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Abstract. Accurate flood damage modelling is essential to
estimate the potential impact of floods and to develop ef-
fective mitigation strategies. However, flood damage models
rely on diverse sources of hazard, exposure and vulnerabil-
ity data, which are often incomplete, inconsistent or totally
missing. These issues with data quality or availability intro-
duce uncertainties into the modelling process and affect the
final risk estimations. In this study, we present INSYDE 2.0,
a flood damage modelling tool that integrates detailed survey
and desk-based data for enhanced reliability and informative-
ness of flood damage predictions, including an explicit rep-
resentation of the effect of uncertainties arising from incom-
plete knowledge of the variables characterising the system
under investigation.

1 Introduction

In recent years, a policy shift from mere hazard control to
more holistic flood risk management has steadily increased
the demand for reliable quantitative flood risk assessment
methodologies (Sayers et al., 2002; Merz et al., 2010). How-
ever, despite the significant advancements achieved in flood
damage modelling over the past decade, the application of
developed tools in practical decision-making for flood risk
management has been limited, mainly because of concerns
about modelling uncertainties affecting the results of loss es-

timations (Morgan et al., 1990; Apel et al., 2008; Wagenaar
et al., 2016; Winter et al., 2018; Marvi, 2020).

Uncertainty, arising from incomplete knowledge of the
system under investigation in terms of input data and/or
model assumptions, could be reduced by enhancing model
complexity (i.e. better representation of modelled mecha-
nisms) and/or using high-quality input data (Wagenaar et al.,
2016). In this regard, the recent literature has demonstrated
that multi-variable flood damage models not only outperform
simpler (stage—damage) functions (Schroter et al., 2014; Wa-
genaar et al., 2017; Amadio et al., 2019), but also provide
ancillary advantages. These cover the ability to identify key
variables influencing damage (useful, for instance, in guid-
ing interventions for improving building resilience) and, for
probabilistic models, the possibility of including the explicit
treatment of uncertainty in the modelling framework, thus
supporting comprehensive and informative damage assess-
ments (Morgan et al., 1990; Rozer et al., 2019; Zarekarizi et
al., 2020). Nevertheless, practical constraints, such as bud-
get, operational timelines and computational efforts, as well
as issues regarding data quality and availability, often hinder
the actual implementation of such models at a large (e.g. river
basin) scale, with the consequent risk of providing decision-
makers with a limited perspective on potential damage sce-
narios (Pappenberger and Beven, 2006; Merz et al., 2008;
Wagenaar et al., 2016; Albano et al., 2018; Zarekarizi et al.,
2020; Razavi et al., 2021).

With specific reference to data, for the case of residential
buildings, the literature has pointed out that several features
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characterising both the event (e.g. water depth, flow velocity,
inundation duration, debris and contamination load) and the
exposed object (e.g. material and construction type, age and
finishing quality of the building, in addition to its geomet-
rical parameters and more micro-scale characteristics) affect
the resulting flood losses (Penning-Rowsell et al., 2005; Dot-
tori et al., 2016; Wagenaar et al., 2016; Mohor et al., 2020;
Nofal et al., 2020; Malgwi et al., 2021; Paulik et al., 2022).
Hence, to ensure accurate flood damage assessments, based
on a thorough characterisation of the building stock, it is cru-
cial to count on comprehensive vulnerability and exposure
data, including relevant ancillary information. Unfortunately,
the availability and reliability of such data are often limited,
especially for large-scale applications (Papathoma-Kohle et
al., 2007; Schroter et al., 2018; Bhuyan et al., 2023; Velez et
al., 2022).

To tackle this issue, a few existing tools have been de-
signed to adapt to actual available knowledge of hazard and
building features: an example is represented by INSYDE
(Dottori et al., 2016), which is a synthetic (i.e. based on
“what-if” analysis), multi-variable flood damage model for
residential buildings, capable of handling missing input data
by assigning them specific default values typical of the coun-
try/region of implementation (Dottori et al., 2016; Molinari
and Scorzini, 2017; Scorzini et al., 2022). However, relying
on this approach could lead to biased results, since missing
and known inputs are treated as equivalent when the former
are set to their corresponding built-in defaults. This challenge
could be mitigated by considering probabilistic distributions
of unknown input data within a Monte Carlo approach, which
still necessitates representative empirical distributions for the
relevant input variables in order to account for the local na-
ture of flood damage mechanisms and to ensure meaningful
and reliable uncertainty bounds (Cammerer et al., 2013; Wa-
genaar et al., 2018; Sairam et al., 2019; Scorzini et al., 2021,
2022). However, the commonly poor availability of specific
databases (particularly concerning very detailed building at-
tributes, such as the elevation of the first floor from ground
level or the perimeter of internal walls), coupled with the
time-consuming operation of conducting surveys, currently
constitutes the main obstacle to thorough analyses of mod-
els’ sensitivities to uncertainties stemming from input data.

The divergent needs of balancing modelling costs and in-
formative results (Di Bacco et al., 2023; Sieg et al., 2023)
then pose two questions concerning the applicability of so-
phisticated and data-intensive models in flood damage as-
sessments: (i) how can multi-source data be used to provide
an added value to advanced damage modelling tools in terms
of output quality and usefulness? (ii) What are the essential
variables that play a key role in constraining the uncertainty
bounds, making them worthy of investment in data collec-
tion?

