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Abstract. Floods are among the most destructive natural haz-
ards in the world, posing numerous risks to societies and
economies globally. Accurately understanding and model-
ing floods driven by extreme rainfall events has long been
a challenging task in the domains of hydrologic science and
engineering. Unusual catchment responses to flooding cause
great difficulty in predicting the variability and magnitude
of floods, as well as proposing solutions to manage large
volumes of overland flow. The usage of nature-based solu-
tions (NBSs) has proved to be effective in the mitigation of
flood peak rate and volume in urban or coastal areas, yet it
is still not widely implemented due to limited knowledge
and testing compared to traditional engineering solutions.
This research examined an integrated hydrological and hy-
draulic modeling system to understand the response of an
at-risk watershed system to flooding and evaluate the ef-
ficacy of NBS measures. Using the Hydrologic Engineer-
ing Center Hydrologic Modeling System and River Analy-
sis System (HEC-HMS and HEC-RAS) software, an inte-
grated hydrologic–hydraulic model was developed for Hur-
ricane Matthew- (2016) and Florence-driven (2018) floods
across the Little Pee Dee–Lumber River watershed, North
and South Carolina (the Carolinas), US. The focus was on
Nichols, a small town that has disproportionately been im-
pacted by flooding during these two hurricane events.

The present article proposes a methodology for select-
ing, modeling, and evaluating the performance of NBS mea-
sures within a catchment, which can be extended to other
case studies. Different NBS measures, including flood stor-
age ponds, riparian reforestation, and afforestation in crop-

lands, were designed, modeled, and evaluated. Hurricane
Matthew’s flooding event was used for evaluating the NBS
scenarios given its high simulation accuracy in flood inun-
dation compared to the less accurate results obtained for
Hurricane Florence. The scenario comparison evidenced that
large-scale natural interventions, such as afforestation in
croplands, can reduce the inundated area in Nichols by 8 %
to 18 %. On the contrary, the smaller-scale interventions such
as riparian reforestation and flood storage ponds showed a
negligible effect of only 1 % on flood mitigation.

1 Introduction

Floods are among the most destructive natural hazards in
the world, posing numerous risks to societies and economies
globally (European Parliament, 2017; IPCC, 2022). The so-
cioeconomic impacts of flooding are numerous, negatively
affecting human life, health, livelihoods, and critical infras-
tructure, among others (Phillips et al., 2018; IPCC, 2022).

In the United States, flooding and severe storms are among
the most recurrent weather and climate disasters, which have
caused USD 492 billion in economic damages in the past
30 years (Smith, 2020). The US Gulf and East Coast are vul-
nerable to destructive tropical storms and hurricanes, which
can generate storm surges and riverine flooding along the
exposed communities (NOAA, 2020). Since the 1970s in-
land flooding has been responsible for more than half of all
deaths associated with tropical cyclones in the United States
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(NOAA, 2018). The state of South Carolina (SC) alone has
suffered almost USD 7 billion in flood and hurricane dam-
ages in the last 25 years (SCDNR, 2020). This state was re-
cently overwhelmed by the impacts of five hurricanes in a
time span of only 7 years, which generated severe riverine
floods across cities and towns (Williams et al., 2019). Ac-
cording to the Intergovernmental Panel on Climate Change
(IPCC) reports (e.g., IPCC, 2022), there will be an increase
in the tropical cyclone rainfall intensities, as well as in the
proportion that reaches very intense levels (Category 4 and
5) as a result of climate change (Knutson, 2022; Stone and
Cohen, 2017). In addition, it is expected that global warming
would also reduce the speed of tropical cyclones, resulting in
more precipitation falling over a longer period, thus increas-
ing flooding hazards (Kossin, 2018).

On top of the climatic causes of riverine flooding, it is ex-
pected that the future development of floodplains will raise
the number of houses and citizens at risk in SC (SCDNR,
2020). Many of the new constructions of the last decade in
the state were built in proximity to permanent water bod-
ies (Tedesco et al., 2020). In SC, wetlands and forests have
experienced significant losses since historic dates (Fish and
Dahl, 1999). There are several indications that the loss of
these ecosystems along with a growth in urbanization are key
drivers of increasing flood peaks and volumes in rivers and
floodplains (Bronstert et al., 2002).

Systematic efforts within the research community have
been made to simulate hurricane-driven floods (Chen et al.,
2021; Wing et al., 2019; among others). Accurate flood pre-
diction and inundation mapping are vital for improving fore-
casts and resiliency, as well as reducing economic damages
caused by extreme events (Grimaldi et al., 2019). However,
understanding and accurately predicting major floods driven
by hurricanes have long been a challenge in the fields of
hydrologic science and engineering (Phillips et al., 2018;
NOAA, 2018; Wing et al., 2019). The spatiotemporal vari-
ability of hurricane events, rapid and unusual catchment re-
sponses to flooding, and various sources of model errors
make accurate flood modeling a challenging task (Teng et al.,
2017; El Gharamti et al., 2021; Zhou et al., 2021). Numerous
improvements have been developed for increased accuracy in
flood inundation modeling and mapping over the years (Ab-
bott et al., 1986; Dutta et al., 2006, 2013). Among others, re-
mote sensing technologies have gained popularity in recent
years, which are mainly used as an aid for flood simulation
and mapping to validate and calibrate hydrological and hy-
draulic models (Chen et al., 2021; Teng et al., 2017).

Given the complexity of flood prediction and the increased
flood hazard due to regional and global changes, an inte-
grated physics-based flood model would overcome barriers
in designing appropriate modeling architectures to represent
rainfall–flooding processes. Hydrologic and hydraulic mod-
eling integration has the benefit of using up-to-date soft-
ware to model the dynamics of extreme events (Anselmo et
al., 1996). This implies using a range of atmospheric, hy-

drologic, and hydraulic data and encompassing several pro-
cesses across the water cycle. This research explores how to
represent these complex processes in an integrated physics-
based fashion to accurately reproduce past hurricane-driven
floods.

The present research focuses on a small watershed, the Lit-
tle Pee Dee (LPD) and Lumber River watershed, affluents to
the Pee Dee River in eastern North and South Carolina (the
Carolinas). Nichols, located at the confluence of the Little
Pee Dee and Lumberton rivers, is one of the most severely
impacted regions in this watershed. The town was devastated
by Hurricane Matthew in October 2016, and, while the res-
idents were still recovering, Hurricane Florence ravaged the
community once more in September 2018 (Edwards, 2020;
Stewart and Berg, 2019). Despite the widespread devastation
in the area, it is unlikely that any flood protection measures
will be implemented in the short term, since no advanced
studies of the river’s hydrodynamic behavior have been con-
ducted so far. In light of this, there is an undeniable need for
flood research that can provide insights into extreme hazard
and flood risk management to protect the region from current
and future damage.

