Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-675-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-675-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The characteristics of the 2022 Tonga volcanic tsunami in the Pacific Ocean
Gui Hu
Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, China
Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
Zhiyuan Ren
School of Marine Science and Technology, Northwestern Polytechnical
University, Xi'an, China
Department of Civil and Environmental Engineering, National University of
Singapore, Singapore
Kan Zhang
Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, China
Related authors
Yuchen Wang, Mohammad Heidarzadeh, Kenji Satake, and Gui Hu
Nat. Hazards Earth Syst. Sci., 22, 1073–1082, https://doi.org/10.5194/nhess-22-1073-2022, https://doi.org/10.5194/nhess-22-1073-2022, 2022
Short summary
Short summary
Tsunami waveforms contain the features of its source, propagation path, and local topography. On 4 March 2021, two tsunamis were generated by earthquakes in the Kermadec Islands, New Zealand, within 2 h. This rare case gives us a valuable opportunity to study the characteristics of two tsunamis. We analyzed the records of two tsunamis at tide gauges with spectral analysis tools. It is found that two tsunamis superpose during the few hours after the arrival of the second tsunami.
Qiang Qiu, Linlin Li, Mai Ye, Hongqiang Yang, Xingyu Song, Tingting Zheng, Jinghe Cao, Peitao Wang, Zhanying Chen, Zhiwen Zhang, Kuilin Xiao, Xing Huang, Yadong Huang, Chuanyang Zheng, Zhiyuan OuYang, Xiaoming Fu, Muzhong Wang, Zhen Wang, Zitao Zhang, and Haiping Cui
EGUsphere, https://doi.org/10.5194/egusphere-2025-3563, https://doi.org/10.5194/egusphere-2025-3563, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
To address critical data gaps on land stability and sea levels in the vast South China Sea, a new GPS station was deployed. It measured small, stable land shifts (<1 cm yearly) and accurately tracked sea-level rise, matching the global average. It detects abnormal sea-level surges from underwater landslides or tsunamis if large enough. Serving as a vital link in a sparse network, this station gives vital data to study regional earth movements, coastal hazards, and sea-level trends.
Raquel P. Felix, Judith A. Hubbard, Kyle E. Bradley, Karen H. Lythgoe, Linlin Li, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 22, 1665–1682, https://doi.org/10.5194/nhess-22-1665-2022, https://doi.org/10.5194/nhess-22-1665-2022, 2022
Short summary
Short summary
The Flores Thrust lies along the north coasts of Bali and Lombok. We model how an earthquake on this fault could trigger a tsunami that would impact the regional capital cities of Mataram and Denpasar. We show that for 3–5 m of slip on the fault (a Mw 7.5–7.9+ earthquake), the cities would experience a wave ca. 1.6–2.7 and ca. 0.6–1.4 m high, arriving in < 9 and ca. 23–27 min, respectively. They would also experience subsidence of 20–40 cm, resulting in long-term exposure to coastal hazards.
Yuchen Wang, Mohammad Heidarzadeh, Kenji Satake, and Gui Hu
Nat. Hazards Earth Syst. Sci., 22, 1073–1082, https://doi.org/10.5194/nhess-22-1073-2022, https://doi.org/10.5194/nhess-22-1073-2022, 2022
Short summary
Short summary
Tsunami waveforms contain the features of its source, propagation path, and local topography. On 4 March 2021, two tsunamis were generated by earthquakes in the Kermadec Islands, New Zealand, within 2 h. This rare case gives us a valuable opportunity to study the characteristics of two tsunamis. We analyzed the records of two tsunamis at tide gauges with spectral analysis tools. It is found that two tsunamis superpose during the few hours after the arrival of the second tsunami.
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
Cited articles
Adam, D.: Tonga volcano created puzzling atmospheric ripples, Nature, 601, 7894, https://doi.org/10.1038/d41586-022-00127-1, 2022.
Amores, A., Monserrat, S., Marcos, M., Argüeso, D., Villalonga, J.,
Jordà, G., and Gomis, D.: Numerical simulation of atmospheric Lamb waves
generated by the 2022 Hunga-Tonga volcanic eruption, Geophys. Res. Lett.,
49, e2022GL098240, https://doi.org/10.1029/2022GL098240, 2022.
Aranguiz, R., Catalán, P. A., Cecioni, C., Bellotti, G., Henriquez, P.,
and González, J.: Tsunami Resonance and Spatial Pattern of Natural
Oscillation Modes With Multiple Resonators, J. Geophys. Res.-Oceans, 124,
7797–7816, https://doi.org/10.1029/2019JC015206, 2019.