The present paper aims at answering these questions by
leveraging the updating of the INSYDE model towards a use
with a full treatment of input data uncertainty, involving the
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exploitation of detailed flood hazard and building invento-
ries, here specifically developed for and/or consulted with
reference to the Po River District (northern Italy, Fig. S1 in
the Supplement) but with the potential for replication in any
other contexts.

2 Materials and methods
2.1 From INSYDE to INSYDE 2.0

INSYDE is a synthetic, micro-scale, multi-variable flood
damage model for the residential sector, released as an open-
source R script, originally developed and validated for Italy
but also extended to Belgium (Dottori et al., 2016; Molinari
and Scorzini, 2017; Scorzini et al., 2022). In INSYDE, the
calculation of direct economic damage at the building scale
relies on explicit, physically based mathematical equations
describing flood damage mechanisms for each building com-
ponent (and sub-components), as a function of more than 20
variables, including flood event (i.e. water depth, flow ve-
locity, inundation duration, sediment and pollution load) and
building characteristics (i.e. geometric and qualitative fea-
tures — footprint area; internal and external perimeter; build-
ing material, type and quality; etc.), as well as prices for the
reparation or replacement of damaged items. For some build-
ing components, the damage mechanisms affected by greater
uncertainties are modelled probabilistically by accounting
for the probability of damage occurrence as a function of cer-
tain hazard intensity measures.

As stated in the Introduction, in the case of missing in-
formation, the original model proposed deterministic default
values for each input variable, calibrated based on expert
judgement and/or based on the analysis of large-scale lo-
cal databases (Dottori et al., 2016). Some of them, such as
extensive variables (e.g. internal area, external and internal
perimeter of the building), were defined by default func-
tional relationships calibrated on a typical configuration of a
100 m? Italian house. According to the authors’ experience,
the implementation of INSYDE can lead to biased results
(due to the pairwise consideration of known and unknown in-
put data) or inaccurate estimations, especially when applied
to large buildings, like apartment blocks, implying a scalabil-
ity issue (Galliani et al., 2020). For this reason, in INSYDE
2.0, following the strategy proposed for the Belgian version
of the model (Scorzini et al., 2022), the housing unit (HU)
has been chosen as the minimum calculation item for mul-
tifamily buildings (i.e. apartment buildings). In addition, to
enhance and ease the model’s usability and to mitigate the
impact of input data quality issues on the accuracy of damage
assessment, an algorithm has been implemented to automat-
ically split a building’s footprint area into a suitable number
of HUs if the value introduced by the user significantly ex-
ceeds a representative building size.
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Considering the sensitivity of damage estimates to indi-
vidual input variables (albeit in varying degrees, not known
a priori), it is crucial to conduct a comprehensive analysis
of the effects of missing information on model outcomes, by
also accounting for both mutual and non-linear relationships
among the variables. Such an approach can provide practi-
cal insights for finding an efficient trade-off between model
accuracy and efforts for input data retrieval (Di Bacco et al.,
2023); at the same time, a shift from the use of fixed de-
terministic values to suitable distributions of input variables
could enhance users’ awareness of damage estimation uncer-
tainty.

By employing a stepwise procedure, the present study then
aims to address the aforementioned issues by proposing an
updated version of INSYDE that will also enable the explo-
ration of the two research questions outlined in the Introduc-
tion. In detail, the methodological approach consists of the
main following phases (Fig. 1):

— data collection (Sect. 2.2) to acquire relevant informa-
tion on hazard and building features required by IN-
SYDE;

— development of INSYDE 2.0, incorporating a module
for handling missing inputs in a probabilistic framework
and involving the generation of synthetic datasets based
on collected empirical data combined with expert-based
knowledge concerning relationships between hazard
variables (Sect. 2.3);

— assessment of the model’s sensitivities to missing input
data, including analysis of feature importance using the
developed synthetic datasets, as well as the evaluation
of the impact of individual or combined missing inputs
on uncertainty in damage estimation (conducted on syn-
thetic building portfolios and on observed datasets for
two recent flood events in Italy (Sect. 2.4)).

