.org/10.1029/2010WR009726, 2011. a
Zhang, J., Liu, K., and Wang, M.: Flood detection using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage and extreme precipitation data, Earth Syst. Sci. Data, 15, 521–540, https://doi.org/10.5194/essd-15-521-2023, 2023. a
Short summary
Modelling floods at the street level for large countries like Canada and the United States is difficult and very costly. However, many applications do not necessarily require that level of detail. As a result, we present a flood modelling framework built with artificial intelligence for socioeconomic studies like trend and scenarios analyses. We find for example that an increase of 10 % in average precipitation yields an increase in displaced population of 18 % in Canada and 14 % in the US.
Modelling floods at the street level for large countries like Canada and the United States is...
Altmetrics
Final-revised paper
Preprint