Baba, T., Takahashi, N., Kaneda, Y., Ando, K., Matsuoka, D., and Kato, T.:
Parallel Implementation of Dispersive Tsunami Wave Modeling with a Nesting
Algorithm for the 2011 Tohoku Tsunami, Pure Appl. Geophys., 172, 3455–3472,
https://doi.org/10.1007/s00024-015-1049-2, 2015.
Bevis, M., Taylor, F. W., Schutz, B. E., Recy, J., Isacks, B. L., Helu, S.,
Singh, R., Kendrick, E., Stowell, J., Taylor, B., and Calmantli, S.:
Geodetic observations of very rapid convergence and back-arc extension at
the tonga arc, Nature, 374, 249–251, https://doi.org/10.1038/374249a0, 1995.
Billen, M. I., Gurnis, M., and Simons, M.: Multiscale dynamics of the
Tonga–Kermadec subduction zone, Geophys. J. Int., 153, 359–388,
https://doi.org/10.1046/j.1365-246X.2003.01915.x, 2003, 2003.
Carvajal, M., Sepúlveda, I., Gubler, A., and Garreaud, R.: Worldwide
Signature of the 2022 Tonga Volcanic Tsunami, Geophys. Res. Lett., 49,
e2022GL098153, https://doi.org/10.1029/2022GL098153, 2022.
De Lange, W. P. and Healy, T. R.: New Zealand tsunamis 1840–1982, New Zeal.
J. Geol. Geophys., 29, 115–134, https://doi.org/10.1080/00288306.1986.10427527, 1986.
DGCA: Directorate General of Civil Aviation (Chile), DGCA [data set], https://climatologia.meteochile.gob.cl/application/informacion/grupoEstaciones, last access: 1 March 2022.
Duncombe, J.: The Surprising Reach of Tonga's Giant Atmospheric Waves,
Eos, 103, https://doi.org/10.1029/2022EO220050, 2022.
Edmonds, M.: Hunga-Tonga-Hunga-Ha'apai in the south Pacific erupts
violently, Temblor, https://doi.org/10.32858/temblor.231, 2022.
FMS: Fiji Meteorological Service, FMS [data set], https://www.met.gov.fj, last access: 1 March 2022.
Garvin, J. B., Slayback, D. A., Ferrini, V., Frawley, J., Giguere, C.,
Asrar, G. R., and Andersen, K.: Monitoring and Modeling the Rapid Evolution
of Earth's Newest Volcanic Island: Hunga Tonga Hunga Ha'apai (Tonga) Using
High Spatial Resolution Satellite Observations, Geophys. Res. Lett., 45,
3445–3452, https://doi.org/10.1002/2017GL076621, 2018.
GEBCO: The General Bathymetric Chart of the Oceans, GEBCO [data set], https://www.gebco.net/data_and_products/gridded_bathymetry_data/, last access: 1 April 2019.
GeoNet: Earth Observation Network System in New Zealand, GeoNet [data set], https://tilde.geonet.org.nz/ui/data-exploration, last access: 1 March 2022.
Gossard, E. E. and Hooke, W. H.: Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves – Their Generation and Propagation, in: Developments in Atmospheric Science, Vol. 2, Elsevier Science Ltd., ISBN 978-0444411969, 1975.
Heidarzadeh, M. and Satake, K.: Waveform and Spectral Analyses of the 2011
Japan Tsunami Records on Tide Gauge and DART Stations Across the Pacific
Ocean, Pure Appl. Geophys., 170, 1275–1293,
https://doi.org/10.1007/s00024-012-0558-5, 2013.
Heidarzadeh, M. and Satake, K.: Excitation of Basin-Wide Modes of the
Pacific Ocean Following the March 2011 Tohoku Tsunami, Pure Appl. Geophys.,
171, 3405–3419, https://doi.org/10.1007/s00024-013-0731-5, 2014.
Hu, G., Feng, W., Wang, Y., Li, L., He, X., Karakaş, Ç., and Tian,
Y.: Source characteristics and exacerbated tsunami hazard of the 2020 Mw 6.9
Samos earthquake in eastern Aegean Sea, J. Geophys. Res.-Sol. Ea., 127,
e2022JB023961, https://doi.org/10.1029/2022JB023961, 2022.
IOC: Sea Level Station Monitoring Facility, IOC [data set], http://www.ioc-sealevelmonitoring.org/list.php, last access: 1 March 2022.
jagurs-admin: jagurs-admin/jagurs: JAGURS-D_V0516 (JAGURS-D_V0516), Zenodo [code], https://doi.org/10.5281/zenodo.6118212, 2022.