2.2 Data collection

Due to the local nature of damage models, the initial phase
focuses on establishing the foundation for a model capable of
accurately capturing the hazard and building-specific details
of the region of implementation, here represented by the Po
River District as an exemplificatory case. To achieve this, a
“survey dataset” has been developed as a basis for the gener-
ation of empirical distribution functions (EDFs) for the vari-
ables at stake, which serve for sampling representative fea-
tures of the populations of interest in case of unknown inputs
encountered in the application of INSYDE. Virtual surveys
(Scorzini et al., 2022), offering in-depth insights into build-
ing vulnerability and supporting the establishment of func-
tional relationships for different building features (e.g. inter-
nal and external perimeter as a function of footprint area),
can be employed as an additional means to conventional ap-
proaches based on statistical data and building inventories.
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In the specific case of the Po River, while traditional datasets
(derived from the Italian National Institute of Statistics (IS-
TAT) and OpenStreetMap (OSM)) provide extensive cover-
age of the whole district for the entire building stock, virtual
surveys focus on a smaller sample due to limited real-estate
listings with complete information and the time-demanding
micro-scale analysis of building details, photographs and
floor layouts. With this virtual approach, 119 buildings were
assessed, compiling comprehensive information on building
material, systems and quality, as well as the position and di-
mensions of building components, among other relevant de-
tails (Huayra Mena, 2022). The EDFs describing typical in-
undation phenomena in terms of water depth and flow ve-
locity can instead be derived from the analysis of the haz-
ard maps included, for instance, in flood risk management
plans or other detailed hydraulic studies that exist for the in-
vestigated region. In the analysed case study, we leveraged
the information contained in the 2021 update of the Flood
Risk Management Plan of the Po River District Basin Au-
thority (Autorita di Bacino del Fiume Po, 2022), which con-
sisted of raster files obtained from 2D hydrodynamic mod-
elling of flood scenarios across various return periods (rang-
ing from 20 to 500 years) in specific catchments of the dis-
trict. These catchments represent distinctive inundation types
in both rural and urban areas, as well as in flat or steeper re-
gions of the district, where inundation phenomena typically
result from riverine and artificial channel floods in the cen-
tral plain area and flash floods in the mountainous regions lo-
cated in the northern and southern parts of the basin (Fig. S1).
The medium-frequency scenario has been selected as the rep-
resentative case for deriving the EDFs for water depth and
flow velocity, based on its designation as the typical refer-
ence scenario for implementing mitigation measures in the
Po catchment. The inclusion of different inundation types in
the hazard dataset was driven by the goal of establishing a
comprehensive model applicable to the entire district, align-
ing with exposure and vulnerability features which are repre-
sentative of the whole region. Expert knowledge was utilised
to determine suitable distributions for other hazard variables
(as described in Sect. 2.3), like inundation duration and sed-
iment load, with limited or null availability of detailed in-
formation. For instance, due to the inherent random nature
of water pollution in flood events, a conservative assump-
tion was made for the variable accounting for this process, by
assigning a 50 % probability of having contaminated flood-
water. Details on data statistics derived from the analysis of
ISTAT data, the OSM building inventory, virtual surveys and
flood-related data are available in the work by Huayra Mena
(2022).

2.3 Generation of synthetic datasets for explicit
treatment of input data uncertainty

The probability distributions of the different input features
representative of the Po River District for INSYDE 2.0 were
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Figure 1. Overview of the methodological approach. Dotted-line boxes represent an alternative dataset for the analysis while maintaining

the same methodological flow as depicted in the solid-line boxes.

generated, based on the collected hazard and building data
described while also accounting for the intrinsic interdepen-
dence among the variables (Tables 1 and 2). Specifically, the
assumptions regarding the relationships between the build-
ing features relied upon the survey dataset and findings re-
ported in Huayra Mena (2022), while a physically informed
approach was adopted in the case of the hazard variables,
depending on the features characterising both riverine (i.e.
long duration, low flow velocity) and flash (i.e. rapid onset,
greater flow velocities and shallower water depth compared
to the other type) inundation phenomena.

In more detail, probability distributions were first retrieved
independently for the hazard variables based on detailed data,
when available (4., v), or on expert-based assumptions de-
rived from aggregated or approximated data (d, s, ¢). Then,
considering a set of 250000 elements, the following func-
tional dependencies were assumed to describe the correla-
tion among the features, based on the values sampled for /.,
d and v:

d*=ci+cr-Vhe-N(u=1, 0 =0.2), (1
v =c3—d/max(d)-N(u =1, 0 =c3 —d/max(d)), (2)
s*=cs4c5-/v-Nu=1, 0 =0.2), 3)

with N being a random number from a normal distribution
with mean p and standard deviation o and the coefficients
¢; being constant values introduced in the expert-based ap-
proach to obtain the desired functional relationships among
the variables. In contrast, ¢ was assumed to be independent
of the other hazard features.

Although the resulting d*, v* and s* account for the cor-
relation among the hazard variables, they do not follow the
probability distributions retrieved independently for the vari-
ables d, v and s; on the contrary, the latter were sampled in-
dependently of the correct distributions, but they do not pro-
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vide information on the rank correlation among the variables.
To obtain a dataset with both the mentioned properties, the
values of d*, v* and s* were then ranked and replaced with
the corresponding percentiles derived from the ordered ver-
sions of d, v and s.

Furthermore, additional synthetic distributions (referred to
as the “extended synthetic dataset” hereinafter), while pre-
serving the nature of the identified functional relationships
among the variables but spanning wider ranges of them (as
reported in the Supplement), were also generated to support
a more comprehensive analysis of INSYDE 2.0, regardless
of the specific characteristics of the Po River District.

This dual analysis is rooted, on the one hand, in the need
for context-specific insights into flood damage assessment in
order to support efficient data retrieval efforts, allowing for
prioritisation of data collection for variables that really play
a key role in the considered context. On the other hand, a
non-region-specific scenario, encompassing a broader range
of values for the input variables, is instead aimed at provid-
ing more general findings on the influence of the different
variables on the damage estimation process.

2.4 Model’s sensitivities to missing input data
2.4.1 Analysis of the feature importance

In the new framework for missing data handling, the gener-
ated synthetic distributions can be exploited in a feature im-
portance exercise aimed at a quantitative assessment of the
sensitivity of damage calculations to the absence of informa-
tion on certain input variables in order to identify key features
deserving attention in data collection. This analysis, based
here on a probabilistic test performed on a complete port-
folio of 250 000 hypothetically flooded buildings (generated
from the identified distributions for the Po District as well as
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Table 1. Hazard features considered in INSYDE 2.0 and assumed probability distributions for the case of the Po River District.

