Articles | Volume 23, issue 8
https://doi.org/10.5194/nhess-23-2749-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2749-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Apparent contradiction in the projected climatic water balance for Austria: wetter conditions on average versus higher probability of meteorological droughts
Klaus Haslinger
CORRESPONDING AUTHOR
Climate-Impact-Research, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Wolfgang Schöner
Department of Geography and Regional Sciences, University of Graz,
Heinrichstraße 36, 8010 Graz, Austria
Jakob Abermann
Department of Geography and Regional Sciences, University of Graz,
Heinrichstraße 36, 8010 Graz, Austria
Gregor Laaha
Institute of Statistics, University of Natural Resources and Life Sciences (BOKU), Peter Jordan Straße 82, 1190 Vienna, Austria
Konrad Andre
Climate-Impact-Research, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Marc Olefs
Climate-Impact-Research, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Roland Koch
Climate-Impact-Research, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Related authors
Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
Nat. Hazards Earth Syst. Sci., 23, 2547–2568, https://doi.org/10.5194/nhess-23-2547-2023, https://doi.org/10.5194/nhess-23-2547-2023, 2023
Short summary
Short summary
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development, and river blockage hit an alpine valley in Austria during summer 2019. We analyze the environmental conditions initiating the process chain and identify the rapid evolution of a thermokarst channel network as the main driver. Our results highlight the need to account for permafrost degradation in debris flow hazard assessment studies.
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
Tiago Silva, Brandon Samuel Whitley, Elisabeth Machteld Biersma, Jakob Abermann, Katrine Raundrup, Natasha de Vere, Toke Thomas Høye, Verena Haring, and Wolfgang Schöner
Biogeosciences, 22, 4601–4626, https://doi.org/10.5194/bg-22-4601-2025, https://doi.org/10.5194/bg-22-4601-2025, 2025
Short summary
Short summary
Ecosystems in Greenland have experienced significant changes over recent decades. We show the consistency of a high-resolution polar-adapted reanalysis product to represent bio-climatic factors influencing ecological processes. Our results describe the relevance/interaction between snowmelt and soil water content before the growing season onset, infer how the thermal growing season relates to changes in spectral greenness, and describe regions of ongoing changes in vegetation distribution.
Matthew B. Switanek, Jakob Abermann, Wolfgang Schöner, and Michael L. Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-3881, https://doi.org/10.5194/egusphere-2025-3881, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Extreme precipitation is expected to increase in a warming climate. Measurements of precipitation and dew point temperature are often used to estimate observed precipitation-temperature scaling rates. In this study, we use three different approaches which rely on either raw or normalized data to estimate scaling rates and produce predictions of extreme precipitation. Our findings highlight the importance of using normalized data to obtain accurate observation-based scaling estimates.
Jonathan Fipper, Jakob Abermann, Ingo Sasgen, Henrik Skov, Lise Lotte Sørensen, and Wolfgang Schöner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3381, https://doi.org/10.5194/egusphere-2025-3381, 2025
Short summary
Short summary
We use measurements conducted with uncrewed aerial vehicles (UAVs) and reanalysis data to study the drivers of vertical air temperature structures and their link to the surface mass balance of Flade Isblink, a large ice cap in Northeast Greenland. Surface properties control temperature structures up to 100 m above ground, while large-scale circulation dominates above. Mass loss has increased since 2015, with record loss in 2023 associated with frequent synoptic conditions favoring melt.
Jakob Steiner, Jakob Abermann, and Rainer Prinz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2424, https://doi.org/10.5194/egusphere-2025-2424, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ice in Greenland either ends in the ocean or on land and in lakes. We show that more than 95% of the margin ends on land. Ice ending in lakes is much rarer, but with 1.4% quite similar to the 2.2% ending in oceans. We also see that more than 20% of the margin ends in extremely steep, often vertical cliffs. We will now be able to compare these maps against local ice velocities, mass loss and climate to understand whether the margin shape teaches us something about the health of ice in the region.
Lea Hartl, Patrick Schmitt, Lilian Schuster, Kay Helfricht, Jakob Abermann, and Fabien Maussion
The Cryosphere, 19, 1431–1452, https://doi.org/10.5194/tc-19-1431-2025, https://doi.org/10.5194/tc-19-1431-2025, 2025
Short summary
Short summary
We use regional observations of glacier area and volume change to inform glacier evolution modeling in the Ötztal and Stubai range (Austrian Alps) until 2100 in different climate scenarios. Glaciers in the region lost 23 % of their volume between 2006 and 2017. Under current warming trajectories, glacier loss in the region is expected to be near-total by 2075. We show that integrating regional calibration and validation data in glacier models is important to improve confidence in projections.
