Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-847-2023
https://doi.org/10.5194/nhess-23-847-2023
Research article
 | 
27 Feb 2023
Research article |  | 27 Feb 2023

Improving the predictability of the Qendresa Medicane by the assimilation of conventional and atmospheric motion vector observations. Storm-scale analysis and short-range forecast

Diego S. Carrió

Related authors

High-resolution data assimilation for two maritime extreme weather events: a comparison between 3D-Var and EnKF
Diego S. Carrió, Vincenzo Mazzarella, and Rossella Ferretti
Nat. Hazards Earth Syst. Sci., 25, 2999–3026, https://doi.org/10.5194/nhess-25-2999-2025,https://doi.org/10.5194/nhess-25-2999-2025, 2025
Short summary
Observation error estimation in climate proxies with data assimilation and innovation statistics
Atsushi Okazaki, Diego Carrio, Quentin Dalaiden, Jarrah Harrison-Lofthouse, Shunji Kotsuki, and Kei Yoshimura
EGUsphere, https://doi.org/10.5194/egusphere-2025-1389,https://doi.org/10.5194/egusphere-2025-1389, 2025
Short summary
The crucial representation of deep convection for the cyclogenesis of Medicane Ianos
Florian Pantillon, Silvio Davolio, Elenio Avolio, Carlos Calvo-Sancho, Diego Saul Carrió, Stavros Dafis, Emanuele Silvio Gentile, Juan Jesus Gonzalez-Aleman, Suzanne Gray, Mario Marcello Miglietta, Platon Patlakas, Ioannis Pytharoulis, Didier Ricard, Antonio Ricchi, Claudio Sanchez, and Emmanouil Flaounas
Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024,https://doi.org/10.5194/wcd-5-1187-2024, 2024
Short summary
Assessing the coastal hazard of Medicane Ianos through ensemble modelling
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023,https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary

Cited articles

Aksoy, A., Dowell, D. C., and Snyder, C.: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses, Mon. Weather Rev., 137, 1805–1824, 2009. a
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility, B. Am. Meteorol. Soc., 90, 1283–1296, 2009. a, b
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001. a
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999. a
Anderson, J. L. and Collins, N.: Scalable implementations of ensemble filter algorithms for data assimilation, J. Atmos. Ocean. Tech., 24, 1452–1463, 2007. a, b
Short summary
The accurate prediction of medicanes still remains a key challenge in the scientific community because of their poor predictability. In this study we assimilate different observations to improve the trajectory and intensity forecasts of the Qendresa Medicane. Results show the importance of using data assimilation techniques to improve the estimate of the atmospheric flow in the upper-level atmosphere, which has been shown to be key to improve the prediction of Qendresa.
Share
Altmetrics
Final-revised paper
Preprint