Variable  Description Distribution

he Water depth [m] ‘Weibull minimum (shape = 1.25, scale = 1); if 7 < 0.01, resampled from uniform [0.01, 0.03]
d Inundation duration [hours] Weibull minimum (shape = 1.25, scale = 36); if d < 1, resampled from uniform [1, 2]

q Presence of pollutants [yes (1), no (0)] P(g=0)=0.5, P(¢g=1)=0.5

v Velocity [m 5*1] ‘Weibull minimum (shape = 1.15, scale =0.35); if v < 0.05, resampled from uniform [0.05, 0.1]
K Sediment load [-] Uniform [0.05, 0.2]

for the “extended case”), involved the following steps: first,
INSYDE 2.0 is used to calculate damage using the complete
dataset, where all input values are assumed to be available,
and the resulting estimate is taken as a reference point. Next,
the values of one input variable are removed at a time from
the dataset, and the corresponding missing values are sam-
pled from the generated synthetic dataset. This process is re-
peated for each variable, and, each time, damage is recalcu-
lated; the difference in damage with respect to the reference
value is finally recorded, and then the variance induced by
each feature on model outcomes can be determined.

2.4.2 Analysis of damage estimation uncertainty

In addition to assessing the possible contribution of unknown
single-input features to damage estimation uncertainty, a fur-
ther analysis can be carried out to evaluate the impact of the
combined absence of multiple input variables on the variabil-
ity in damage estimations.

Analysis on the synthetic dataset

A first test has been conducted, for computational reasons,
on a subsample of 5000 buildings extracted from the com-
plete building portfolio of the Po River District, this time al-
tered to account for the presence of multiple unknown in-
put data within the sample. The reduction in the dataset’s
level of completeness was achieved by assuming different
percentages of missing data for each feature, which were as-
signed based on their typical availability or ease of retrieval,
as experienced by the authors in the Italian context. Except
for he and FA (see Table 1 for definitions of hazard feature
variables and Table 2 for definitions of building feature vari-
ables), which were considered the minimum known variables
for a damage assessment, the missing values were placed ran-
domly, as follows: 10 % for variables of easy retrieval, due ei-
ther to their availability at the meso-scale (e.g. census block
scale) or to their low variability (BT, IH, NF, BS, LM, FL,
YY), and 20 % for other building features that require spe-
cific surveys for correct characterisation (EP, BE and related
variables, BH, BA, BP); for GL, which is generally not avail-
able in databases but potentially appraisable through (virtual)
surveys, this percentage was increased to 50 %, while 95 %
was assumed for the building features that are hardly ever
known (or only after internal surveys), such as IP and PD.
For the hazard variables, the percentages were assumed to be
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10 %, 20 %, 50 % and 80 % for v, d, s and ¢, respectively,
taking into account the increasing modelling costs when go-
ing from a simple 2D steady hydrodynamic simulation to a
more complex unsteady run with the inclusion of sediment
transport modelling; the very specific and detailed data re-
quirements regarding the presence and propagation of pol-
lutants instead explain the higher value assumed for ¢g. For
each tested object, 1000 complete replicates were generated
by filling missing input data with values sampled from the
developed synthetic distributions, and the corresponding av-
erage damage and standard deviation were calculated.

Analysis on field data from recent flood events

A similar analysis has also been carried out considering real-
world field databases compiled for two flood events that oc-
curred in the Po River valley: the 2002 Adda flood in Lodi
and the 2010 Bacchiglione flood in Caldogno, both of which
have been described in previous applications of INSYDE
(Dottori et al., 2016; Amadio et al., 2019; Molinari et al.,
2020). Table 3 provides a concise overview of the avail-
able datasets by specifically highlighting the unknown vari-
ables for INSYDE 2.0 in the two case studies. As is typ-
ical in large-scale flood damage assessments, the missing
data mainly concerned the ultra-detailed characteristics of
the dwellings, while only approximate information on inun-
dation duration was available from the reports of the events,
which provided a rough indication of 24 h on average for both
cases. To ensure a reasonable level of uncertainty, while con-
sidering the available information on inundation duration, the
empirical distribution for this variable was modified with re-
spect to the one in Table 1, by sampling d values from an
assigned truncated normal distribution centred at 24h and
spanning 16 to 48h. As in the previous case, the approach
entailed calculating damage over 1000 complete replicates
for each affected building and registering the corresponding
damage statistics.

Furthermore, considering the availability of observed
losses for the two case studies, we also investigated the im-
pact of missing inputs on the results of classical validation
exercises, prompting a broader discussion on the general in-
terpretation of their results when performed for simple (e.g.
univariable) or complex models without proper treatment of
uncertainties (Molinari et al., 2019, 2020). In this context,
since its formulation, INSYDE has undergone continuous
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Table 2. Building features considered in INSYDE 2.0 and assumed probability distributions for the case of the Po River District.

Variable Description Distributions

BT Building type [-] Empirical distribution function based on ISTAT data
P(BT =1 (detached)) = 0.54; P(BT =2 (semi-detached)) =0.10;
P(BT =3 (apartment)) =0.13; P(BT =4 (attached corner)) =0.10;
P(BT =5 (attached centre)) =0.13

FA Footprint area [m?] Empirical distribution function based on OSM data

Truncated normal (u = 160, o0 = 60, min = 50, max =320) if BT =1
Truncated normal (u = 110, o =20, min = 50, max = 160) if BT =2
Truncated normal (1 =95, o =20, min = 60, max = 160) if BT =3
Truncated normal (1 =85, o = 15, min =45, max = 140) if BT =4

Truncated normal (u =85, 0 =15, min =45, max = 120) if BT =5

1A Internal area [mz] 0.9-FA

BA Basement area [mz] 0.5-FA - normal(u =1,0 =0.2)