Florina Roana Schalamon, Sebastian Scher, Andreas Trügler, Lea Hartl, Wolfgang Schöner, and Jakob Abermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4060, https://doi.org/10.5194/egusphere-2024-4060, 2025
Short summary
Short summary
Atmospheric patterns influence the air temperature in Greenland. We investigate two warming periods, from 1922–1932 and 1993–2007, both showing similar temperature increases. Using a neural network-based clustering method, we defined predominant atmospheric patterns for further analysis. Our findings reveal that while the connection between these patterns and local air temperature remains stable, the distribution of patterns changes between the warming periods and the full period (1900–2015).
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
The Cryosphere, 18, 6005–6026, https://doi.org/10.5194/tc-18-6005-2024, https://doi.org/10.5194/tc-18-6005-2024, 2024
Short summary
Short summary
Snow depth plays an important role in water resources, mountain tourism, and hazard management across the European Alps. Our study uses station-based historical observations to quantify how changes in temperature and precipitation affect average seasonal snow depth. We find that the relationship between these variables has been surprisingly robust over the last 120 years. This allows us to more accurately estimate how future climate will affect seasonal snow depth in different elevation zones.
Jorrit van der Schot, Jakob Abermann, Tiago Silva, Kerstin Rasmussen, Michael Winkler, Kirsty Langley, and Wolfgang Schöner
The Cryosphere, 18, 5803–5823, https://doi.org/10.5194/tc-18-5803-2024, https://doi.org/10.5194/tc-18-5803-2024, 2024
Short summary
Short summary
We present snow data from nine locations in coastal Greenland. We show that a reanalysis product (CARRA) simulates seasonal snow characteristics better than a regional climate model (RACMO). CARRA output matches particularly well with our reference dataset when we look at the maximum snow water equivalent and the snow cover end date. We show that seasonal snow in coastal Greenland has large spatial and temporal variability and find little evidence of trends in snow cover characteristics.
Bernhard Hynek, Daniel Binder, Michele Citterio, Signe Hillerup Larsen, Jakob Abermann, Geert Verhoeven, Elke Ludewig, and Wolfgang Schöner
The Cryosphere, 18, 5481–5494, https://doi.org/10.5194/tc-18-5481-2024, https://doi.org/10.5194/tc-18-5481-2024, 2024
Short summary
Short summary
An avalanche event in February 2018 caused thick snow deposits on Freya Glacier, a peripheral mountain glacier in northeastern Greenland. The avalanche deposits contributed significantly to the mass balance, leaving a strong imprint in the elevation changes in 2013–2021. The 8-year geodetic mass balance (2013–2021) of the glacier is positive, whereas previous estimates by direct measurements were negative and now turned out to have a negative bias.
Christoph Posch, Jakob Abermann, and Tiago Silva
The Cryosphere, 18, 2035–2059, https://doi.org/10.5194/tc-18-2035-2024, https://doi.org/10.5194/tc-18-2035-2024, 2024
Short summary
Short summary
Radar beams from satellites exhibit reflection differences between water and ice. This condition, as well as the comprehensive coverage and high temporal resolution of the Sentinel-1 satellites, allows automatically detecting the timing of when ice cover of lakes in Greenland disappear. We found that lake ice breaks up 3 d later per 100 m elevation gain and that the average break-up timing varies by ±8 d in 2017–2021, which has major implications for the energy budget of the lakes.
Florian Lippl, Alexander Maringer, Margit Kurka, Jakob Abermann, Wolfgang Schöner, and Manuela Hirschmugl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-12, https://doi.org/10.5194/essd-2024-12, 2024
Preprint withdrawn
Short summary
Short summary
The aim of our work was to give an overview of data currently available for the National Park Gesäuse and Johnsbachtal relevant to the European long-term ecosystem monitoring. This data, further was made available on respective data repositories, where all data is downloadable free of charge. Data presented in our paper is from all compartments, the atmosphere, social & economic sphere, biosphere and geosphere. We consider our approach as an opportunity to function as a showcase for other sites.
Maral Habibi, Iman Babaeian, and Wolfgang Schöner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-48, https://doi.org/10.5194/hess-2024-48, 2024
Publication in HESS not foreseen
Short summary
Short summary
Our study investigates how snow melting affects droughts in Iran's Urmia Lake Basin, revealing that future droughts will likely become more severe due to reduced snowmelt and increased evaporation. This is crucial for understanding water availability in the region, affecting millions. We used advanced climate models and drought indices to predict changes, aiming to inform water management strategies.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Sonika Shahi, Jakob Abermann, Tiago Silva, Kirsty Langley, Signe Hillerup Larsen, Mikhail Mastepanov, and Wolfgang Schöner
Weather Clim. Dynam., 4, 747–771, https://doi.org/10.5194/wcd-4-747-2023, https://doi.org/10.5194/wcd-4-747-2023, 2023
Short summary
Short summary
This study highlights how the sea ice variability in the Greenland Sea affects the terrestrial climate and the surface mass changes of peripheral glaciers of the Zackenberg region (ZR), Northeast Greenland, combining model output and observations. Our results show that the temporal evolution of sea ice influences the climate anomaly magnitude in the ZR. We also found that the changing temperature and precipitation patterns due to sea ice variability can affect the surface mass of the ice cap.
Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
Nat. Hazards Earth Syst. Sci., 23, 2547–2568, https://doi.org/10.5194/nhess-23-2547-2023, https://doi.org/10.5194/nhess-23-2547-2023, 2023
Short summary
Short summary
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development, and river blockage hit an alpine valley in Austria during summer 2019. We analyze the environmental conditions initiating the process chain and identify the rapid evolution of a thermokarst channel network as the main driver. Our results highlight the need to account for permafrost degradation in debris flow hazard assessment studies.
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 2019–2034, https://doi.org/10.5194/hess-27-2019-2023, https://doi.org/10.5194/hess-27-2019-2023, 2023
Short summary
Short summary
In seasonal climates with a warm and a cold season, low flows are generated by different processes so that return periods used as a measure of event severity will be inaccurate. We propose a novel mixed copula estimator that is shown to outperform previous calculation methods. The new method is highly relevant for a wide range of European river flow regimes and should be used by default.
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 689–701, https://doi.org/10.5194/hess-27-689-2023, https://doi.org/10.5194/hess-27-689-2023, 2023
Short summary
Short summary
Knowing the severity of an extreme event is of particular importance to hydrology and water policies. In this paper we propose a mixed distribution approach for low flows. It provides one consistent approach to quantify the severity of summer, winter, and annual low flows based on their respective annualities (or return periods). We show that the new method is much more accurate than existing methods and should therefore be used by engineers and water agencies.
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 4553–4574, https://doi.org/10.5194/hess-26-4553-2022, https://doi.org/10.5194/hess-26-4553-2022, 2022
Short summary
Short summary
Our study uses a statistical boosting model for estimating low flows on a monthly basis, which can be applied to estimate low flows at sites without measurements. We use an extensive dataset of 260 stream gauges in Austria for model development. As we are specifically interested in low-flow events, our method gives specific weight to such events. We found that our method can considerably improve the predictions of low-flow events and yields accurate estimates of the seasonal low-flow variation.
Tiago Silva, Jakob Abermann, Brice Noël, Sonika Shahi, Willem Jan van de Berg, and Wolfgang Schöner
The Cryosphere, 16, 3375–3391, https://doi.org/10.5194/tc-16-3375-2022, https://doi.org/10.5194/tc-16-3375-2022, 2022
Short summary
Short summary
To overcome internal climate variability, this study uses k-means clustering to combine NAO, GBI and IWV over the Greenland Ice Sheet (GrIS) and names the approach as the North Atlantic influence on Greenland (NAG). With the support of a polar-adapted RCM, spatio-temporal changes on SEB components within NAG phases are investigated. We report atmospheric warming and moistening across all NAG phases as well as large-scale and regional-scale contributions to GrIS mass loss and their interactions.
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022, https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Short summary
We used data from automatic weather stations on 16 glaciers to show how clouds influence glacier melt in different climates around the world. We found surface melt was always more frequent when it was cloudy but was not universally faster or slower than under clear-sky conditions. Also, air temperature was related to clouds in opposite ways in different climates – warmer with clouds in cold climates and vice versa. These results will help us improve how we model past and future glacier melt.
Thomas Goelles, Tobias Hammer, Stefan Muckenhuber, Birgit Schlager, Jakob Abermann, Christian Bauer, Víctor J. Expósito Jiménez, Wolfgang Schöner, Markus Schratter, Benjamin Schrei, and Kim Senger
Geosci. Instrum. Method. Data Syst., 11, 247–261, https://doi.org/10.5194/gi-11-247-2022, https://doi.org/10.5194/gi-11-247-2022, 2022
Short summary
Short summary
We propose a newly developed modular MObile LIdar SENsor System (MOLISENS) to enable new applications for small industrial light detection and ranging (lidar) sensors. MOLISENS supports both monitoring of dynamic processes and mobile mapping applications. The mobile mapping application of MOLISENS has been tested under various conditions, and results are shown from two surveys in the Lurgrotte cave system in Austria and a glacier cave in Longyearbreen on Svalbard.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Short summary
Knowledge about inhomogeneities in a data set is important for any subsequent climatological analysis. We ran three well-established homogenization methods and compared the identified break points. By only treating breaks as valid when detected by at least two out of three methods, we enhanced the robustness of our results. We found 45 breaks within 42 of 184 investigated series; of these 70 % could be explained by events recorded in the station history.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 129–148, https://doi.org/10.5194/hess-26-129-2022, https://doi.org/10.5194/hess-26-129-2022, 2022
Short summary
Short summary
This study aims to predict long-term averages of low flow on a hydrologically diverse dataset in Austria. We compared seven statistical learning methods and included a backward variable selection approach. We found that separating the low-flow processes into winter and summer low flows leads to good performance for all the models. Variable selection results in more parsimonious and more interpretable models. Linear approaches for prediction and variable selection are sufficient for our dataset.