Previous research has evaluated grey engineering flood
mitigation measures such as levees and the elevation of
bridges to protect Nichols (Muller, 2020). Although these
traditional engineering measures are widely evaluated and
can significantly reduce local flood hazards, they are often
categorized as an expensive and inflexible approach (Brink
et al., 2016). Nature-based solutions (NBSs), on the con-
trary, have been gaining popularity in the past few years,
given their capacity to mitigate flood hazards and improve re-
silience in cost-effective ways (Cohen-Shacham et al., 2016;
EESI, 2019; Ruangpan et al., 2020). In an area strongly af-
fected by climatic disasters, which are expected to increase
due to climate change and urbanization, it is crucial to ex-
plore a more nature-based approach that can adapt to future
alterations and provide benefits at a watershed level (Kalan-
tari et al., 2018).

NBSs can decrease and/or delay floodwater peaks and vol-
umes using natural processes, reduce the magnitude of river-
ine floods, and increase the lead time to give more time
for emergency response (Lama et al., 2021). The Interna-
tional Union for Conservation of Nature (IUCN), the World
Bank Group, and the World Resources Institute (WRI) de-
fine NBSs as “actions to protect, sustainably manage, and re-
store natural and modified ecosystems that address societal
challenges effectively and adaptively, simultaneously pro-
viding human well-being and biodiversity benefits” (IUCN,
2022). Such solutions can improve flood risk, combat cli-
mate change, improve water quality, restore and protect wet-
lands, stabilize shorelines, and reduce urban heat island ef-
fects, among others (European Commission, 2022). The use
of these kinds of solutions in an area where nature is one of
its main attractions such as Nichols is imperative.
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Even though the concept of NBSs is well known, NBS in-
corporation into hydrologic and hydraulic models is not yet
well understood and explored in the hydrology community
(Kumar et al., 2021; Sahani, et al., 2019). To address this
problem, this research determines a methodology for select-
ing, modeling, and evaluating the performance of NBSs and
improving the theoretical as well as modeling aspects of NBS
implementation.

The research paper is structured as follows. The case study
is presented in Sect. 2. Section 3 introduces the methodology,
including the models, NBS scenarios, and performance met-
rics. The subsequent sections summarize the results of the
models, discussions, and conclusions.

2 Study case and data collection

The study area, covering 7000 km2, is the LPD and Lumber
River watershed, forming part of the lower Pee Dee River
basin located in the Carolinas, US (Fig. 1). These rivers orig-
inate in North Carolina’s Sandhills area and run south and
east to SC’s lower Coastal Plain (Howie, 2020). From its
headwaters, the Lumber River takes its course of 185 km be-
fore merging with the LPD River shortly after entering SC
(SCDNR, 2009). Downstream of the confluence, the river
continues with the name of LPD River, until it discharges into
the Pee Dee River. The LPD River has a length of 140 km
from its origin to the watershed outlet. The outlet was de-
fined at the Galivants Ferry bridge a few kilometers down-
stream of Nichols and the LPD–Lumber River intersections.
At the river’s intersection, the Lumber and LPD watersheds
have an area of 4500 and 2000 km2, respectively. At Gali-
vants Ferry, the annual average discharge is about 78 m3 s−1

with a maximum recorded discharge value of 1832 m3 s−1,
which occurred on 21 September 2018 (USGS, 2023).

In the eastern portions of SC and the Coastal Plain, the
annual average rainfall ranges from 1143 to 1320 mm. Most
years, during summer and early fall, SC is affected by trop-
ical storms or hurricanes (DNR, 2021). Hurricanes Matthew
and Florence were the latest to create significant flooding in
the watershed that was selected for this study.

High terrain elevations can be observed at the origins of
the Lumber and LPD rivers, reaching up to 225 m above sea
level. However, in the rest of the area, the elevation is low
with gentle gradients. The National Elevation Dataset (NED)
of the USGS was retrieved and incorporated as terrain data
into the models. The terrain elevation data with a resolution
of 30× 30 m and 10× 10 m were used for hydrological and
hydraulic modeling, respectively. All elevation values are in
meters and are referenced to the North American Vertical Da-
tum of 1988 (NAVD 88).

The land cover of the watershed is dominated by woody
wetlands (32 %), followed by agriculture (31 %), forests
(18 %), developed areas (10 %), grasslands and shrubs (6 %),
emergent herbaceous wetlands (2 %), and open water (1 %).

The Land Use Land Cover (LULC) map is shown in Fig. 2.
The wetland and forest ecosystems have experienced high
losses since historic dates, with notorious increases in farm-
land and residential areas. In the past 20 years, the ma-
jor LULC changes have been caused by deforestation in
woody wetlands and forests. The predominant hydrological
soil groups in the watershed are A/D, B/D, and C/D, indicat-
ing slow infiltration rates in undrained areas. All these char-
acteristics, gentle slope, dense vegetation, low-relief river,
and poorly drained soils, make the area prone to surface
ponding with long residence times.

According to the information retrieved from the National
Inventory of Dams (NID), the watershed is covered by stor-
age areas such as reservoirs, lakes, and dams, which can store
water volumes during extreme rainfall events (see Fig. 2).
However, even in the presence of these topographic terraces,
reservoirs, and wetlands, the current storage capacity in the
watershed is not enough to avoid destructive flooding events
derived from severe storms, like those that occurred during
hurricanes Matthew and Florence.

Local datasets are available from different US institutions,
which were used as inputs for the proposed hydrologic and
hydraulic models. Table 1 summarizes the data used in this
research along with their corresponding sources and resolu-
tions.

The precipitation data were collected from NOAA and
USGS, which have different spatial and temporal resolutions.
For hurricanes Matthew and Florence, the average total pre-
cipitation in the watershed according to the NOAA dataset
was 287 and 388 mm, respectively. The spatial distribution of
the rainfall was investigated using inverse distance weighted
(IDW) and kriging methods. The IDW estimates values for
unsampled points by the weighted average of observed data
at surrounding stations. It relies on the theory that the un-
known value of a point is more influenced by closer points
than by points further away. Ordinary kriging is a geosta-
tistical interpolation method based on a Gaussian process
that considers the spatial variance of the precipitation. The
method optimizes the station weights using probability func-
tions, and these weights are used to interpolate values for
unsampled points across the spatial field (Ly et al., 2011). In-
terpolation results revealed that cumulative precipitation val-
ues during Hurricane Florence were higher in the east of the
watershed, whereas for Matthew the maximum volumes ap-
peared in the south.

The streamflow and river stage data are compiled from
the National Water Information System of USGS. There are
eight streamflow stations with up-to-date data inside the wa-
tershed. The newest station was installed next to Nichols
in 2017, after Hurricane Matthew’s occurrence. Among all
gauges, the Galivants Ferry station, located at the outlet of
the watershed, has the most prolonged period of data, with
records starting from 1986 to the present. The data show that
the two most extreme flood events of the past 35 years oc-
curred only in the last 5 years. These events were hurricanes

https://doi.org/10.5194/nhess-23-2663-2023 Nat. Hazards Earth Syst. Sci., 23, 2663–2681, 2023



2666 B. I. Guido et al.: An integrated modeling approach to evaluate the impacts of nature-based solutions

Figure 1. LPD and Lumber River watershed location.