JMA: Japan Meteorological Agency, JMA [data set], https://www.data.jma.go.jp/obd/stats/etrn/index.php, last access: 1 March 2022.
Kawata, Y., Benson, B. C., Borrero, J. C., Borrero, J. L., Davies, H. L.,
Lange, W. P. de, Imamura, F., Letz, H., Nott, J., and Synolakis, C. E.:
Tsunami in Papua New Guinea Was as Intense as First Thought, Eos, Trans. Am.
Geophys. Union, 80, 101–105, https://doi.org/10.1029/99EO00065, 1999.
Kristeková, M., Kristek, J., Moczo, P., and Day, S. M.: Misfit Criteria
for Quantitative Comparison of Seismograms, B. Seismol. Soc. Am., 96,
1836–1850, https://doi.org/10.1785/0120060012, 2006.
Kubota, T., Saito, T., and Nishida, K.: Global fast-traveling tsunamis by
atmospheric pressure waves on the 2022 Tonga eruption, Science, 377, 91–94,
https://doi.org/10.1126/science.abo4364, 2022.
Kulichkov, S. N., Chunchuzov, I. P., Popov, O. E., Gorchakov, G. I., Mishenin, A. A., Perepelkin, V. G., Bush, G. A., Skorokhod, A. I., Vinogradov, Y. A., Semutnikova, E. G., Šepic, J., Medvedev, I. P., Gushchin, R. A., Kopeikin, V. M., Belikov, I. B., Gubanova, D. P., Karpov, A. V., and Tikhonov, A. V.: Acoustic-Gravity Lamb Waves from the Eruption of the Hunga-Tonga-Hunga-Hapai Volcano, Its Energy Release and Impact on Aerosol Concentrations and Tsunami, Pure Appl. Geophys., 179, 1533–1548, https://doi.org/10.1007/s00024-022-03046-4, 2022.
Lamb, H.: Hydrodynamics, Cambridge Univ. Press, ISBN 978-0486602561, 1932.
Le Pichon, A., Blanc, E., and Hauchecorne, A.: Infrasound monitoring for
atmospheric studies, Springer Science & Business Media, 735 pp.,
https://doi.org/10.1007/978-1-4020-9508-5, 2010.
Lin, J., Rajesh, P. K., Lin, C. C. H., Chou, M., Liu, J.-Y., Yue, J., Hsiao,
T.-Y., Tsai, H.-F., Chao, H.-M., and Kung, M.-M.: Rapid Conjugate Appearance
of the Giant Ionospheric Lamb Wave Signatures in the Northern Hemisphere
After Hunga- Tonga Volcano Eruptions, Geophys. Res. Lett., 49,
e2022GL098222, https://doi.org/10.1029/2022GL098222, 2022.
Liu, P. L.-F. and Higuera, P.: Water waves generated by moving atmospheric
pressure: Theoretical analyses with applications to the 2022 Tonga event, arXiv [preprint], https://doi.org/10.48550/arXiv.2205.05856, 12 May 2022.
Liu, X., Xu, J., Yue, J., and Kogure, M.: Strong Gravity Waves Associated
With Tonga Volcano Eruption Revealed by SABER Observations, Geophys. Res.
Lett., 49, e2022GL098339, https://doi.org/10.1029/2022GL098339, 2022.
Lynett, P., McCann, M., Zhou, Z., Renteria, W., Borrero, J., Greer, D.,
Fa'anunu, `Ofa, Bosserelle, C., Jaffe, B., Selle, S. La, Ritchie, A.,
Snyder, A., Nasr, B., Bott, J., Graehl, N., Synolakis, C., Ebrahimi, B., and
Cinar, G. E.: Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga
Ha'apai eruption, Nature, 609, 728–733, https://doi.org/10.1038/s41586-022-05170-6, 2022.
Matoza, R. S., Matoza, R. S., Fee, D., Assink, J. D., Iezzi, A. M., Green,
D. N., Kim, K., Lecocq, T., Krishnamoorthy, S., Lalande, J., Nishida, K.,
and Gee, K. L.: Atmospheric waves and global seismoacoustic observations of
the January 2022 Hunga eruption, Tonga, Science, 377, 95–100,
https://doi.org/10.1126/science.abo7063, 2022.
Mori, N., Takahashi, T., Yasuda, T., and Yanagisawa, H.: Survey of 2011
Tohoku earthquake tsunami inundation and run-up, Geophys. Res. Lett., 38,
L00G14, https://doi.org/10.1029/2011GL049210, 2011.