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Cited articles
Allan, R. P., Barlow, M., Byrne, M. P., Cherchi, A., Douville, H., Fowler, H. J., Gan, T. Y., Pendergrass, A. G., Rosenfeld, D., Swann, A. L. S., Wilcox, L. J., and Zolina, O.: Advances in understanding large-scale responses of the water cycle to climate change, Ann. NY. Acad. Sci., 1472, 49–75, https://doi.org/10.1111/nyas.14337, 2020.
Allen, R. G. and Food and Agriculture Organization of the United Nations (Eds.): Crop evapotranspiration: guidelines for computing crop water
requirements, Food and Agriculture Organization of the United Nations, Rome,
300 pp., https://www.fao.org/3/X0490E/x0490e00.htm (last access: 6 August 2023), 1998.
Bakke, S. J., Ionita, M., and Tallaksen, L. M.: The 2018 northern European
hydrological drought and its drivers in a historical perspective, Hydrol.
Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020, 2020.
Black, E., Blackburn, M., Harrison, G., Hoskins, B., and Methven, J.: Factors contributing to the summer 2003 European heatwave, Weather, 59, 217–223, https://doi.org/10.1256/wea.74.04, 2004.
Blöschl, G., Blaschke, A. P., Haslinger, K., Hofstätter, M., Parajka, J., Salinas, J., and Schöner, W.: Auswirkungen der Klimaänderung auf Österreichs Wasserwirtschaft – ein aktualisierter Statusbericht, Österr. Wasser- Abfallwirtsch., https://doi.org/10.1007/s00506-018-0498-0, 2018.
Boergens, E., Güntner, A., Dobslaw, H., and Dahle, C.: Quantifying the
Central European Droughts in 2018 and 2019 With GRACE Follow-On, Geophys.
Res. Lett., 47, e2020GL087285, https://doi.org/10.1029/2020GL087285, 2020.
Brovkin, V., Brook, E., Williams, J. W., Bathiany, S., Lenton, T. M., Barton, M., DeConto, R. M., Donges, J. F., Ganopolski, A., McManus, J., Praetorius, S., de Vernal, A., Abe-Ouchi, A., Cheng, H., Claussen, M., Crucifix, M., Gallopín, G., Iglesias, V., Kaufman, D. S., Kleinen, T., Lambert, F., van der Leeuw, S., Liddy, H., Loutre, M.-F., McGee, D., Rehfeld, K., Rhodes, R., Seddon, A. W. R., Trauth, M. H., Vanderveken, L., and Yu, Z.: Past abrupt changes, tipping points and cascading impacts in the Earth system, Nat. Geosci., 14, 550–558, https://doi.org/10.1038/s41561-021-00790-5, 2021.
Brunetti, M., Lentini, G., Maugeri, M., Nanni, T., Auer, I., Böhm, R., and Schöner, W.: Climate variability and change in the Greater Alpine
Region over the last two centuries based on multi-variable analysis, Int. J.
Climatol., 29, 2197–2225, https://doi.org/10.1002/joc.1857, 2009.
Buras, A., Rammig, A., and Zang, C. S.: Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003, Biogeosciences, 17, 1655–1672,https://doi.org/10.5194/bg-17-1655-2020, 2020.
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed
fingerprint of a weakening Atlantic Ocean overturning circulation, Nature, 556, 191–196, https://doi.org/10.1038/s41586-018-0006-5, 2018.
Carenzo, M., Pellicciotti, F., Rimkus, S., and Burlando, P.: Assessing the
transferability and robustness of an enhanced temperature-index glacier-melt
model, J. Glaciol., 55, 258–274, https://doi.org/10.3189/002214309788608804, 2009.
CCCA: Welcome to the CCCA Data Server, https://data.ccca.ac.at/ (last access: 8 August 2023), 2023.
Chimani, B., Heinrich, G., Hofstätter, M., Kerschbaumer, M., Kienberger,
S., Leuprecht, A., Lexer, A., Peßenteiner, S., Poetsch, M. S., Salzmann,
M., Spiekermann, R., Switanek, M., and Truhetz, H.: Endbericht ÖKS15 –
Klimaszenarien für Österreich – Daten – Methoden – Klimaanalyse,
Projektbericht, https://www.bmk.gv.at/dam/jcr:7fd75e22-1b88-415f-a4a8-6ea8aa51d575/OEKS15_Endbericht_kleiner.pdf (last access: 6 August 2023), 2016.
Chimani, B., Matulla, C., Hiebl, J., Schellander-Gorgas, T., Maraun, D.,
Mendlik, T., Eitzinger, J., Kubu, G., and Thaler, S.: Compilation of a guideline providing comprehensive information on freely available climate
change data and facilitating their efficient retrieval, Clim. Serv., 19,
100179, https://doi.org/10.1016/j.cliser.2020.100179, 2020.