Table 1. List of data used in the study.

Data type Spatial Time Source Usage
resolution resolution

DEM 30× 30 m – National Elevation Dataset (NED) Hydrological and hydraulic
10× 10 m by USGS simulations

Gauge rainfall 12 stations 24 h NOAA Hydrological simulation
four stations 15 min USGS

Streamflow and water Eight stations 15 min USGS Hydrological simulation
depth gauges

LULC 30 m – MRLC consortium Hydrological and hydraulic
simulations

Soils 1 km – Web Soil Survey by USDA-NRCS Hydrological simulation

Satellite-based flood 250 m – Dartmouth Flood Observatory Hydraulic simulation
inundation extent

Matthew and Florence, reaching peak discharges of 1679 and
1832 m3 s−1, respectively.

Table 2 exhibits information about the USGS stations’
metadata (site number, location, contributing area, and peak
discharge) during the last major hurricane events. The rain-
fall and streamflow gauge locations are presented in Fig. 4.

The observed flood inundation area was retrieved from re-
mote sensing data. We used Dartmouth Flood Observatory of
Colorado University inundation data for hurricanes Matthew
and Florence. The inundation images are from MODIS

250 m, and Landsat 8 data were downloaded as raster and
converted to flood extent maps. Hurricane Matthew’s inun-
dation images were validated by the Dartmouth Flood Ob-
servatory with Google Satellite images.

3 Methodology

To simulate the flooding processes and assess the perfor-
mance of NBSs in the LPD–Lumberton watershed, an in-
tegrated hydrological–hydraulic model was developed using
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Table 2. Peak discharge during hurricanes Florence and Matthew at eight USGS gauging stations (USGS, 2023).

USGS site USGS site Contributing Peak discharge (m3 s−1, dd/mm/yyyy)

no. location area (km2) Hurricane Florence Hurricane Matthew

02135000 Galivants Ferry 7226 1832 21/09/2018 1679 12/10/2016
02134900 Nichols 4325 1175 20/09/2018 No records –
02134500 Boardman 3181 1002 18/09/2018 1082 11/10/2016
02134170 Lumberton 1834 484 17/09/2018 413 10/10/2016
02133624 Maxton 945 348 17/09/2018 192 11/10/2016
02133500 Hoffman 474 283 19/09/2018 159 09/10/2016
02134480 Tar Heel 593 377 17/09/2018 549 10/10/2016
02132320 Laurinburg 216 172 17/09/2018 42 09/10/2016

Figure 2. LULC map and storage areas.

the US Army Corps of Engineering software, i.e., the Hy-
drologic Engineering Center Hydrologic Modeling System
(HEC-HMS) and River Analysis System (HEC-RAS). Sim-
ulations of hurricanes Matthew and Florence, two of the most
damaging flood events in the LPD–Lumber watershed in the
past few years, were developed and used as case studies for
this research. The HEC software has widely been used to as-
sess flood hazards in various US catchments (Bhusal et al.,
2022; Knebl et al., 2005; Tang et al., 2020).

Figure 3 shows the modeling workflow followed in this
study to develop an integrated hydrologic–hydraulic model-
ing system and assess the current situation in the watershed
for NBS implementation. The first step was the data collec-
tion and pre-processing. We then developed a hydrological
model to calibrate hurricane-driven flooding events. The sim-
ulated hydrograph was then used as a boundary condition for
flood inundation mapping using the HEC-RAS model.

Finally, NBS scenarios were designed and implemented
in the models, and steps 2 and 3 were repeated with the re-
quired adjustments. Depending on the selected NBS, finer
DEM might be required. Such is the example of sand traps in
a river. The tested solutions in this case study were related to
LULC and buffer strips along the river, which were suitable
for the DEM resolution of the models used, i.e., 30× 30 m
for the HEC-HMS model, and cross sections in the HEC-
RAS model based on a 10× 10 m DEM of the channel. New
flood maps were obtained and compared with the baseline
scenario to evaluate the performance of NBSs on flood miti-
gation at Nichols.

3.1 Hydrological modeling

Using HEC-HMS, a hydrological semi-distributed model for
the LPD and Lumber River watersheds was developed, where
each sub-basin is represented as a lumped model. With ver-
sion HEC-HMS 4.9, the sub-basins and reaches were auto-
matically delineated, using 30 m× 30 m DEM data. In total,
the watershed was divided into 10 sub-basins with eight of
them including a USGS flood gauge at the outlet. The de-
lineated sub-basins, reaches, and flood gauges are shown in
Fig. 4.

The Soil Conservation Service (SCS) curve number (CN)
method was chosen to simulate the precipitation loss, the
Clark unit hydrograph (CUH) was chosen as the transfor-
mation method, and an exponential recession was chosen to
model the baseflow (US Army Corps of Engineers, 2021).

The SCS CN method is used for event-based simulation
and has extensively been used for US catchments. This ap-
proach has successfully been used in 2018 by the North Car-
olina Emergency Management agency to simulate the hydro-
logical behavior of Hurricane Matthew in the Lumber River
(Emergency Management NC, 2018).

The model estimates the runoff as the precipitation excess,
which is derived from the cumulative precipitation and pre-
cipitation loss. The latter is estimated based on soils, lithol-
ogy, land cover, and land use data (US Army Corps of Engi-
neers, 2021).
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Figure 3. The workflow of an integrated hydrologic–hydraulic model developed in this research.

Figure 4. Sub-basins and hydraulic model domain.

A weighted average CN number is calculated for each sub-
basin based on the hydrologic group and LU types, according
to the values in Table 3. As described in the “Study case and
data collection” section, the area is principally covered by
wetlands, croplands, and forests, and the typical hydrological
soil groups (HSGs) are A/D, B/D, and C/D.

The CUH method was adopted to model direct runoff.
Clark’s model derives a catchment UH by explicitly repre-
senting two critical processes in the transformation of excess
precipitation to runoff (US Army Corps of Engineers, 2021):

– translation or movement of the excess from its origin
throughout the drainage to the watershed outlet and

– attenuation or reduction in the magnitude of the dis-
charge as the excess is stored throughout the watershed.

Table 3. CNs adopted for each LULC and HSG with AMC II
(Emergency Management NC, 2018; US Army Corps of Engineers,
2021).

