Articles | Volume 24, issue 5
https://doi.org/10.5194/nhess-24-1681-2024
https://doi.org/10.5194/nhess-24-1681-2024
Research article
 | 
14 May 2024
Research article |  | 14 May 2024

The value of multi-source data for improved flood damage modelling with explicit input data uncertainty treatment: INSYDE 2.0

Mario Di Bacco, Daniela Molinari, and Anna Rita Scorzini

Related authors

Econometric Modelling for Estimating Direct Flood Damage to Firms: A Local-Scale Approach Using Post-Event Records in Italy
Marta Ballocci, Daniela Molinari, Giovanni Marin, Marta Galliani, Alessio Domeneghetti, Giovanni Menduni, Simone Sterlacchini, and Francesco Ballio
EGUsphere, https://doi.org/10.5194/egusphere-2024-3017,https://doi.org/10.5194/egusphere-2024-3017, 2024
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Preface: Advances in pluvial and fluvial flood forecasting and assessment and flood risk management
Cristina Prieto, Dhruvesh Patel, Dawei Han, Benjamin Dewals, Michaela Bray, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 24, 3381–3386, https://doi.org/10.5194/nhess-24-3381-2024,https://doi.org/10.5194/nhess-24-3381-2024, 2024
Qualitative flood risk assessment for road and railway infrastructures: the experience of the MOVIDA project
Natasha Petruccelli, Luca Mantecchini, Alice Gallazzi, Daniela Molinari, Mohammed Hammouti, Marco Zazzeri, Simone Sterlacchini, Francesco Ballio, Armando Brath, and Alessio Domeneghetti
Proc. IAHS, 385, 407–413, https://doi.org/10.5194/piahs-385-407-2024,https://doi.org/10.5194/piahs-385-407-2024, 2024
Short summary
A conceptual model for the estimation of flood damage to power grids
Panagiotis Asaridis and Daniela Molinari
Adv. Geosci., 61, 1–21, https://doi.org/10.5194/adgeo-61-1-2023,https://doi.org/10.5194/adgeo-61-1-2023, 2023
Short summary
Invited perspectives: When research meets practice: challenges, opportunities, and suggestions from the implementation of the Floods Directive in the largest Italian river basin
Tommaso Simonelli, Laura Zoppi, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 22, 1819–1823, https://doi.org/10.5194/nhess-22-1819-2022,https://doi.org/10.5194/nhess-22-1819-2022, 2022
Short summary

Related subject area

Hydrological Hazards
Post-wildfire sediment source and transport modeling, empirical observations, and applied mitigation: an Arizona, USA, case study
Edward R. Schenk, Alex Wood, Allen Haden, Gabriel Baca, Jake Fleishman, and Joe Loverich
Nat. Hazards Earth Syst. Sci., 25, 727–745, https://doi.org/10.5194/nhess-25-727-2025,https://doi.org/10.5194/nhess-25-727-2025, 2025
Short summary
Causes of the exceptionally high number of fatalities in the Ahr valley, Germany, during the 2021 flood
Belinda Rhein and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 581–589, https://doi.org/10.5194/nhess-25-581-2025,https://doi.org/10.5194/nhess-25-581-2025, 2025
Short summary
Large-scale flood risk assessment in data-scarce areas: an application to Central Asia
Paola Ceresa, Gianbattista Bussi, Simona Denaro, Gabriele Coccia, Paolo Bazzurro, Mario Martina, Ettore Fagà, Carlos Avelar, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Zhanar Raimbekova, Kanatbek Abdrakhmatov, Sitora Mirzokhonova, Vakhitkhan Ismailov, and Vladimir Belikov
Nat. Hazards Earth Syst. Sci., 25, 403–428, https://doi.org/10.5194/nhess-25-403-2025,https://doi.org/10.5194/nhess-25-403-2025, 2025
Short summary
Multi-scale hydraulic graph neural networks for flood modelling
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025,https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
The role of antecedent conditions in translating precipitation events into extreme floods at the catchment scale and in a large-basin context
Maria Staudinger, Martina Kauzlaric, Alexandre Mas, Guillaume Evin, Benoit Hingray, and Daniel Viviroli
Nat. Hazards Earth Syst. Sci., 25, 247–265, https://doi.org/10.5194/nhess-25-247-2025,https://doi.org/10.5194/nhess-25-247-2025, 2025
Short summary

Cited articles

Albano, R., Sole, A., Adamowski, J., Perrone, A., and Inam, A.: Using FloodRisk GIS freeware for uncertainty analysis of direct economic flood damages in Italy, Int. J. Appl. Earth. Obs., 73, 220–229, https://doi.org/10.1016/j.jag.2018.06.019, 2018. 
Amadio, M., Scorzini, A. R., Carisi, F., Essenfelder, A. H., Domeneghetti, A., Mysiak, J., and Castellarin, A.: Testing empirical and synthetic flood damage models: the case of Italy, Nat. Hazards Earth Syst. Sci., 19, 661–678, https://doi.org/10.5194/nhess-19-661-2019, 2019. 
Apel, H., Merz, B., and Thieken, A. H.: Quantification of uncertainties in flood risk assessments, Int. J. River Basin Manag., 6, 149–162, https://doi.org/10.1080/15715124.2008.9635344, 2008. 
Autorità di Bacino del Fiume Po: Aggiornamento e revisione del Piano di Gestione del Rischio di Alluvione – II ciclo (2021–2027), Final report, https://pianoalluvioni.adbpo.it/piano-gestione-rischio-alluvioni-2021/ (last access: 9 October 2023), 2022. 
Bhuyan, K., Van Westen, C., Wang, J., and Meena, S. R.: Mapping and characterising buildings for flood exposure analysis using open-source data and artificial intelligence, Nat. Hazards, 119, 805–835, https://doi.org/10.1007/s11069-022-05612-4, 2023. 
Download
Short summary
INSYDE 2.0 is a tool for modelling flood damage to residential buildings. By incorporating ultra-detailed survey and desk-based data, it improves the reliability and informativeness of damage assessments while addressing input data uncertainties.
Share
Altmetrics
Final-revised paper
Preprint