Coles, S.: An introduction to statistical modeling of extreme values, Springer, London, New York, 208 pp., ISBN 978-1-85233-459-8, 2001.
Duethmann, D. and Blöschl, G.: Why has catchment evaporation increased in the past 40 years? A data-based study in Austria, Hydrol. Earth Syst. Sci., 22, 5143–5158, https://doi.org/10.5194/hess-22-5143-2018, 2018.
European Commission: Joint Research Centre: Global warming and drought impacts in the EU: JRC PESETA IV project: Task 7, Publications Office, LU,
https://doi.org/10.2760/597045, 2020.
Fabiano, F., Meccia, V. L., Davini, P., Ghinassi, P., and Corti, S.: A
regime view of future atmospheric circulation changes in northern mid-latitudes, Weather Clim. Dynam., 2, 163–180, https://doi.org/10.5194/wcd-2-163-2021, 2021.
Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J.: Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015, 2015.
Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D., and Schär, C.: Soil Moisture–Atmosphere Interactions during the 2003 European Summer Heat Wave, J. Climate, 20, 5081–5099, https://doi.org/10.1175/JCLI4288.1, 2007.
Gabbi, J., Carenzo, M., Pellicciotti, F., Bauder, A., and Funk, M.: A
comparison of empirical and physically based glacier surface melt models for
long-term simulations of glacier response, J. Glaciol., 60, 1140–1154,
https://doi.org/10.3189/2014JoG14J011, 2014.
Gali Reniu, M.: Evapotranspiration projections in Austria under different
climate change scenarios, MS Thesis, Universität für Bodenkultur, Vienna, 72 pp., https://zidapps.boku.ac.at/abstracts/download.php?dataset_id=17712&property_id=107 (last access: 6 August 2023), 2017.
GeoSphere: Data Hub, https://data.hub.zamg.ac.at/ (last access: 6 August 2023), 2023.
Haas, J. C. and Birk, S.: Trends in Austrian groundwater – Climate or human
impact?, J. Hydrol.: Reg. Stud., 22, 100597, https://doi.org/10.1016/j.ejrh.2019.100597, 2019.
Haiden, T., Kann, A., Wittmann, C., Pistotnik, G., Bica, B., and Gruber, C.:
The Integrated Nowcasting through Comprehensive Analysis (INCA) System and
Its Validation over the Eastern Alpine Region, Weather Forecast., 26, 166–183, https://doi.org/10.1175/2010WAF2222451.1, 2011.
Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Kyselý, J., and Kumar, R.: Revisiting the recent European droughts from
a long-term perspective, Sci. Rep., 8, 9499, https://doi.org/10.1038/s41598-018-27464-4, 2018.
Hanus, S., Hrachowitz, M., Zekollari, H., Schoups, G., Vizcaino, M., and Kaitna, R.: Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria, Hydrol. Earth Syst. Sci., 25,
3429–3453, https://doi.org/10.5194/hess-25-3429-2021, 2021.
Hargreaves, G. and Samani, Z.: Reference Crop Evapotranspiration from
Temperature, Appl. Eng. Agric., 1, 96–99, https://doi.org/10.13031/2013.26773, 1985.
Hargreaves, G. H. and Allen, R. G.: History and Evaluation of Hargreaves
Evapotranspiration Equation, J. Irrig. Drain. Eng., 129, 53–63,
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53), 2003.
Haslinger, K. and Bartsch, A.: Creating long-term gridded fields of reference evapotranspiration in Alpine terrain based on a recalibrated Hargreaves method, Hydrol. Earth Syst. Sci., 20, 1211–1223, https://doi.org/10.5194/hess-20-1211-2016, 2016.
Haslinger, K. and Blöschl, G.: Space-Time Patterns of Meteorological Drought Events in the European Greater Alpine Region Over the Past 210 Years, Water Resour. Res., 53, 9807–9823, https://doi.org/10.1002/2017WR020797, 2017.
Haslinger, K., Koffler, D., Schöner, W., and Laaha, G.: Exploring the
link between meteorological drought and streamflow: Effects of
climate-catchment interaction, Water Resour. Res., 50, 2468–2487,
https://doi.org/10.1002/2013WR015051, 2014.
Haslinger, K., Schöner, W., and Anders, I.: Future drought probabilities
in the Greater Alpine Region based on COSMO-CLM experiments – spatial patterns and driving forces, Meteorol. Z., 25, 137–148,
https://doi.org/10.1127/metz/2015/0604, 2016.
Haslinger, K., Hofstätter, M., Kroisleitner, C., Schöner, W., Laaha,
G., Holawe, F., and Blöschl, G.: Disentangling drivers of meteorological
droughts in the European Greater Alpine Region during the last two
centuries, J. Geophys. Res.-Atmos., 124, 12404–12425, https://doi.org/10.1029/2018JD029527, 2019a.