LU type Hydrologic group

A B C D

Open water 100 100 100 100
Developed, open space 49 69 79 84
Developed, low intensity 57 72 81 86
Developed, medium intensity 61 75 83 87
Developed, high intensity 77 85 90 92
Barren land 77 86 91 94
Deciduous forest 36 60 73 79
Evergreen forest 36 60 73 79
Mixed forest 36 60 73 79
Shrub/scrub 35 56 70 77
Herbaceous 30 58 71 78
Hay/pasture 39 61 74 80
Cultivated crops 64 74 81 84
Woody wetlands 88 89 90 91
Emergent Herbaceous Wetlands 88 89 90 91

It seems both mechanisms actively control rainfall–runoff
processes in our study area. The model requires two input pa-
rameters: the time of concentration (Tc) and the storage coef-
ficient I . Tc was initially estimated using the SCS lag equa-
tion developed by the SCS (1972). The SCS recommends
that the lag equation (Eq. 1) be used on basins that may be
considered homogeneous in nature and that are less than 800
hectares in size. Due to these restrictions, the method may be
limited for application on most basins; however, it has widely
been used and accepted around the world for catchments of
varying sizes (Soulis, 2021; Mishra and Singh, 2003; Knebl
et al., 2005), and it has been used in the study area for a
similar application (Emergency Management NC, 2018). We
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used this approach for an initial estimation of the values. The
equation uses the path length of the stream in feet (L), the
potential maximum retention in inches (S), and the average
watershed land slope in percent (Y ) to estimate the lag time
in hours (Tlag) (US Army Corps of Engineers, 2021):

Tlag =
L0.8(S+ 1)0.7

1900 ·Y 0.5 . (1)

Then, the time of concentration can be derived from Tlag =

0.6Tc.
The initial estimation for the storage coefficient I was es-

timated using the following relationship (US Army Corps of
Engineers, 2021):

R

Tc+R
= 0.6. (2)

The exponential recession method was used to represent wa-
tershed baseflow. It requires the initial flow (Q0), the reces-
sion ratio (k), and the ratio to peak as input parameters (US
Army Corps of Engineers, 2021).

For channel routing simulation, the Muskingum method
was selected. This method uses a simple finite-difference dis-
cretization of the continuity equation to route an inflow hy-
drograph. The method aims to capture during the simulation
the observed increase and decrease in channel storage during
the passing of a flood wave. The required parameters for the
method are the travel time (T ) of the flood wave through any
reach and a dimensionless weight X that can range from 0 to
0.5.

Two hurricane types with similar durations and rainfall
intensities were considered in this study. Although, the an-
gles of landfall and storm tracks were different for each of
them. In this way, the different spatial and temporal vari-
abilities of hurricanes and how they affect the watershed’s
response to flooding could be analyzed. The selected hurri-
canes were Matthew and Florence. Hurricane Matthew had a
coast-parallel storm track with higher cumulative precipita-
tion volumes in the south of the watershed. In contrast, Hur-
ricane Florence had a meandering storm track with greater
precipitation rates on the east side of the watershed, result-
ing in extremely large flows in all the tributaries. Hurricane-
force winds extended outward up to 110 km from the cen-
ter during Hurricane Florence (National Hurricane Center,
2018) and up to 75 km during Hurricane Matthew (NASA,
2016). Williams et al. (2020) examined the rainfall volumes
during the month of occurrence of the hurricanes and in the
previous month. They discovered that rainfall in the water-
shed 1 month before Hurricane Matthew was nearly equal to
the month of the hurricane, placing wet soil moisture condi-
tions for the hurricane month. On the contrary, before Hurri-
cane Florence, the watershed received little rainfall, leading
to drier soils during the hurricane event.

The two simulated events are separately calibrated. The
calibration process attempts to reproduce the peak discharges

and total flood volumes at all the flood gauges in the water-
shed. Calibration was achieved by adjusting the CNs, time
of concentration, storage coefficient, baseflow, and channel
routing parameters in each sub-basin. The calibration was
performed with a time interval of 15 min, and the calibration
periods were

– 6–31 October 2016 and

– 14 September–5 October 2018.

3.2 Hydraulic modeling

The HEC-RAS version 6.2 was used to develop the hydraulic
model. A 1D simulation was performed, which executes sur-
face profile calculations in a gradually varied flow. The pro-
gram solves water surface profiles from one cross section to
the other by solving the energy equation.

The hydraulic model domain was restricted to a small area
in the proximity of Nichols; 20 km of the Lumber River was
modeled upstream of the town and 20 km more downstream
to include the confluence with the LPD River (see Fig. 4).

To generate the HEC-RAS geometric input data, the tri-
angular irregular network (TIN) was obtained from the
10× 10 m DEM. The main channel, riverbanks, and flow
paths were created using georeferenced information from the
National Hydrography Service (NHS) and manually adjusted
with the aerial image to follow the river path more precisely.
The channel width was visually compared with Google Satel-
lite images. Although there are no measured geometry data
of the river and floodplain cross sections, 3 m× 3 m DEM
data are available in some portions of the watershed, and
they were used for correcting the main channel sections. The
river’s cross sections were generated every 2000 m, and, at
Nichols, the resolution was increased by placing the cross
sections every 1000 m. The upstream boundary conditions
for the model are the discharges simulated with the HEC-
HMS in the Lumber River and the LPD River, while the nor-
mal depth was used as the downstream boundary condition.

Manning’s roughness coefficient was automatically as-
signed in the cross sections from the land use map in HEC-
RAS. The software calculates a weighted average of n in each
cross section, taking into consideration the different LULC
types. Each LULC type was designated a manning rough-
ness coefficient following Table 4 (Emergency Management
NC, 2018; US Army Corps of Engineers, 2021).

3.3 Performance metrics

The validation of the model was assessed by comparing the
simulated and observed flood inundation areas from satellite
images for hurricanes Florence and Matthew. The simulated
flood inundation maps of both hurricanes were transferred
from HEC–RAS to a GIS environment as raster files to pro-
cess and compare with the observed data. Flood mapping
performance is evaluated by using categorical verification
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Table 4. Manning’s roughness coefficients according to LULC type.

LULC Normal Allowable range
n value1 of values2

Developed 0.12 0.03–0.2
Evergreen forest 0.15 0.1–0.16
Grassland/herbaceous 0.035 0.025–0.05
Cultivated crops 0.05 0.025–0.05
Woody wetlands 0.07 0.045–0.15
Emergent herbaceous wetlands 0.045 0.05–0.85
Main channel 0.035

1 US Army Corps of Engineers (2016). 2 NRCS Kansas (2016).

statistics, which are usually implemented for estimating the
accuracy of flood forecasts (Bhatt et al., 2017; Bhattacharya
et al., 2019). The categorical verification statistics measure
the correspondence between estimated and observed inunda-
tion patterns. In this study, the probability of detection (POD;
Eq. 3), false alarm ratio (FAR; Eq. 4), and critical success
index (CSI; Eq. 5) were used. The POD indicates what frac-
tion of the observed inundation was correctly simulated. The
FAR indicates what fraction of the simulated inundation did
not occur. The CSI indicates how well the simulated and ob-
served inundation fit.

POD=
hits

hits+misses
(3)

FAR=
false alarms

hits+ false alarms
(4)

CSI=
hits

hits+misses+ false alarms
(5)

The observed and simulated inundation polygons were inter-
sected to find areas of hits, misses, and false alarms. These
are defined in the following way:

– Hits are when a grid cell in the satellite image shows
wet and in the simulated inundation map shows wet.

– False alarms are when a grid cell in the satellite image
shows dry and in the simulated inundation map shows
wet.