EP External perimeter [m] Empirical relationships identified from the analysis of OSM data
4.1-v/FA - normal(u = 1,0 =0.2) if BT=1
3.-+/FA-normal(u=1,0 =0.2)if BT=2 or BT =4
—6.97294+0.2885 - FA - normal(x =1, 0 =0.2) if BT =3
2.+/FA-normal(u=1,0 =0.2) if BT=5

1P Internal perimeter [m] Empirical relationships identified from the analysis of the data from the virtual surveys
20.151 4 0.6254 - FA - normal(u = 1,0 =0.2) if BT =1
20.119+40.6105 - FA - normal(u =1,0 =0.2) it BT =2
20.3364+0.6576 - FA - normal(u =1,0 =0.2) it BT =3
9.709 4+ 0.6902 - FA - normal(u = 1,0 =0.2) if BT =4
16.801 +0.559 - FA - normal(u =1,0 =0.2) if BT =5

BP Basement perimeter [m] Empirical relationships identified from the analysis of the data from the virtual surveys
4.2 -+/FA - normal(u =1, 0 =0.2)

NF Number of floors [-] Empirical distribution function based on ISTAT data
P(NF=1)=0.09, PINF=2)=0.56; P(NF=3)=0.25; P(NF> 3)=0.10

IH Interfloor height [m] Empirical distribution function based on survey data
Virtual survey ECDF + truncated normal (u =0, o = 0.5, min = —0.15, max =0.15)

BH Basement height [m] Empirical distribution function based on survey data
Skewed normal (skewness = —4, u =3, 0 =0.25)

GL Ground floor level [m] Empirical distribution function based on survey data
Normal (1© =0.1, 0 =0.09)

BL Basement level [m] —GL —BH -0.3

BS Building structure [—] Empirical distribution function based on ISTAT data
P(BS =1 (reinforced concrete)) = 0.33; P(BS =2 (masonry)) =0.67

FL Finishing level Empirical distribution function based on survey data
(i.e. building quality) [-] P(FL=0.8 (low)) =0.05, P(FL =1 (medium)) = 0.42; P(FL = 1.2 (high)) =0.53

LM Level of maintenance [-] Empirical distribution function based on ISTAT data
P(LM=0.9 (low))=0.13, P(LM =1 (medium)) = 0.47; P(LM = 1.1 (high)) =0.40

YY Year of construction [—] Empirical distribution function based on ISTAT data

PD Heating system distribution [-] ~ Empirical distribution function based on the analysis of grey literature and survey data
If YY > 1990: P(PD =1 (centralised)) =0.11, P(PD =2 (distributed)) = 0.89
If YY <1990: P(PD=1)=0.6, P(PD=2)=0.4

PT Heating system type [-] Empirical distribution function based on the analysis of grey literature and survey data
IfYY>2000 & FL > 1: P(PT =1 (radiator)) = 0.2, P(PT =2 (pavement)), =0.8
else PPT=1)=0.8, P(PT=2)=0.2

BE* Basement exists [-] Empirical distribution function based on survey data
P(BE=0 (n0))=0.2, P(BE=1 (yes))=0.8

* New variable introduced in INSYDE 2.0.
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Table 3. Unknown input features for INSYDE in the considered case studies of the Lodi and Caldogno floods.

Case study Unknown input features in the dataset
Lodi d*, s, 1P, IH, BH, PD, PT, BA, BP (for all buildings (271) in the dataset)

GL and NF (partial availability — known for 47 and 265 buildings, respectively)
Caldogno d*, s, q, IP, TH, BH, GL, PD, PT, LM, BA, BP (for all buildings (294) in the

dataset)

updates and validation, with reported superior performance
when compared to other tested damage models (Dottori et
al., 2016; Amadio et al., 2019; Molinari et al., 2020). Al-
though these previous studies consistently demonstrated IN-
SYDE’s capacity to provide accurate damage estimations,
the reliance on fixed default values for missing input data
limited the quantitative assessment of the uncertainty associ-
ated with validation outcomes.

3 Results and discussion
3.1 Generation of the synthetic datasets

The pair plot in Fig. 2 displays the pairwise relationships
among the flood hazard variables, water depth (4.), flow ve-
locity (v), inundation duration (d) and sediment load (s),
characterising the developed synthetic dataset for the Po
River District. This graphical tool employs a scatterplot to
illustrate the relationship between each pair of variables in
the dataset, while the diagonal axis displays kernel density
plots for each variable.

Figure 2 clearly illustrates the physically informed ap-
proach behind the generation of the synthetic dataset: for in-
stance, a positive relationship between & and d, as well as
between v and s, with the latter explained by the tendency of
flash floods to carry greater amounts of debris; similarly, d
and v were considered to be negatively correlated, in consid-
eration of the short duration typically associated with flash
floods.

An analogous pair plot for the extensive building variables
is presented in Fig. 3, which illustrates the functional rela-
tionships (Table 2) identified from the analysis of the build-
ing survey dataset for the region (Huayra Mena, 2022).

For clarity, it should be noted that the distributions for the
“apartment” category are represented in Fig. 3 at the build-
ing block scale, having assumed a number of housing units
(nHU > 1) generated from a Weibull distribution with shape
and scale parameters equal to 2 and 4, respectively.

https://doi.org/10.5194/nhess-24-1681-2024

The pair plots illustrating the extended synthetic dataset
(generated for obtaining more general findings on the in-
fluence of input features on damage estimation beyond the
specificities of the region under investigation) are provided
in the Supplement (Figs. S2 and S3) for comprehensive ref-
erence.