Haslinger, K., Holawe, F., and Blöschl, G.: Spatial characteristics of
precipitation shortfalls in the Greater Alpine Region – a data-based
analysis from observations, Theor. Appl. Climatol., 136, 717–731,
https://doi.org/10.1007/s00704-018-2506-5, 2019b.
Haslinger, K., Hofstätter, M., Schöner, W., and Blöschl, G.:
Changing summer precipitation variability in the Alpine region: on the role
of scale dependent atmospheric drivers, Clim. Dyn., 57, 1009–1021, https://doi.org/10.1007/s00382-021-05753-5, 2021.
Hausfather, Z. and Peters, G. P.: Emissions – the `business as usual' story
is misleading, Nature, 577, 618–620, https://doi.org/10.1038/d41586-020-00177-3, 2020.
Hiebl, J. and Frei, C.: Daily temperature grids for Austria since 1961 – concept, creation and applicability, Theor. Appl. Climatol., 124, 161–178, https://doi.org/10.1007/s00704-015-1411-4, 2016.
Hofstätter, M., Jacobeit, J., Homann, M., Lexer, A., Chimani, B., Philipp, A., Beck, C., and Ganekind, M.: WETRAX – WEather Patterns, CycloneTRAcks and related precipitation EXtremes, final report, Augsburg, Germany, https://www.researchgate.net/publication/258775142_WETRAX_WEather_Patterns_Cyclone_TRAcks_and_related_precipitation_EXtremes (last access: 6 August 2023), 2015.
Hosking, J. R. M.: L-Moments: Analysis and Estimation of Distributions Using
Linear Combinations of Order Statistics, J. Roy. Stat. Soc. Ser. B, 52, 105–124, https://doi.org/10.1111/j.2517-6161.1990.tb01775.x, 1990.
Huss, M.: Present and future contribution of glacier storage change to
runoff from macroscale drainage basins in Europe: Glacier Contribution To Continental-Scale Runoff, Water Resour. Res., 47, W07511, https://doi.org/10.1029/2010WR010299, 2011.
Huss, M. and Hock, R.: A new model for global glacier change and sea-level
rise, Front. Earth Sci., 3, 54, https://doi.org/10.3389/feart.2015.00054, 2015.
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier
mass loss, Nat. Clim. Change, 8, 135–140, https://doi.org/10.1038/s41558-017-0049-x, 2018.
Huss, M., Jouvet, G., Farinotti, D., and Bauder, A.: Future high-mountain
hydrology: a new parameterization of glacier retreat, Hydrol. Earth Syst.
Sci., 14, 815–829, https://doi.org/10.5194/hess-14-815-2010, 2010.
Ionita, M., Tallaksen, L. M., Kingston, D. G., Stagge, J. H., Laaha, G., Van Lanen, H. A. J., Scholz, P., Chelcea, S. M., and Haslinger, K.: The European 2015 drought from a climatological perspective, Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, 2017.
Jenicek, M. and Ledvinka, O.: Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia, Hydrol. Earth Syst. Sci., 24, 3475–3491, https://doi.org/10.5194/hess-24-3475-2020, 2020.
Jenicek, M., Seibert, J., Zappa, M., Staudinger, M., and Jonas, T.: Importance of maximum snow accumulation for summer low flows in humid catchments, Hydrol. Earth Syst. Sci., 20, 859–874, https://doi.org/10.5194/hess-20-859-2016, 2016.
Jenicek, M., Seibert, J., and Staudinger, M.: Modeling of Future Changes in
Seasonal Snowpack and Impacts on Summer Low Flows in Alpine Catchments, Water Resour. Res., 54, 538–556, https://doi.org/10.1002/2017WR021648, 2018.
Kaser, G., Großhauser, M., and Marzeion, B.: Contribution potential of
glaciers to water availability in different climate regimes, P. Natl. Acad. Sci. USA, 107, 20223–20227, https://doi.org/10.1073/pnas.1008162107, 2010.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué,
M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E.,
Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K.,
and Wulfmeyer, V.: Regional climate modeling on European scales: a joint
standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7,
1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kotlarski, S., Gobiet, A., Morin, S., Olefs, M., Rajczak, J., and Samacoïts, R.: 21st Century alpine climate change, Clim. Dynam., 60,
65–86, https://doi.org/10.1007/s00382-022-06303-3, 2023.
Kravtsov, S., Grimm, C., and Gu, S.: Global-scale multidecadal variability
missing in state-of-the-art climate models, Npj Clim. Atmos. Sci., 1, 34, https://doi.org/10.1038/s41612-018-0044-6, 2018.
Laaha, G., Parajka, J., Viglione, A., Koffler, D., Haslinger, K., Schöner, W., Zehetgruber, J., and Blöschl, G.: A three-pillar approach to assessing climate impacts on low flows, Hydrol. Earth Syst. Sci., 20, 3967–3985, https://doi.org/10.5194/hess-20-3967-2016, 2016.