– Misses are when a grid cell in the satellite image shows
wet and in the simulated inundation map shows dry.

In addition, this study used a variety of performance metrics
for model benchmarking, including the Nash–Sutcliffe effi-
ciency (NSE; Eq. 6; Nash and Sutcliffe, 1970), root mean
square error (RMSE; Eq. 7), correlation coefficient (R2;

Eq. 8), and the flood peak relative error (PE; Eq. 9):

NSE= 1−

n∑
i−1

(Pi −Oi)
2

(
Oi −O

)2 , (6)

RMSE=

√√√√√ n∑
i=1

(Oi −Pi)
2

n
, (7)

R2
=

∑(
Oi −O

)(
Pi −P

)√∑(
Oi −O

)2
+
∑(

Pi −P
)2 , (8)

PE=
Opeak−Ppeak

Opeak
, (9)

where P and O represent simulated and observed stream dis-
charges, respectively.

3.4 NBS assessment

The methodology used to assess the implementation of NBSs
as flood mitigation measures in the watershed consists of the
following steps:

1. Selection of NBS measures

2. Site suitability analysis of selected NBS measures

3. Development of NBS scenarios

4. Modeling of scenarios in an integrated hydrologic and
hydraulic model

3.4.1 Selection of NBS measures

The chosen NBSs should be appropriate for implementation
in the watershed and feasible to include in the hydrologic
and hydraulic models. They should also be feasible to be ap-
plied in large and undeveloped areas. Three NBS measures
were selected for the study area which have proven to be cor-
rectly implemented in HEC-HMS and HEC-RAS models in
various cases (Brink et al., 2016; Thomas and Nisbet, 2007).
They are offline flood storage ponds, riparian reforestation,
and afforestation in croplands.

Flood storage ponds are used both to attenuate the incom-
ing flood peak and to delay the timing of the flood so that the
volume is discharged over a longer period. Offline storage is
usually located within the floodplain of large rivers with wide
floodplains. In these structures, the water is diverted from the
river channel, stored, and slowly released back into the river
(Ecologic Institute, 2019). HEC-RAS v6.2 includes a mod-
ule intended particularly for incorporating storage areas into
the model.

According to the examination of LULC information, there
has been a significant decline in forested regions and woody
wetlands during the past two decades. Afforestation can help
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not only reduce runoff volume by enhancing water absorp-
tion and interception but also reduce water velocities. The
afforestation measures can be very easily implemented in the
hydrologic and hydraulic models compared to other types of
natural infrastructure.

3.4.2 Site suitability analysis

A site suitability analysis was conducted for defining the ar-
eas where selected NBSs can be implemented. The domain
for allocation of NBSs was considered upstream of Nichols,
in the Lumber River watershed between Nichols and Lum-
berton (Lumber sub-basins 6 and 7) and Big Swamp Creek
(Lumber sub-basins 4 and 5).

According to Mubeen et al. (2021), the most common cri-
teria to determine NBS site suitability are slope, soil type-
/class, imperviousness, distance from the stream, land use
type/zone, urban land use, and road buffer. Based on the re-
sults of Mubeen et al. (2021), the following parameters were
chosen to determine the suitable areas for the development
of storage ponds and riparian reforestation:

– slope < 5 %,

– pervious areas,

– distance from main river < 1000 m or inside floodplain,

– distance from roads > 50 m,

– LULC type outside of forested areas or woody wet-
lands.

The analysis of site suitability was performed in a GIS en-
vironment. The slope was derived from the DEM, pervious
areas were derived from imperviousness maps, forested areas
and woody wetlands from LULC maps, and stream and road
distances from buffers of the georeferenced data. From each
criterion, raster maps were developed and then transformed
into Boolean maps showing areas where each condition is
met. The combination of these maps produces a general suit-
ability map where ponds or riparian vegetation can be allo-
cated. The general suitability map was combined with mea-
suring specific criteria for riparian reforestation, which al-
lowed for the separation of those areas from the storage pond
areas (Fig. 5). This criterion is to restore riparian forests to
the situation of the year 2001. A separate map for afforesta-
tion in croplands was developed; in this case, the suitable ar-
eas are all the croplands in the considered sub-basins (Fig. 6).

3.4.3 Development of NBS scenarios

Four NBS scenarios were developed in this research.

– Scenario 1, offline flood storage pond. This scenario
consists of one offline flood storage pond located on
the right margin of the Lumber River floodplain near
Nichols. Conceptually, the storage pond would involve

Figure 5. Feasible sites for storage ponds and riparian reforestation
(original LULC layer extracted from MRLC consortium).

Figure 6. Feasible sites for afforestation in croplands (original
LULC layer extracted from MRLC consortium).

constructing a 1 m high berm around the perimeter of
the pond area, with inlet and outlet structures from and
towards the Lumber River.

– Scenario 2, riparian reforestation. For the riparian re-
forestation scenario, forested areas were restored to
their previous state in 2001 inside the floodplain ar-
eas. Overall, 23 km2 of the watershed were converted
to forests in this scenario, influencing the CN of the wa-
tershed.
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– Scenario 3, afforestation in croplands. The conversion
of cropland areas to forests also influences the CN of
the watershed due to changes in LULC. Three sub-
scenarios were developed according to the percentage
of cropland area converted to forest:

– Scenario 3a: changing 10 % of the cropland area to
forest, 96 km2 afforested.

– Scenario 3b: changing 20 % of the cropland area to
forest, 144 km2 afforested.

– Scenario 3c: changing 50 % of the cropland area to
forest, 192 km2 afforested.

– Scenario 4, combination of scenarios 1, 2, and 3. This
scenario is the combination of all three proposed NBSs
together.

3.4.4 Scenario modeling

The NBS scenarios were tested on the Hurricane Matthew
event, given its elevated performance in inundation model-
ing for the base scenario compared to Hurricane Florence.
The same process for flood mapping was followed as in the
base scenario but with new adjustments to the hydrologic and
hydraulic models. The afforestation scenarios were evaluated
with the new CN in HEC-HMS, the new results were used as
inputs for the hydraulic model, and new flood maps were ob-
tained. Regarding the flood pond, the scenario was directly
evaluated in HEC-RAS. The storage areas, incorporated in
the software, create lake-like regions that water can be di-
verted into or from (US Army Corps of Engineers, 2016).
The reduction in discharge and flood inundation over Nichols
were compared with the base scenario to assess the NBS per-
formance.

4 Results

This research contributes to the literature on the modeling
of NBS measures at a catchment level, which proved use-
ful to mitigate, to a certain extent, hurricane-driven flooding
events. We determined a methodology for selecting, model-
ing, and evaluating the performance of NBSs within a catch-
ment, which can also be extended to other case studies. An-
other expectation of this research is that it can help decision-
makers to define proper flood risk management strategies.
The modeling techniques and methodology proposed for the
NBS implementation can be of interest to flood/stormwater
modelers, and the results can broadly be integrated with the
government effort for flood mitigation plans. While severe
damages were reported in many parts of the LPD watershed,
a lack of proper studies and research in the area hinders the
process of implementing flood reduction measures. This re-
search contributes to identifying at-risk areas that can poten-
tially be stabilized by the NBS measures.