NASA: Dramatic changes at Hunga Tonga-Hunga Ha`apai, National Aeronautics and Space Administration, https://earthobservatory.nasa.gov/images/149367/dramatic-changes-at-hunga-tonga-hunga-haapai, last access: 5 May 2022.
NOAA: National Weather Service, National Oceanic and Atmospheric Administration [data set], https://www.weather.gov/ilm/observations, last access: 1 March 2022.
Nomanbhoy, N. and Satake, K.: Generation mechanism of tsunamis from the 1883
Krakatau Eruption, Geophys. Res. Lett., 22, 509–512,
https://doi.org/10.1029/94GL03219, 1995.
Omira, R., Baptista, M. A., Quartau, R., Ramalho, R. S., Kim, J., Ramalho,
I., and Rodrigues, A.: How hazardous are tsunamis triggered by small-scale
mass-wasting events on volcanic islands? New insights from Madeira–NE
Atlantic, Earth Planet. Sci. Lett., 578, 117333,
https://doi.org/10.1016/j.epsl.2021.117333, 2022.
Otsuka, S.: Visualizing Lamb Waves From a Volcanic Eruption Using
Meteorological Satellite Himawari-8, Geophys. Res. Lett., 49, e2022GL098324,
https://doi.org/10.1029/2022GL098324, 2022.
Pelinovsky, E., Choi, B. H., Stromkov, A., Didenkulova, I., and Kim, H.:
Analysis of Tide-Gauge Records of the 1883 Krakatau Tsunami, in: Tsunamis, edited by: Satake, K., Adv. Nat. Technol. Hazards Res., 23, Springer, Dordrecht, https://doi.org/10.1007/1-4020-3331-1_4, 2005.
Plank, S., Marchese, F., Genzano, N., Nolde, M., and Martinis, S.: The short
life of the volcanic island New Late'iki (Tonga) analyzed by multi-sensor
remote sensing data, Sci. Rep., 10, 22293,
https://doi.org/10.1038/s41598-020-79261-7, 2020.
PMEL: DART® (Deep-ocean Assessment and Reporting of Tsunamis), NOAA Center for Tsunami Research [data set], https://nctr.pmel.noaa.gov/Dart/, last access: 1 March 2022.
Rabinovich, A. B.: Spectral analysis of tsunami waves: Separation of source
and topography effects, J. Geophys. Res.-Oceans, 102, 12663–12676,
https://doi.org/10.1029/97JC00479, 1997.
Rabinovich, A. B.: Seiches and harbor oscillations, in: Handbook of coastal
and ocean engineering, World Scientific, 193–236, https://doi.org/10.1142/6914, 2009.
Rabinovich, A. B., Thomson, Æ. R. E., and Stephenson, F. E.: The Sumatra
tsunami of 26 December 2004 as observed in the North Pacific and North
Atlantic oceans, Surv. Geophys., 27, 647–677,
https://doi.org/10.1007/s10712-006-9000-9, 2006.
Rabinovich, A. B., Titov, V. V., Moore, C. W., and Eble, M. C.: The 2004
Sumatra Tsunami in the Southeastern Pacific Ocean: New Global Insight From
Observations and Modeling, J. Geophys. Res.-Oceans, 122, 7992–8019,
https://doi.org/10.1002/2017JC013078, 2017.
Ramalho, R. S., Winckler, G., Madeira, J., Helffrich, G. R., Hipólito,
A., Quartau, R., Adena, K., and Schaefer, J. M.: Hazard potential of
volcanic flank collapses raised by new megatsunami evidence, Sci. Adv., 1,
e1500456, https://doi.org/10.1126/sciadv.1500456, 2015.
Ramírez-Herrera, M. T., Coca, O., and Vargas-Espinosa, V.: Tsunami
Effects on the Coast of Mexico by the Hunga Tonga-Hunga Ha'apai Volcano,
Pure Appl. Geophys., 179, 1117–1137, https://doi.org/10.1007/s00024-022-03017-9, 2022.
Satake, K.: Earthquakes: Double trouble at Tonga, Nature, 466, 931–932,
https://doi.org/10.1038/466931a, 2010.
Satake, K., Heidarzadeh, M., Quiroz, M., and Cienfuegos, R.: History and
features of trans-oceanic tsunamis and implications for paleo-tsunami
studies, Earth-Sci. Rev., 202, 103112, https://doi.org/10.1016/j.earscirev.2020.103112, 2020.
