Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-771-2023
https://doi.org/10.5194/nhess-23-771-2023
Research article
 | 
22 Feb 2023
Research article |  | 22 Feb 2023

Investigation of an extreme rainfall event during 8–12 December 2018 over central Vietnam – Part 1: Analysis and cloud-resolving simulation

Chung-Chieh Wang and Duc Van Nguyen

Related authors

Investigation of an extreme rainfall event during 8–12 December 2018 over central Viet Nam – Part 2: An evaluation of predictability using a time-lagged cloud-resolving ensemble system
Chung-Chieh Wang, Duc Van Nguyen, Thang Van Vu, Pham Thi Thanh Nga, Pi-Yu Chuang, and Kien Ba Truong
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-192,https://doi.org/10.5194/nhess-2023-192, 2023
Revised manuscript under review for NHESS
Short summary
A modeling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017
Chung-Chieh Wang, Ting-Yu Yeh, Chih-Sheng Chang, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
Atmos. Chem. Phys., 23, 501–521, https://doi.org/10.5194/acp-23-501-2023,https://doi.org/10.5194/acp-23-501-2023, 2023
Short summary
Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model
Chung-Chieh Wang, Pi-Yu Chuang, Shi-Ting Chen, Dong-In Lee, and Kazuhisa Tsuboki
Nat. Hazards Earth Syst. Sci., 22, 1795–1817, https://doi.org/10.5194/nhess-22-1795-2022,https://doi.org/10.5194/nhess-22-1795-2022, 2022
Short summary
Evaluation of Mei-yu heavy-rainfall quantitative precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012–2014
Chung-Chieh Wang, Pi-Yu Chuang, Chih-Sheng Chang, Kazuhisa Tsuboki, Shin-Yi Huang, and Guo-Chen Leu
Nat. Hazards Earth Syst. Sci., 22, 23–40, https://doi.org/10.5194/nhess-22-23-2022,https://doi.org/10.5194/nhess-22-23-2022, 2022
Short summary
A numerical study of back-building process in a quasistationary rainband with extreme rainfall over northern Taiwan during 11–12 June 2012
Chung-Chieh Wang, Bing-Kui Chiou, George Tai-Jen Chen, Hung-Chi Kuo, and Ching-Hwang Liu
Atmos. Chem. Phys., 16, 12359–12382, https://doi.org/10.5194/acp-16-12359-2016,https://doi.org/10.5194/acp-16-12359-2016, 2016
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Compound winter low-wind and cold events impacting the French electricity system: observed evolution and role of large-scale circulation
François Collet, Margot Bador, Julien Boé, Laurent Dubus, and Bénédicte Jourdier
Nat. Hazards Earth Syst. Sci., 25, 843–856, https://doi.org/10.5194/nhess-25-843-2025,https://doi.org/10.5194/nhess-25-843-2025, 2025
Short summary
Probabilistic hazard analysis of the gas emission of Mefite d'Ansanto, southern Italy
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025,https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Are heavy-rainfall events a major trigger of associated natural hazards along the German rail network?
Sonja Szymczak, Frederick Bott, Vigile Marie Fabella, and Katharina Fricke
Nat. Hazards Earth Syst. Sci., 25, 683–707, https://doi.org/10.5194/nhess-25-683-2025,https://doi.org/10.5194/nhess-25-683-2025, 2025
Short summary
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 25, 675–682, https://doi.org/10.5194/nhess-25-675-2025,https://doi.org/10.5194/nhess-25-675-2025, 2025
Short summary
The record-breaking precipitation event of December 2022 in Portugal
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci., 25, 609–623, https://doi.org/10.5194/nhess-25-609-2025,https://doi.org/10.5194/nhess-25-609-2025, 2025
Short summary

Cited articles

Akter, N. and Tsuboki, K.: Characteristics of Supercells in the Rainband of Numerically Simulated Cyclone Sidr, SOLA, 6A, 25–28, https://doi.org/10.2151/sola.6A-007, 2010. 
Akter, N. and Tsuboki, K.: Numerical Simulation of Cyclone Sidr Using a Cloud-Resolving Model: Characteristics and Formation Process of an Outer Rainband, Mon. Weather Rev., 140, 789–810, https://doi.org/10.1175/2011MWR3643.1, 2012. 
Bui, M. T.: Extratropical forcing of submonthly variations of rainfall in Vietnam, J. Climate, 32, 2329–2348, 2019. 
Chen, T.-C., Tsay, J.-D., Yen, M.-C., and Matsumoto, J.: Interannual variation of the late fall rainfall in central Vietnam, J. Climate, 25, 392–413, 2012. 
Communist Party of Vietnam Online Newspaper: https://dangcongsan.vn/xa-hoi/mua-lon-tai-mien-trung-la-bieu- hien-ro-ret-cua-bien-doi-khi-hau—507626.html (last access: 1 October 2022), 2018. 
Download
Short summary
A record-breaking rainfall event over central Vietnam is investigated. Key factors include the combined effect of northeasterly wind, easterly wind blowing to central Vietnam from the western North Pacific (WNP), southeasterly wind, local topography, and high sea surface temperature (SST) over WNP and the South China Sea (SCS). The cloud-resolving storm simulator (CReSS) is applied to simulate this event. The results show that the model mostly captured the quantitative rainfall of this event.
Share
Altmetrics
Final-revised paper
Preprint