3.2 Model’s sensitivities to missing input data
3.2.1 Analysis of the feature importance

This section reports on uncertainty in damage calculations
resulting from the potential lack of knowledge of certain in-
put data in INSYDE 2.0. In detail, Fig. 4 summarises the
results of the feature importance analysis by showing the dif-
ference in computed damage when applying the model to a
reference complete synthetic set of 250 000 buildings and to
their replicas obtained by replacing the values of one input
variable at a time with a sampling from the Po River District
case (Fig. 4a) or from the extended synthetic dataset reported
in the Supplement (Fig. 4b).

Consistently with the literature (Kelman and Spence,
2004; Schroter et al., 2014; Dottori et al., 2016; Amadio et
al., 2019; Scorzini et al., 2022), Fig. 4 confirms the impor-
tance for flood damage modelling of relying on accurate in-
put data for water depth, even though damage differences as-
sociated with it are limited, on average, around EUR 10000
(Fig. 4a), due to the intrinsic small variability assumed for
this variable in the generation of representative distributions
for the context of northern Italy (Fig. 2). Albeit with a lower
influence, sediment load, inundation duration and the indi-
cator for the presence of pollutants can be ranked as other
important hazard input features, with the latter two induc-
ing more variability in the results, as a consequence of some
damage mechanisms activated in INSYDE on the basis of
thresholds for d or g (Dottori et al., 2016; for clarity, an ex-
ample of such a damage mechanism is reported in the Sup-
plement). The riverine inundation characteristics, typical of
the examined context (Fig. 2) and insufficient to cause struc-
tural damage (Clausen and Clark, 1990), also explain why a
lack of input data on flow velocity does not induce any tangi-
ble effect on damage estimation. A different pattern is instead
visible in the lower panel of Fig. 4, obtained from a sampling
based on the extended synthetic dataset (Figs. S2 and S3),
featuring larger ranges of values for the tested input vari-
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Figure 2. Pairwise relationships assumed for the generation of the Po River District synthetic dataset: hazard variables (water depth (/¢),

flow velocity (v), inundation duration (d) and sediment load (s)).

ables and thus providing more general insights into model
sensitivity to input data availability (regardless of the specific
local characteristics for the context of model customisation).
In this case, apart from the greater differences observed in
absolute terms, Fig. 4 indicates that velocity has a far more
relevant impact than inundation duration on damage estima-
tion uncertainty when dealing with long-lasting flood events
(as represented in the extended synthetic dataset, Fig. S2),
exceeding the duration threshold assumed for certain damage
mechanisms (Dottori et al., 2016; please refer to the code of
INSYDE 2.0 for details).

Regarding building characteristics, the upper panel of
Fig. 4 reveals the significant and obvious influence of the
extensive features (FA, IP, EP), of the binary variable BE for
the presence of the basement (which masks the importance of

Nat. Hazards Earth Syst. Sci., 24, 1681-1696, 2024

the basement-related variables, BA, BP and BH) and of the
building’s elevation with respect to the ground level (GL).
The finishing level (FL) causes relevant variability in model
outcomes, with an observed median damage difference of
about EUR 670 for the Po River data, while detailed knowl-
edge of variables such as the level of maintenance (LM),
building structure (BS) and heating distribution (PD) type —
and even more the number of floors (NF) and the year of
construction (YY) — appears to provide an overall negligi-
ble impact on damage estimation uncertainty. Again, such re-
sults are dependent on the specific datasets used for sampling
missing values, and, therefore, for a more general overview
of the ranking of the feature importance in INSYDE 2.0, it
is possible to refer to the lower panel of Fig. 4, which il-
lustrates how some variables (such as NF, BS, PD and PT)
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Figure 3. Pairwise relationships assumed for the generation of the Po River District synthetic dataset: extensive building variables (footprint
(FA) and basement (BA) area; external (EP), internal (IP) and basement perimeter (BP)).

gain increasing importance when hazard parameters are set
to (larger) values capable of activating damage mechanisms
for more building components. These findings demonstrate
how the importance of specific input parameters can vary de-
pending on the characteristics of the study region, thus high-
lighting the cruciality of relying on regionally representative
hazard and building datasets for enhanced and efficient flood
damage modelling.
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3.2.2 Analysis of damage estimation uncertainty
Analysis on the Po River District synthetic dataset

Figure 5 reports the results of the analysis aimed at evalu-
ating the performance of INSYDE 2.0 when the absence of
multiple inputs is considered. In detail, the figure shows the
mean damage and standard deviation calculated for each of
the 5000 modified (i.e. with multiple missing inputs) items
over their 1000 complete replicates generated by populat-
ing the missing information with values sampled from the
Po River District synthetic dataset. Interestingly, the figure
shows that, for all building typologies, the results tend to lie
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from the extended synthetic dataset — refer to Figs. S2-S3 (b). Vari-
ables are ranked based on the median value of the estimated ab-
solute damage difference compared to the reference damage calcu-
lated on a complete dataset. Outliers are visualised as red points in
the plots.

on two different trend lines corresponding to higher or lower
damage variability. A closer inspection of the results revealed
that these distinct patterns are not necessarily related to the
quantity of missing variables but rather to their role in the
damage mechanisms implemented in INSYDE. Indeed, in
certain instances, the estimated damage for certain building
components depends on the occurrence of specific conditions
across multiple variables. In such cases, when more than one
of these conditions are met, the maximum resulting damage
is assumed to hold, as the most unfavourable state is thought
to dominate the damage mechanism regardless of other con-
ditions (Dottori et al., 2016). This situation is exemplified
by components related to interior or exterior plaster (details
in the Supplement and in the code). Here, damage occur-
rence is supposed to depend on inundation duration and flow
velocity, as expressed by the corresponding fragility func-
tions, as well as on water quality (¢) and the level of main-
tenance (LM) of the building; specifically, a 100 % proba-