4.1 Hydrological modeling

The LPD–Lumber watershed was modeled in HEC-HMS
and divided into 10 sub-basins. Each sub-basin was consid-
ered to be a lumped model where the runoff at the outlet
was estimated from the input rainfall and calibrated with a
streamflow gauge.

For the SCS CN method, a composite CN value was cal-
culated for each sub-basin, weighting the CNs by the area of
different LULC classes in the sub-basin. The LULC classes
were assigned a CN based on the tables developed by the
SCS and from recommendations of other case studies in the
US (US Army Corps of Engineers, 2021). The initial esti-
mations of composite CNs in the sub-basins varied between
57.7 to 80.4.

For the runoff transformation model, the CUH was
adopted. The initial estimations for the time of concentration
ranged from 26 to 64 h, while the storage coefficient varied
between 36 to 96 h through the sub-basins.

For the estimation of the baseflow, the exponential reces-
sion method was used. The initial flow is an initial condi-
tion estimated as the average flow on the day before the start
of the storm. The recession constant k and the ratio to peak
were initially estimated at 0.95 and 0.25, respectively, values
recommended by the HEC-HMS technical reference man-
ual (US Army Corps of Engineers, 2021). These values were
later adjusted during the calibration process.

For the channel routing, the Muskingum method was se-
lected. The travel time of the flood wave through the reach K

was estimated as the interval between similar points on the
inflow and outflow hydrographs of the sub-basin. The dimen-
sionless weight X was initially estimated at 0.5 as recom-
mended by the HEC-HMS technical reference manual (US
Army Corps of Engineers, 2021), and its value was later ad-
justed in the calibration.

The calibration was performed using an automatic pro-
cess based on the Simplex search algorithm, minimizing the
peak weighted RMSE at all streamflow stations. The cali-
bration process consisted of, firstly, defining model parame-
ter constraints and, secondly, automatically calibrating each
sub-basin progressively from upstream to downstream. The
parameter constraints were selected from other case studies,
suggestions, and information about the watershed. It is de-
sired that the estimated parameters do not vary far from the
estimated values (only around 20 %), but individual excep-
tions were considered to accommodate the watershed’s spe-
cial characteristics. As indicated before, the watershed has a
considerable effect on ponding and water detention due to its
topography, vegetation, and soil types. This significantly in-
fluences the water volumes that reach the stream and its travel
times. To accommodate this effect, large values were per-
mitted for the storage coefficient and time of concentration,
while low values were allowed for CN. The ranges for the
recession constant, ratio to peak, and attenuation factor were
obtained from recommendations in the HEC-HMS manual
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Table 5. Accuracy ranges of hydrological simulations at all flood
gauging stations.

Variable Hurricane Hurricane
Matthew Florence

RMSE/avg 11 %–38 % 13 %–64 %
NSE 0.89–0.99 0.89–0.99
R2 0.94–0.99 0.90–0.98
Flood peak error 2.2 %–7.4 % 7.2 %–11.3 %

(US Army Corps of Engineers, 2021). The calibration proce-
dure was performed by automatically calibrating the param-
eters of each sub-basin. If the sub-basin had a flood gauge
at the outlet, the parameters were calibrated individually. If
not, more than one sub-basin was calibrated simultaneously.
Calibration was conducted from upstream to downstream in
a stepwise manner.

Figures 7, 8, and 9 show the simulated hydrographs for
hurricanes Matthew and Florence at the eight flood gauging
stations. In general, the trend of the observed hydrographs
was calibrated well in both hurricane models. The obtained
calibration accuracies are good according to the performance
metric results shown in Table 5.

The calibrated parameters show specific trends that per-
mit a comparison of both hurricanes’ behaviors. Matthew’s
model calibration required higher values of CN than Flo-
rence’s model, possibly indicating wetter antecedent mois-
ture conditions (AMCs) during the former event. This ob-
servation matches other studies regarding these storms in
the Lumber River (Emergency Management NC, 2018; Doll
et al., 2020) and agrees with the findings of Williams et
al. (2020) highlighting the large rainfall volumes of the
month before Hurricane Matthew. Additionally, it was ob-
served that most of the calibrated CN values are in the esti-
mated range between dry and normal AMCs in both hurri-
cane simulations. This effect can be attributed to dry AMCs
in the watershed soils; however, this contradicts the previ-
ous findings of a wet month prior to Hurricane Matthew.
Another explanation can be attributed to the water detention
and ponding effects, which are expected to decrease the total
runoff volumes of the watershed. Also, water detention and
ponding effects can influence the calibrated storage coeffi-
cients and times of concentration, which resulted in generally
higher calibrated storage coefficients and times of concentra-
tion than those initially estimated.

The hydrograph at the Lumberton flood gauge showed a
bimodal behavior with two evident flood peaks, one occur-
ring on the day of the peak rainfall and the second occurring
between 3 to 4 d later (see Fig. 7). It was assumed that the first
peak corresponds to the response of the sub-basin to flood-
ing, while the second peak was generated by the delayed flow
originating from upstream portions. The travel time values in
the upper watershed were much larger than expected, with

travel times from Hoffman to Maxton and from Maxton to
Lumberton gauges ranging between 2 to 3 d. The peaks at
Hoffman, Maxton, and Lumberton were around 40 % lower
during Hurricane Matthew compared to those during Hurri-
cane Florence. This observation matches the results from the
rainfall interpolations that show less concentration of rain-
fall volumes in the north of the watershed during Hurricane
Matthew.

During Hurricane Florence, the first and the highest peak
at Lumberton was generated by the Lumber 3 sub-basin
runoff (see Fig. 4). This highest peak, together with the in-
put from the Big Swamp Creek (Tar Heel hydrograph), cre-
ated the flood peak observed at the Boardman gauge (Fig. 8).
The second and the smaller peak observed at the Lumberton
gauge does not contribute to the main flooding peak at any
of the downstream gauges. However, it caused a slower re-
cession of the hydrograph in the downstream portion of the
watershed (Fig. 9), thereby increasing the flooding lead time
in that portion.

This simulation shows that the simultaneity of peak flow
occurrence from the LPD and Lumber rivers during Hurri-
cane Florence is one of the reasons for the high flood peak
rate at the river’s intersection as reported elsewhere (Muller,
2020). During Hurricane Matthew, the LPD River peak ar-
rived 2.5 d earlier than the peak from the Lumber River, while
for Hurricane Florence they occurred within a period of just
a few hours. The peak flows and time to peak are presented
in Table 6.

4.2 Hydraulic modeling

The hydraulic model requires separate roughness coefficients
for floodplains and the main channel. In the floodplains,
Manning’s roughness coefficient was automatically assigned
in the cross sections using the LULC map following Table 7.
For the main channel, a Manning coefficient of 0.35 was se-
lected.

