Articles | Volume 24, issue 7
https://doi.org/10.5194/nhess-24-2577-2024
https://doi.org/10.5194/nhess-24-2577-2024
Research article
 | 
26 Jul 2024
Research article |  | 26 Jul 2024

Flood occurrence and impact models for socioeconomic applications over Canada and the United States

Manuel Grenier, Mathieu Boudreault, David A. Carozza, Jérémie Boudreault, and Sébastien Raymond

Related authors

A Global Multi-Source Tropical Cyclone Precipitation (MSTCP) Dataset
Gabriel Morin, Mathieu Boudreault, and Jorge Luis García-Franco
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-460,https://doi.org/10.5194/essd-2023-460, 2023
Revised manuscript not accepted
Short summary
Gridded flood depth estimates from satellite-derived inundations
Seth Bryant, Heather McGrath, and Mathieu Boudreault
Nat. Hazards Earth Syst. Sci., 22, 1437–1450, https://doi.org/10.5194/nhess-22-1437-2022,https://doi.org/10.5194/nhess-22-1437-2022, 2022
Short summary
A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0
Derek P. Tittensor, Tyler D. Eddy, Heike K. Lotze, Eric D. Galbraith, William Cheung, Manuel Barange, Julia L. Blanchard, Laurent Bopp, Andrea Bryndum-Buchholz, Matthias Büchner, Catherine Bulman, David A. Carozza, Villy Christensen, Marta Coll, John P. Dunne, Jose A. Fernandes, Elizabeth A. Fulton, Alistair J. Hobday, Veronika Huber, Simon Jennings, Miranda Jones, Patrick Lehodey, Jason S. Link, Steve Mackinson, Olivier Maury, Susa Niiranen, Ricardo Oliveros-Ramos, Tilla Roy, Jacob Schewe, Yunne-Jai Shin, Tiago Silva, Charles A. Stock, Jeroen Steenbeek, Philip J. Underwood, Jan Volkholz, James R. Watson, and Nicola D. Walker
Geosci. Model Dev., 11, 1421–1442, https://doi.org/10.5194/gmd-11-1421-2018,https://doi.org/10.5194/gmd-11-1421-2018, 2018
Short summary
The ecological module of BOATS-1.0: a bioenergetically constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry
David Anthony Carozza, Daniele Bianchi, and Eric Douglas Galbraith
Geosci. Model Dev., 9, 1545–1565, https://doi.org/10.5194/gmd-9-1545-2016,https://doi.org/10.5194/gmd-9-1545-2016, 2016
Short summary

Related subject area

Hydrological Hazards
Model-based assessment of climate change impact on inland flood risk at the German North Sea coast caused by compounding storm tide and precipitation events
Helge Bormann, Jenny Kebschull, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 2559–2576, https://doi.org/10.5194/nhess-24-2559-2024,https://doi.org/10.5194/nhess-24-2559-2024, 2024
Short summary
An improved dynamic bidirectional coupled hydrologic–hydrodynamic model for efficient flood inundation prediction
Yanxia Shen, Zhenduo Zhu, Qi Zhou, and Chunbo Jiang
Nat. Hazards Earth Syst. Sci., 24, 2315–2330, https://doi.org/10.5194/nhess-24-2315-2024,https://doi.org/10.5194/nhess-24-2315-2024, 2024
Short summary
Quantifying hazard resilience by modeling infrastructure recovery as a resource-constrained project scheduling problem
Taylor Glen Johnson, Jorge Leandro, and Divine Kwaku Ahadzie
Nat. Hazards Earth Syst. Sci., 24, 2285–2302, https://doi.org/10.5194/nhess-24-2285-2024,https://doi.org/10.5194/nhess-24-2285-2024, 2024
Short summary
Hydrometeorological controls of and social response to the 22 October 2019 catastrophic flash flood in Catalonia, north-eastern Spain
Arnau Amengual, Romu Romero, María Carmen Llasat, Alejandro Hermoso, and Montserrat Llasat-Botija
Nat. Hazards Earth Syst. Sci., 24, 2215–2242, https://doi.org/10.5194/nhess-24-2215-2024,https://doi.org/10.5194/nhess-24-2215-2024, 2024
Short summary
A downward-counterfactual analysis of flash floods in Germany
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 2147–2164, https://doi.org/10.5194/nhess-24-2147-2024,https://doi.org/10.5194/nhess-24-2147-2024, 2024
Short summary

Cited articles

Andreadis, K. M., Wing, O. E., Colven, E., Gleason, C. J., Bates, P. D., and Brown, C. M.: Urbanizing the floodplain: global changes of imperviousness in flood-prone areas, Environ. Res. Lett., 17, 104024, https://doi.org/10.1088/1748-9326/ac9197, 2022. a
Bates, P.: Fundamental limits to flood inundation modelling, Nature Water, 1, 566–567, 2023. a
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017. a
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Scientific Data, 5, 1–12, https://doi.org/10.1038/sdata.2018.214, 2018. a
Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., van Dijk, A. I. J. M., Huffman, G. J., Adler, R. F., and Wood, E. F.: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, 2019a. a
Download
Short summary
Modelling floods at the street level for large countries like Canada and the United States is difficult and very costly. However, many applications do not necessarily require that level of detail. As a result, we present a flood modelling framework built with artificial intelligence for socioeconomic studies like trend and scenarios analyses. We find for example that an increase of 10 % in average precipitation yields an increase in displaced population of 18 % in Canada and 14 % in the US.
Altmetrics
Final-revised paper
Preprint