Articles | Volume 23, issue 7
https://doi.org/10.5194/nhess-23-2663-2023
https://doi.org/10.5194/nhess-23-2663-2023
Research article
 | 
28 Jul 2023
Research article |  | 28 Jul 2023

An integrated modeling approach to evaluate the impacts of nature-based solutions of flood mitigation across a small watershed in the southeast United States

Betina I. Guido, Ioana Popescu, Vidya Samadi, and Biswa Bhattacharya

Related authors

Probabilistic Hierarchical Interpolation and Interpretable Configuration for Flood Prediction
Mostafa Saberian, Vidya Samadi, and Ioana Popescu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-261,https://doi.org/10.5194/hess-2024-261, 2024
Revised manuscript under review for HESS
Short summary
Converging Human Intelligence with AI Systems to Advance Flood Evacuation Decision Making
Rishav Karanjit, Vidya Samadi, Amanda Hughes, Pamela Murray-Tuite, and Keri Stephens
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-25,https://doi.org/10.5194/nhess-2024-25, 2024
Revised manuscript not accepted
Short summary
Surface-subsurface interaction analysis and the influence of precipitation spatial variability on a lowland mesoscale catchment
Faisal Sardar, Muhammad Haris Ali, Ioana Popescu, Andreja Jonoski, Schalk Jan van Andel, and Claudia Bertini
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-276,https://doi.org/10.5194/hess-2023-276, 2023
Manuscript not accepted for further review
Short summary
Flood risk assessment due to cyclone-induced dike breaching in coastal areas of Bangladesh
Md Feroz Islam, Biswa Bhattacharya, and Ioana Popescu
Nat. Hazards Earth Syst. Sci., 19, 353–368, https://doi.org/10.5194/nhess-19-353-2019,https://doi.org/10.5194/nhess-19-353-2019, 2019
Short summary
Citizen observations contributing to flood modelling: opportunities and challenges
Thaine H. Assumpção, Ioana Popescu, Andreja Jonoski, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 1473–1489, https://doi.org/10.5194/hess-22-1473-2018,https://doi.org/10.5194/hess-22-1473-2018, 2018
Short summary

Related subject area

Hydrological Hazards
Rapid high-resolution impact-based flood early warning is possible with RIM2D: a showcase for the 2023 pluvial flood in Braunschweig
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 1737–1749, https://doi.org/10.5194/nhess-25-1737-2025,https://doi.org/10.5194/nhess-25-1737-2025, 2025
Short summary
The 2018–2023 drought in Berlin: impacts and analysis of the perspective of water resources management
Ina Pohle, Sarah Zeilfelder, Johannes Birner, and Benjamin Creutzfeldt
Nat. Hazards Earth Syst. Sci., 25, 1293–1313, https://doi.org/10.5194/nhess-25-1293-2025,https://doi.org/10.5194/nhess-25-1293-2025, 2025
Short summary
Recent large-inland-lake outbursts on the Tibetan Plateau: processes, causes, and mechanisms
Fenglin Xu, Yong Liu, Guoqing Zhang, Ping Zhao, R. Iestyn Woolway, Yani Zhu, Jianting Ju, Tao Zhou, Xue Wang, and Wenfeng Chen
Nat. Hazards Earth Syst. Sci., 25, 1187–1206, https://doi.org/10.5194/nhess-25-1187-2025,https://doi.org/10.5194/nhess-25-1187-2025, 2025
Short summary
Modelling urban stormwater drainage overflows for assessing flood hazards: application to the urban area of Dakar (Senegal)
Laurent Pascal Malang Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Nat. Hazards Earth Syst. Sci., 25, 1095–1112, https://doi.org/10.5194/nhess-25-1095-2025,https://doi.org/10.5194/nhess-25-1095-2025, 2025
Short summary
Dynamics and impacts of monsoon-induced geological hazards: a 2022 flood study along the Swat River in Pakistan
Nazir Ahmed Bazai, Mehtab Alam, Peng Cui, Wang Hao, Adil Poshad Khan, Muhammad Waseem, Yao Shunyu, Muhammad Ramzan, Li Wanhong, and Tashfain Ahmed
Nat. Hazards Earth Syst. Sci., 25, 1071–1093, https://doi.org/10.5194/nhess-25-1071-2025,https://doi.org/10.5194/nhess-25-1071-2025, 2025
Short summary

Cited articles

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An introduction to the European Hydrological System – Systeme Hydrologiquee Europeen, “SHE”: History and philosophy of a physically-based, distributed modeling system, J. Hydrol., 87, 45–59, https://doi.org/10.1016/0022-1694(86)90114-9, 1986. 
Anselmo, V., Galeati, G., Palmieri, S., Rossi, U., and Todini, E.: Flood risk assessment using an integrated hydrological hydraulic modeling approach: a case study, J. Hydrol., 175, 533–554, https://doi.org/10.1016/S0022-1694(96)80023-0, 1996. 
Bhatt, C. M., Rao, G. S., Diwakar, P. G., and Dadhwal, V. K.: Development of flood inundation extent libraries over a range of potential flood levels: a practical framework for quick flood response, Geomat. Nat. Haz. Risk, 8, 384–401, https://doi.org/10.1080/19475705.2016.1220025, 2017. 
Bhattacharya, B., Mazzoleni, M., and Ugay, R.: Flood inundation mapping of the sparsely gauged large-scale Brahmaputra basin using remote sensing products, Remote Sens., 11, 501, https://doi.org/10.3390/rs11050501, 2019. 
Bhusal, A., Parajuli, U., Regmi, S., and Kalra, A.: Application of Machine Learning and Process-Based Models for Rainfall-Runoff Simulation in DuPage River Basin, Illinois, Hydrology, 9, 117, https://doi.org/10.3390/hydrology9070117, 2022. 
Download
Short summary
We used an integrated model to evaluate the impacts of nature-based solutions (NBSs) on flood mitigation across the Little Pee Dee and Lumber River watershed, the Carolinas, US. This area is strongly affected by climatic disasters, which are expected to increase due to climate change and urbanization, so exploring an NBS approach is crucial for adapting to future alterations. Our research found that NBSs can have visible effects on the reduction in hurricane-driven flooding.
Share
Altmetrics
Final-revised paper
Preprint