The calibration process attempts to reproduce the observed
peak water level at Nichols for Hurricane Florence. This is
managed by manually adjusting Manning’s roughness coef-
ficient of the woody wetlands, which is the land use type with
the largest area in the model domain and for which the results
show the most significant sensitivity. The water elevation ob-
served at the Nichols gauge during Hurricane Florence was
17.0 m above NAVD 88. The calibrated Manning’s roughness
coefficient of woody wetlands resulted in a value of 0.09,
which is within the allowable range of values according to
Table 7.

The flood inundation maps of both hurricanes are shown
in Fig. 10. Water depths reached up to 4.5 m and velocities up
to 1.7 m s−1 during Hurricane Florence and up to 4.4 m and
1.6 m s−1 during Hurricane Matthew. During both events,
Nichols was severely inundated, causing severe damage to
properties, businesses, and residential homes.
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Figure 7. Observed and simulated flood hydrographs at the Hoffman, Maxton, and Lumberton stream gauges.

Figure 8. Observed and simulated flood hydrographs at the Tar Heel, Lumberton, and Boardman stream gauges.

4.3 Validation of flood inundation

Figure 11 presents the calculated false, correct, and missed
alarms that are compared with the observed inundations.
These areas are used to calculate the categorical verifica-
tion statistics which resulted in, for Hurricane Matthew,
POD= 79 %, FAR= 20 %, and CSI= 67 %, while for Flo-
rence they were POD= 83 %, FAR= 51 %, and CSI= 45 %.
The higher the values of CSI and POD are, the more accu-
rate the model is, and the opposite is true for FAR. It can
be inferred that the simulated inundation extents showed a
good match with the observed satellite images for Hurricane
Matthew and less good for Florence. The PODs are high for
both events, while CSI is only high for Matthew. Further-
more, the FAR value is low for Hurricane Matthew but for
Florence is more than 50 %.

There are several reasons why Hurricane Florence’s in-
undation mapping was less accurate. It is possible that the

inaccuracy was produced by errors in the observed satellite
image, caused by cloud obstructions during the hurricane
event. After analyzing the satellite images provided by the
Flood Observatory for the Hurricane Florence event, discor-
dances were found with other observed and measured data.
A comparison of both hurricanes’ flood inundation maps was
conducted to understand the similarities and differences (see
Fig. 12). While comparing the satellite observations of hur-
ricanes Florence and Matthew, it was found that the flooding
extent for Matthew’s event around Nichols is much bigger
than the one during Florence and that the satellite-observed
flood extent of Hurricane Florence does not cover Nichols,
contradicting other more reliable sources of information.

It is also possible that the inaccuracies are caused by the
model setup, which could not capture all features of the ter-
rain, such as the existence of structures built along the river,
after Hurricane Matthew.
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Figure 9. Observed and simulated flood hydrographs at Laurinburg, Boardman, Nichols, and Galivants Ferry.

Table 6. Simulated flood peaks at the LPD and Lumber intersection.

Simulation River Peak flow Peak time
(m3 s−1)

Hurricane Lumber 1248 12 October 2016 23:30 LT (GMT−4)
Matthew LPD 566 10 October 2016 14:45 LT

Lumber + LPD 1678 12 October 2016 10:45 LT

Hurricane Lumber 1187 20 September 2018 15:15 LT
Florence LPD 689 20 September 2018 02:30 LT

Lumber + LPD 1859 20 September 2018 11:00 LT

Table 7. Manning’s roughness coefficients by LULC type.

LULC Normal Allowable range
n value1 of values2

Developed 0.12 0.03–0.2
Evergreen forest 0.15 0.1–0.16
Grassland/herbaceous 0.035 0.025–0.05
Cultivated crops 0.05 0.025–0.05
Woody wetlands 0.07 0.045–0.15
Emergent herbaceous wetlands 0.045 0.05–0.85
Main channel 0.035

1 US Army Corps of Engineers (2016). 2 NRCS Kansas (2016).

4.4 NBS performance

The performance of NBS scenarios is evaluated based on
their ability to reduce the inundation area at Nichols for Hur-
ricane Matthew. The total built-in area of the town was es-
timated at 122 ha. For the base scenario, the model simula-
tion shows that 56 % of the town’s area was inundated during
Hurricane Matthew. With the NBS scenarios, the inundated
area was reduced to a range of 55 % to 38 %. The results for

NBS scenarios and the maximum water depth at the USGS
gauge are shown in Table 8. The effects of flood storage
ponds as well as riparian reforestation are almost neglectable,
with an insignificant reduction in flood peak rate and inunda-
tion area.

When the afforestation was implemented in a large domain
in the model, such as those of Scenario 3, the effects start to
be visible. These measures showed reductions ranging be-
tween 8 % and 18 % in the inundated urban area. However,
still, 38 % of the town is at risk of flooding even when af-
forestation was largely implemented in the model. The rea-
son for this could be that the whole area in the downstream
catchments is quite flat, not allowing for great improvements
unless great amounts of water are captured upstream. Fur-
thermore, an optimization of the location of these forested
areas could improve the results. NBSs work better when ap-
plied upstream in the catchment. Nevertheless, this study fo-
cuses on the effects in downstream areas because Nichols is
located there.

Scenario 4 gives comparable results to those in Scenario 3,
given that the first two scenarios have an extraordinarily in-
significant effect on the results.
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Table 8. Flood reduction performance of the scenarios.

Scenario Area inundated % of Flood peak depth at
in Nichols (Ha) Nichols area Nichols gauge (m)

Base scenario 68.4 56 % 3.15
Scenario 1: pond 67.6 55 % 3.14
Scenario 2: riparian reforestation 66.2 54 % 3.12
Scenario 3a: afforestation, 10 % 59.1 48 % 2.96
Scenario 3b: afforestation, 20 % 56.3 46 % 2.94
Scenario 3c: afforestation, 50 % 46.7 38 % 2.84
Scenario 4c: Sc. 1 + Sc. 2 + Sc. 3 44.3 36 % 2.82

Figure 10. Simulated flood depth during hurricanes Matthew and
Florence in Nichols (© Google Maps 2022).

With regard to the reduction in flood peak depths, the NBS
measure of reforestation on floodplains (Scenario 2) showed
an insignificant impact. However, the alternatives in Scenario
3 performed higher peak reductions, ranging between 2.2 %
and 13 %.

5 Conclusions and future works

This study developed an integrated hydrologic–hydraulic
modeling system for hurricane-driven flood simulation and
discussed how NBS measures can be implemented in the pro-
posed modeling system to mitigate flood peak rates and in-
undation areas. The present study can serve as an example
of application and methodology to areas with similar phys-
ical characteristics in the world. The catchment character-

Figure 11. Correct, missed, and false alarm areas in Nichols.

Figure 12. Observed flood extent for hurricanes Matthew and Flo-
rence (layers from Dartmouth Flood Observatory, 2016, 2018).
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istics that are important when replicating the methodology
are large storage and long detention times, which are also
affected by hurricanes or similar storms. Data availability
needs to be similarly rich. The extension of these models to
less intense storms or areas with steeper slopes needs to be
further investigated. Furthermore, this research adds to the
scientific literature on modeling NBS measures at a catch-
ment level, which proved useful to mitigate hurricane-driven
flooding events.