Nat. Hazards Earth Syst. Sci., 24, 1681-1696, 2024

bility of damage occurrence is assigned in the case of con-
taminated water (¢ = 1) or an average/poor level of mainte-
nance (LM < 1). These conditions applied to the latter two
variables are the ones that eliminate any potential estimation
uncertainties arising from missing data on other parameters
involved in the damage mechanism. A similar uncertainty-
limiting behaviour is also distinctive of damage to pavement
components, which theoretically depend on different input
features but only when the finishing level (FL) is set to cer-
tain values (FL > 1).

Analysis on observed data from recent flood events

Similar trend patterns to those presented in Fig. 5 are also ev-
ident in Fig. 6, which displays the results obtained by repli-
cating the data-filling procedure applied to the datasets for
the flood events in Lodi and Caldogno, both of which were
originally characterised by the presence of some unknown in-
put features (Table 3). The minor differences visible between
the two case studies (Fig. 6) are again a consequence of the
types of missing variables within each dataset.

Specifically, the points lying on the lower-variability trend
line for the Lodi case are representative of those buildings
with available information on GL, which significantly re-
duces damage estimation uncertainty. If excluding these data,
Lodi generally exhibits slightly larger standard deviations for
the same calculated mean damage in Caldogno. Such a dif-
ference can be explained by considering the input data avail-
ability in the two cases for certain key variables (¢ and LM)
which can act as limiting or amplifying factors of damage es-
timation variability. In detail, complete information on these
key variables is only available for the Lodi dataset, with just
a restricted number of buildings exhibiting the mentioned
“uncertainty-limiting values” ¢ =1 and LM <1 (in ~6 %
and ~ 15 %, respectively, of the elements in the dataset).

The two case studies were also considered to highlight the
value of the proposed approach in interpreting the results of
model validation, which is particularly important for a com-
plex multi-variable damage model like INSYDE. The out-
comes of the test are summarised in Table 4, which com-
pares total observed losses to damage statistics obtained by
applying INSYDE 2.0 to 1000 replicates for each affected
item in the two building portfolios containing missing input
features. These findings are complemented by Fig. 7, which
offers a visual representation of the detected differences be-
tween estimations and observations at the individual building
scale.

Table 4 illustrates a general convergence between ob-
served and estimated damage, particularly around the 75th
percentile, where the calculated losses align with the reported
values. The median estimates exhibit a satisfactory level of
agreement with the observed losses, which is consistent with
typical outcomes observed in validation exercises for mod-
els demonstrating overall good performances (e.g. Amadio
et al., 2019; Molinari et al., 2020). It should be noted that the
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Figure 6. Damage estimation variability observed using the datasets for the case studies of Lodi and Caldogno.

model tends to overestimate lower entity damage across all
building types (Fig. 7), but this discrepancy, rather than be-
ing a consequence of any model-related issue, can be primar-
ily attributed to the limitations in the representativeness of
claims data, particularly for minor losses, as documented in
the literature (Merz et al., 2008; Molinari et al., 2020; Pinelli
et al., 2020).

While confirming the performance of INSYDE 2.0 in ac-
curately depicting the overall damage figures for the two
events, the results of this analysis emphasise the benefits of
incorporating the treatment of input data uncertainty when
presenting model validation outcomes, also in consideration
of the well-known biases and limitations of damage obser-
vations in fully capturing reality (Molinari et al., 2020). In-
deed, previous validation exercises applied to earlier model
versions, relying on a deterministic approach for handling
unknown input features, while reporting limited errors rang-
ing from —1.7 % to +5.1 % for Caldogno and up to +19.1 %

https://doi.org/10.5194/nhess-24-1681-2024

for Lodi (Dottori et al., 2016; Amadio et al., 2019), lacked
insights into the uncertainty introduced by the selection of
fixed default values for handling missing variables in the
tested cases. Here, by providing a clear indication of the un-
certainty bounds of the estimations, the new approach en-
hances the model’s robustness, transparency and reliability,
thus effectively mitigating the risk of conveying a false per-
ception of certainty, which may be instead encountered with
simpler deterministic approaches or even with more sophisti-
cated models when used in combination with oversimplified
assumptions (Merz et al., 2008; Pappenberger and Beven,
2006).

4 Conclusions

Accurately assessing flood risk is crucial for mitigating
the potentially devastating effects of flooding. However, the
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Table 4. Results of the probabilistic validation of INSYDE 2.0 for the case studies of Lodi and Caldogno: statistics of total estimated damage

versus reported damage.

Case study Estimated damage Observed damage
[million EUR 2021] [million EUR 2021]

Sth percentile ~ 25th percentile ~ Median  75th percentile  95th percentile
Lodi 3.13 3.68 4.18 5.26 8.06 5.05
Caldogno 3.46 6.44 7.53 8.54 10.34 8.35

complexity of the systems involved and the significant num-
ber of data required make flood damage estimation a chal-
lenging task, susceptible to uncertainties from input data,
model structure and assumptions. Achieving a trade-off be-
tween outcome reliability (with a quantitative characterisa-
tion of uncertainty) and estimation efforts (in terms of time
and financial resources for both data retrieval and modelling)
is essential for efficient and comprehensive risk assessments,
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enabling optimal decision-making (Apel et al., 2008; Merz et
al., 2015; Sieg et al., 2023). To strike this balance, it is impor-
tant to examine the possible added value of utilising detailed
data and advanced methodologies, as well as of identifying
critical variables that reduce damage estimation uncertainty,
justifying investment in data collection.