Self, S. and Rampino, M. R.: The 1883 eruption of Krakatau, Nature, 294, 699–704, https://doi.org/10.1038/294699a0, 1981.
Stern, S., Cronin, S., Ribo, M., Barker, S., Brenna, M., Smith, I. E. M., Ford, M., Kula, T., and Vaiomounga, R.: Post-2015 caldera morphology of the Hunga Tonga-Hunga Ha’apai caldera, Tonga, through drone photogrammetry and summit area bathymetry, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13586, https://doi.org/10.5194/egusphere-egu22-13586, 2022.
Themens, D. R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S.,
McCaffrey, A., Prikryl, P., Reid, B., Wood, A., and Jayachandran, P. T.:
Global Propagation of Ionospheric Disturbances Associated With the 2022
Tonga Volcanic Eruption, Geophys. Res. Lett., 49, e2022GL098158,
https://doi.org/10.1029/2022GL098158, 2022.
Thomson, R. E. and Emery, W. J.: Data Analysis Methods in Physical
Oceanography, 3rd edn., Elsevier, New York, 716 pp., https://doi.org/10.1016/C2010-0-66362-0, 2014.
Titov, V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., and Gonza, F.
I.: The Global Reach of the 26 December 2004 Sumatra Tsunami, Science, 309, 2045–2049, https://doi.org/10.1126/science.1114576, 2005.
USGS: M 5.8 Volcanic Eruption – 68 km NNW of Nuku`alofa, Tonga, U.S. Geol.
Surv., https://earthquake.usgs.gov/earthquakes/eventpage/us7000gc8r/, last access: 4 May 2022.
Wang, Y., Heidarzadeh, M., Satake, K., Mulia, I. E., and Yamada, M.: A
Tsunami Warning System Based on Offshore Bottom Pressure Gauges and Data
Assimilation for Crete Island in the Eastern Mediterranean Basin, J.
Geophys. Res.-Sol. Ea., 125, e2020JB020293, https://doi.org/10.1029/2020JB020293, 2020.
Wang, Y., Zamora, N., Quiroz, M., Satake, K., and Cienfuegos, R.: Tsunami
Resonance Characterization in Japan Due to Trans-Pacific Sources: Response
on the Bay and Continental Shelf, J. Geophys. Res.-Oceans, 126, 1–16,
https://doi.org/10.1029/2020JC017037, 2021.
Watanabe, S., Hamilton, K., Sakazaki, T., and Nakano, M.: First Detection of
the Pekeris Internal Global Atmospheric Resonance: Evidence from the 2022
Tonga Eruption and from Global Reanalysis Data, J. Atmos. Sci., 79,
3027–3043, https://doi.org/10.1175/jas-d-22-0078.1, 2022.
WOW: Weather Observation Website, Met Office [data set], https://wow.metoffice.gov.uk/observations/create, last access: 1 March 2022.
Yuen, D. A., Scruggs, M. A., Spera, F. J., Yingcai Zheng, Hao Hu, McNutt, S.
R., Glenn Thompson, Mandli, K., Keller, B. R., Wei, S. S., Peng, Z., Zhou,
Z., Mulargia, F., and Tanioka, Y.: Under the Surface: Pressure-Induced
Planetary-Scale Waves, Volcanic Lightning, and Gaseous Clouds Caused by the
Submarine Eruption of Hunga Tonga-Hunga Ha'apai Volcano Provide an Excellent
Research Opportunity, Earthq. Res. Adv., 2, 100134, https://doi.org/10.1016/j.eqrea.2022.100134, 2022.
Zhang, S., Vierinen, J., Aa, E., Goncharenko, L. P., Erickson, P. J.,
Rideout, W., Coster, A. J., and Spicher, A.: 2022 Tonga Volcanic Eruption
Induced Global Propagation of Ionospheric Disturbances via Lamb Waves,
Front. Astron. Sp. Sci., 9, 1–10, https://doi.org/10.3389/fspas.2022.871275, 2022.
Short summary
We explore the tsunamigenic mechanisms and the hydrodynamic characteristics of the 2022 Hunga Tonga–Hunga Ha'apai volcanic tsunami event. Through extensive analysis of tsunami waveforms, we identify four distinct tsunami components from different physical mechanisms. The long-lasting oscillation of the tsunami event in the Pacific Ocean was mainly associated with the interplay of the ocean waves left by atmospheric waves with local bathymetry.
We explore the tsunamigenic mechanisms and the hydrodynamic characteristics of the 2022 Hunga...
Altmetrics
Final-revised paper
Preprint