Despite the challenges associated with flood modeling
in the LPD–Lumber River watershed, the model performed
well. However, different complexities made modeling a chal-
lenging task. The watershed is a challenging hydrologic sys-
tem due to its physical characteristics, which make it prone
to surface ponding conditions with long residence times. The
effects of complex floodplain response, dense vegetation,
gentle slope that increases flood ponding/residence time, un-
certainty in rainfall and flood variability/distribution as well
as reservoir operation can significantly impact the modeling
outcomes. Although, the calibration of hurricanes Florence
and Matthew in separate models was performed with good
accuracy.

It was discovered that calibrated CN values for both events
were lower than those predicted in most sub-basins for nor-
mal AMCs. A severe dry AMC in the watershed could be
the cause of this or, perhaps (since no evidence suggests dry
AMC), the Pee Dee area’s typical attenuation and detention
effects. The flow attenuation effects may also explain the
long response times observed in most of the sub-basins. The
time between peak occurrence at consecutive flood stations
varies across rainfall events, which may be attributed to dif-
ferences in reservoir operations and initial water content in
detention areas.

Water attenuation and detention effects in the upper sub-
basins of the Lumber River have a direct impact on increas-
ing the recession periods of the hydrographs in the lower sub-
basins. The delayed response from the upper Lumber River
created a double peak effect at the Lumberton flood gauge.
In both hurricane events, the first and the highest peak rates
were generated at the Boardman outlet, which largely raised
the total flood peak downstream, while the second peak con-
tributed to generating a smooth and slow decrease at the
falling limb of the hydrograph, lengthening the time the river
takes to get back to its normal flow.

The spatial and temporal patterns of rainfall for both hur-
ricane events play a key role in the generation of flood hy-
drographs. Higher rainfall volumes concentrated in the south
of the watershed during Hurricane Matthew implied that the
flood peak at Nichols was mostly due to the Lumber River
and less the LPD. On the contrary, during Hurricane Flo-
rence, the whole watershed received higher rainfall amounts,
principally in the east. This generated a higher flood peak
at the intersection of the LPD and Lumber rivers, caused by
simultaneous peaks originating from both rivers.

The simultaneous occurrence of flood peaks from the
LPD and Lumber rivers caused the inundation extension
to be larger during Hurricane Florence than during Hurri-
cane Matthew. According to the simulated events, Hurri-
cane Matthew inundated 58 % of Nichols’ residential area,
whereas Hurricane Florence inundated 91 %. In the model
domain, simulated water depths and velocities reached
4.5 m and 1.7 m s−1 for Hurricane Florence and 4.4 m and
1.6 m s−1 for Hurricane Matthew.

The performance of flood inundation mapping revealed
high accuracy for Hurricane Matthew, while showing less
accurate results for Hurricane Florence. The deficient per-
formance of Hurricane Florence is attributed to the observed
data rather than simulation errors. The flood extent observa-
tions during Florence were not validated against other satel-
lite images due to cloud coverage, as the images mismatched
the archived photos of Florence-driven inundation and neigh-
bor testimony.

The NBS scenario simulation indicated neglectable flood
reduction outcomes for the flood storage pond and riparian
reforestation, while afforestation in the cropland scenario had
a more visible effect. The storage pond worked correctly
throughout the simulation; however, the flow that must be
decreased to minimize inundation in Nichols is overwhelm-
ingly high to manage using a single flood storage pond. The
NBS site suitability analysis revealed more potential loca-
tions outside of Nichols where ponds can be designed and
implemented, allowing for a higher number of storages to be
considered.

The afforestation in cropland scenarios revealed the best
flood reduction results of any intervention tested. This is be-
cause it operates at a much higher scale, which is required
in this situation to observe an effect on flood reduction. Ev-
idently, the more cropland area was converted to forests, the
more reduction in flood peak rate and volume was observed.
Although, these findings should be accompanied by an eval-
uation of the cropland surface area that can be realistically
transformed into forests.

The selected loss method (SCS CN) in the HEC-HMS
model did not allow for the consideration of the sub-basins’
initial conditions in terms of soil moisture (unless CNs are
adjusted for each event) and water table elevation. In addi-
tion, the HEC-HMS model is unable to account for reservoirs
or other detention areas in a direct manner, and the initial
water contents of these areas, which could potentially influ-
ence simulation results, are uncertain. To account for these
uncertainties, water detention in the sub-basins is manually
formulated into an equation in the calibrated parameters of
CN, time of concentration, and storage coefficients. In this
region, dense vegetation and extensive forested/non-forested
wetlands may severely impact runoff generation. These com-
plexities along with poor natural drainage created an exces-
sive soil water condition that is difficult for the model to un-
derstand and capture their dynamics and interaction. Dense
vegetation and forested/non-forested wetlands affect the vari-
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able source area involved in the generation of saturation over-
land flow, and this mechanism can cause the rainfall–runoff
module to behave chaotically during flood simulation.

Another difficulty that concerned us was the lack of sub-
daily rainfall data at some sub-basins, which made the mod-
eling and understanding of the runoff generation mecha-
nism difficult. In this case, it is important to model the wa-
tershed for other significant flooding events when the rain-
fall distribution over the watershed is different from hurri-
canes Matthew and Florence. In addition, several modeling
improvements could be explored in the future. For exam-
ple, a continuous simulation with a soil-moisture-accounting
model as a loss method could be tested to help improve mod-
eling results.

The large quantity of storage facilities within the catch-
ment likely has a substantial impact on the modeling pro-
cess. We recognize a limitation in our study regarding the
functioning of these reservoirs. Due to the sensitive nature
of operating such structures during hazardous conditions, in-
formation regarding their operation is not accessible to the
public.

We acknowledge that both hydrologic and hydraulic simu-
lations can be made more efficient by coupling these models
with Bayesian uncertainty inference such as Bayesian model
averaging (BMA; Samadi et al., 2020) and/or Markov chain
Monte Carlo (MCMC) optimization methods (Duane et al.,
1987). The analyses presented herein are intended to pro-
vide a basis for NBS implementation and assessment in both
hydrologic and hydraulic settings. However, subsequent in-
depth studies are needed to examine the impacts of individ-
ual and combined NBS measures on flood peak and volume
reduction. Additionally, checking the emergent behavior of
the hydrograph (in more detail) over time using carefully
designed in-filed NBS implementation is useful to expose
key runoff generation mechanisms in at-risk watersheds. Ac-
knowledging a growing enthusiasm for NBS modeling stud-
ies in the hydrology community, we expect progress on mul-
tiple fronts: a better module to design NBS structures in the
model, better accuracy metrics for quantifying NBS perfor-
mance, and better error estimation of NBS implementation.
As always, we invite dialogue with hydrology communities
interested in this and other related modeling for flood risk
management.
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