In this context, the present study aimed at addressing these
issues through the development of an updated version of
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a multi-variable flood damage model, INSYDE, which es-
timates direct economic damage at the building scale as a
function of several flood event and building features. Given
the number and detail of required input variables, retrieving
and preparing data for a multi-variable model, like INSYDE,
can be resource-intensive; on the other hand, incomplete in-
puts may exert a significant impact on the variability of cal-
culated damage. The proposed updated version of INSYDE
thus incorporates a probabilistic module for filling missing
input data, offering transparent information on uncertainties
arising from limited knowledge of damage explicative vari-
ables. This approach, tailored to the Po River District as an
exemplificatory case, ensures more reliable and robust as-
sessments, reducing the risk of conveying a false perception
of certainty that can occur when using univariable, simple
deterministic approaches or even when interpreting the re-
sults of model validation exercises (Merz et al., 2005; Pap-
penberger and Beven, 2006; Amadio et al., 2019; Molinari et
al., 2019, 2020). Therefore, the primary lesson learned from
INSYDE 2.0 lies in transcending the confines of determinis-
tic damage models. By challenging the conventional notion
of certainty in damage assessments, our approach empha-
sised the importance of acknowledging uncertainty arising
from “known unknowns”. From a decision-maker perspec-
tive, a thorough understanding of modelling assumptions and
awareness of the broad variability in model outcomes stem-
ming from limited knowledge of certain inputs can indeed
be crucial for making well-informed decisions. As a second
aspect, acknowledging the complex interplay of assumptions
in model input and output as well as possible biases in ob-
served damage, we also question the use of the term “vali-
dation” in damage modelling, as this may imply a level of
certainty that is inherently elusive. Our idea, instead, shifts
from just seeking convergence between estimations and ob-
servations to embracing a comprehensive understanding of
the uncertainties that characterise flood damage estimations.
In this context, the present study (even under necessary as-
sumptions about certain variables due to the lack of pertinent
information) demonstrates the value of generating compre-
hensive local synthetic datasets of flood hazard and building
features that can be leveraged to identify key variables wor-
thy of specific investment in data retrieval. Additionally, the
development and use of synthetic datasets, combined with
uncertainty analysis on model outcomes, can help in bridg-
ing the data gaps and addressing the challenges associated
with the availability and completeness of input variables.
Results obtained also indicated that, besides standard haz-
ard variables, an accurate description of building features
is essential to derive reliable estimations of flood damage
(Schroter et al., 2018; Molinari et al., 2020; Taramelli et al.,
2022). While data retrieval on a large scale for some of the
vulnerability variables can be costly (Ruggieri et al., 2021),
the use of the proposed probabilistic missing data-filling pro-
cedure, based on representative datasets of the local build-
ing stock, can be employed as an option. This can help not
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only to solve the problem of insufficient knowledge about
certain input features (Pinelli et al., 2020; Gomez Zapata et
al., 2022), but also to provide decision-makers with a bet-
ter understanding of the uncertainty associated with the es-
timations (Razavi et al., 2021). Moreover, the lessons de-
rived from the feature importance analysis conducted in this
study highlight the significance of relying on representative
datasets that capture the characteristics of the investigated
area for proper identification of the key variables to be con-
sidered when modelling flood damage.

The process for developing these specific datasets, here
exemplified for northern Italy but theoretically replicable,
with adaptation, in any other region/country, mainly involves
a combination of traditional methods for data collection,
such as desk-based analysis of statistical data sources as
well as virtual surveys; even though such tasks can be time-
consuming, especially in consideration of the possible sig-
nificant regional spatial variability in the building stock, it
is worth noting that emerging technologies, such as remote
sensing and automatic image reconnaissance (Velez et al.,
2022), can potentially enhance the process in the future, en-
abling more efficient and accurate exposure and vulnerability
modelling.

In conclusion, this study demonstrates the significant
added value of adopting a probabilistic approach with the ex-
plicit treatment of input data uncertainties, thus providing in-
sights for more informed risk assessments while ensuring ef-
ficient data collection procedures. Overall, it also emphasises
the enduring importance of continuously refining data collec-
tion and modelling approaches, given that a comprehensive
and reliable characterisation of inundation phenomena and
impacted assets remains crucial for enhancing confidence in
the outcomes of damage assessment processes.

Code availability. The code of INSYDE 2.0 is available from
Mendeley Data, https://doi.org/10.17632/jpdb89gxn5.1 (Di Bacco
etal., 2024).

Data availability. Original data from ISTAT (Italian National In-
stitute of Statistics) and OSM (OpenStreetMap) are publicly ac-
cessible through their respective databases at https://esploradati.
censimentopopolazione.istat.it/databrowser/ (last access: 6 May
2024) and https://www.openstreetmap.org/ (last access: 6 May
2024). Processed and virtual survey data for the Po River District
can be found in the work of Huarya Mena (2022, https://www.
politesi.polimi.it/handle/10589/187358, last access: 6 May 2024).
The datasets for Lodi and Caldogno are confidential and are avail-
able from the corresponding author upon reasonable request.

Supplement. The supplement related to this article is available on-
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