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D., Van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R., Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015 drought from a hydrological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, 2017.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci. USA, 105, 1786–1793, https://doi.org/10.1073/pnas.0705414105, 2008.
Lhomme, J.-P.: Towards a rational definition of potential evaporation, Hydrol. Earth Syst. Sci., 1, 257–264, https://doi.org/10.5194/hess-1-257-1997, 1997.
Livneh, B. and Badger, A. M.: Drought less predictable under declining future snowpack, Nat. Clim. Change, 10, 452–458, https://doi.org/10.1038/s41558-020-0754-8, 2020.
Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., Notarnicola, C., Petitta, M., Scherrer, S. C.,
Strasser, U., Winkler, M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A., Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L.,
Soubeyroux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.:
Observed snow depth trends in the European Alps: 1971 to 2019, The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, 2021.
Meriö, L., Ala-aho, P., Linjama, J., Hjort, J., Kløve, B., and Marttila, H.: Snow to Precipitation Ratio Controls Catchment Storage and
Summer Flows in Boreal Headwater Catchments, Water Resour. Res., 55, 4096–4109, https://doi.org/10.1029/2018WR023031, 2019.
Moravec, V., Markonis, Y., Rakovec, O., Kumar, R., and Hanel, M.: A 250-Year
European Drought Inventory Derived From Ensemble Hydrologic Modeling, Geophys. Res. Lett., 46, 5909–5917, https://doi.org/10.1029/2019GL082783, 2019.
Mudryk, L., Santolaria-Otín, M., Krinner, G., Ménégoz, M., Derksen, C., Brutel-Vuilmet, C., Brady, M., and Essery, R.: Historical
Northern Hemisphere snow cover trends and projected changes in the CMIP6
multi-model ensemble, The Cryosphere, 14, 2495–2514,
https://doi.org/10.5194/tc-14-2495-2020, 2020.
Musselman, K. N., Addor, N., Vano, J. A., and Molotch, N. P.: Winter melt
trends portend widespread declines in snow water resources, Nat. Clim. Change, 11, 418–424, https://doi.org/10.1038/s41558-021-01014-9, 2021.
Olefs, M., Schöner, W., Suklitsch, M., Wittmann, C., Niedermoser, B.,
Neururer, A., and Wurzer, A.: SNOWGRID – A new operational snow cover model
in Austria, in: International Snow Science Workshop 2013, 7–11 October 2013, Grenoble, Chamonix, ISSW13_paper_O4-07, 2013.
Olefs, M., Koch, R., Schöner, W., and Marke, T.: Changes in Snow Depth,
Snow Cover Duration, and Potential Snowmaking Conditions in Austria, 1961–2020 – A Model Based Approach, Atmosphere, 11, 1330,
https://doi.org/10.3390/atmos11121330, 2020.
Olefs, M., Formayer, H., Gobiet, A., Marke, T., Schöner, W., Fischer,
A., and Aigner, G.: Klimawandel – Auswirkungen mit Blick auf den Tourismus,
in: Tourismus und Klimawandel, edited by: Pröbstl-Haider, U., Lund-Durlacher, D., Olefs, M., and Prettenthaler, F., Springer, Berlin, Heidelberg, 19–46, https://doi.org/10.1007/978-3-662-61522-5_2, 2021.
O'Reilly, C. H., Woollings, T., and Zanna, L.: The Dynamical Influence of the Atlantic Multidecadal Oscillation on Continental Climate, J. Climate, 30,
7213–7230, https://doi.org/10.1175/JCLI-D-16-0345.1, 2017.
O'Reilly, C. H., Befort, D. J., Weisheimer, A., Woollings, T., Ballinger, A., and Hegerl, G.: Projections of northern hemisphere extratropical climate
underestimate internal variability and associated uncertainty, Commun. Earth
Environ., 2, 194, https://doi.org/10.1038/s43247-021-00268-7, 2021.
Parajka, J., Blaschke, A. P., Blöschl, G., Haslinger, K., Hepp, G., Laaha, G., Schöner, W., Trautvetter, H., Viglione, A., and Zessner, M.:
Uncertainty contributions to low-flow projections in Austria, Hydrol. Earth
Syst. Sci., 20, 2085–2101, https://doi.org/10.5194/hess-20-2085-2016, 2016.
Pellicciotti, F., Brock, B., Strasser, U., Burlando, P., Funk, M., and Corripio, J.: An enhanced temperature-index glacier melt model including the
shortwave radiation balance: development and testing for Haut Glacier d'Arolla, Switzerland, J. Glaciol., 51, 573–587, https://doi.org/10.3189/172756505781829124, 2005.
Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C., and Sanderson, B. M.:
Precipitation variability increases in a warmer climate, Sci. Rep., 7, 17966, https://doi.org/10.1038/s41598-017-17966-y, 2017.
Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., Terzago, S., Thornton, J. M., Vuille, M., and Adler, C.: Climate changes and their elevational patterns in the mountains of the world, Rev. Geophys., 60, e2020RG000730, https://doi.org/10.1029/2020RG000730, 2022.
Pielke, R. and Ritchie, J.: Distorting the view of our climate future: The
misuse and abuse of climate pathways and scenarios, Energ. Res. Soc. Sci., 72, 101890, https://doi.org/10.1016/j.erss.2020.101890, 2021.
Qin, Y., Abatzoglou, J. T., Siebert, S., Huning, L. S., AghaKouchak, A.,
Mankin, J. S., Hong, C., Tong, D., Davis, S. J., and Mueller, N. D.: Agricultural risks from changing snowmelt, Nat. Clim. Change, 10, 459–465,
https://doi.org/10.1038/s41558-020-0746-8, 2020.
Rajczak, J. and Schär, C.: Projections of Future Precipitation Extremes
Over Europe: A Multimodel Assessment of Climate Simulations: Projections of
Precipitation Extremes, J. Geophys. Res.-Atmos., 122, 10773–10800,
https://doi.org/10.1002/2017JD027176, 2017.
Schär, C. and Jendritzky, G.: Hot news from summer 2003, Nature, 432,
559–560, https://doi.org/10.1038/432559a, 2004.
Schöner, W., Koch, R., Matulla, C., Marty, C., and Tilg, A.-M.: Spatiotemporal patterns of snow depth within the Swiss-Austrian Alps for the past half century (1961 to 2012) and linkages to climate change, Int. J. Climatol., 39, 1589–1603, https://doi.org/10.1002/joc.5902, 2018.
Shapiro, S. S. and Wilk, M. B.: An analysis of variance test for normality
(complete samples), Biometrika, 52, 591–611, https://doi.org/10.1093/biomet/52.3-4.591, 1965.
Stelzl, A., Pointl, M., and Fuchs-Hanusch, D.: Estimating Future Peak Water
Demand with a Regression Model Considering Climate Indices, Water, 13, 1912,
https://doi.org/10.3390/w13141912, 2021.
Sutton, R. T. and Hodson, D. L. R.: Atlantic Ocean Forcing of North American
and European Summer Climate, Science, 309, 115–118,
https://doi.org/10.1126/science.1109496, 2005.
Switanek, M. B., Troch, P. A., Castro, C. L., Leuprecht, A., Chang, H.-I.,
Mukherjee, R., and Demaria, E. M. C.: Scaled distribution mapping: a bias
correction method that preserves raw climate model projected changes, Hydrol. Earth Syst. Sci., 21, 2649–2666, https://doi.org/10.5194/hess-21-2649-2017, 2017.
Themeßl, M., Gobiet, A., and Leuprecht, A.: Empirical-statistical
downscaling and error correction of daily precipitation from regional climate models, Int. J. Climatol., 31, 1530–1544, https://doi.org/10.1002/joc.2168, 2011.
Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G., and Pitman,
A. J.: Robust Future Changes in Meteorological Drought in CMIP6 Projections
Despite Uncertainty in Precipitation, Geophys. Res. Lett., 47, e2020GL087820, https://doi.org/10.1029/2020GL087820, 2020.
UNFCCC: Nationally determined contributions under the Paris Agreement, Sharm
el-Sheikh, Egypt, https://unfccc.int/documents/619180 (last access: 6 August 2023), 2022.
Van Lanen, H. A. J., Laaha, G., Kingston, D. G., Gauster, T., Ionita, M.,
Vidal, J.-P., Vlnas, R., Tallaksen, L. M., Stahl, K., Hannaford, J., Delus,
C., Fendekova, M., Mediero, L., Prudhomme, C., Rets, E., Romanowicz, R. J.,
Gailliez, S., Wong, W. K., Adler, M.-J., Blauhut, V., Caillouet, L., Chelcea, S., Frolova, N., Gudmundsson, L., Hanel, M., Haslinger, K., Kireeva, M., Osuch, M., Sauquet, E., Stagge, J. H., and Van Loon, A. F.: Hydrology needed to manage droughts: the 2015 European case, Hydrol. Process., 30, 3097–3104, https://doi.org/10.1002/hyp.10838, 2016.
Vargas Godoy, M. R. and Markonis, Y.: An Alternative Approach to Assess
Water Cycle Intensification at the Global Scale, Climatology, https://doi.org/10.1002/essoar.10510920.1, in press, 2022.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010.
Short summary
Future changes of surface water availability in Austria are investigated. Alterations of the climatic water balance and its components are analysed along different levels of elevation. Results indicate in general wetter conditions with particular shifts in timing of the snow melt season. On the contrary, an increasing risk for summer droughts is apparent due to increasing year-to-year variability and decreasing snow melt under future climate conditions.
Future changes of surface water availability in Austria are investigated. Alterations of the...
Altmetrics
Final-revised paper
Preprint