Articles | Volume 23, issue 7
https://doi.org/10.5194/nhess-23-2569-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2569-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Review article: Snow and ice avalanches in high mountain Asia – scientific, local and indigenous knowledge
Anushilan Acharya
CORRESPONDING AUTHOR
Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
Jakob F. Steiner
International Centre for Integrated Mountain Development, 44600 Lalitpur, Nepal
Department of Geography and Regional Science, University of Graz, Heinrichstraße 36, 8010 Graz, Austria
Khwaja Momin Walizada
Aga Khan Agency for Habitat, Kabul, Afghanistan
Salar Ali
Department of Environmental Science, University of Baltistan, Skardu, 16100, Skardu, Pakistan
Zakir Hussain Zakir
Department of Environmental Science, University of Baltistan, Skardu, 16100, Skardu, Pakistan
Arnaud Caiserman
Mountain Societies Research Institute, University of Central Asia, Khorog, 736000, Tajikistan
Teiji Watanabe
Faculty of Environmental Earth Science and Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
Related authors
No articles found.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315, https://doi.org/10.5194/essd-2025-315, 2025
Preprint under review for ESSD
Short summary
Short summary
Many mountain glaciers around the world flow into lakes – exactly how many however, has never been mapped. Across a large team of experts we have now identified all glaciers that end in lakes. Only about 1% do so, but they are generally larger than those which end on land. This is important to understand, as lakes can influence the behaviour of glacier ice, including how fast it disappears. This new dataset allows us to better model glaciers at a global scale, accounting for the effect of lakes.
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
Hydrol. Earth Syst. Sci., 29, 3073–3100, https://doi.org/10.5194/hess-29-3073-2025, https://doi.org/10.5194/hess-29-3073-2025, 2025
Short summary
Short summary
We introduce a novel method for improving daily precipitation maps in mountain regions and pilot it across three basins in the Hindu Kush Himalaya (HKH). The approach leverages climate model and weather station data, along with statistical or machine learning techniques. Our results show that this approach outperforms traditional methods, especially in remote ungauged areas, suggesting that it could be used to improve precipitation maps across much of the HKH, as well as other mountain regions.
Jakob Steiner, Jakob Abermann, and Rainer Prinz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2424, https://doi.org/10.5194/egusphere-2025-2424, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ice in Greenland either ends in the ocean or on land and in lakes. We show that more than 95% of the margin ends on land. Ice ending in lakes is much rarer, but with 1.4% quite similar to the 2.2% ending in oceans. We also see that more than 20% of the margin ends in extremely steep, often vertical cliffs. We will now be able to compare these maps against local ice velocities, mass loss and climate to understand whether the margin shape teaches us something about the health of ice in the region.
Finu Shrestha, Jakob F. Steiner, Reeju Shrestha, Yathartha Dhungel, Sharad P. Joshi, Sam Inglis, Arshad Ashraf, Sher Wali, Khwaja M. Walizada, and Taigang Zhang
Earth Syst. Sci. Data, 15, 3941–3961, https://doi.org/10.5194/essd-15-3941-2023, https://doi.org/10.5194/essd-15-3941-2023, 2023
Short summary
Short summary
A new inventory of glacial lake outburst floods (GLOFs) in High Mountain Asia found 697 events, causing 906 deaths, 3 times more than previously reported. This study provides insights into the contributing factors behind GLOFs on a regional scale and highlights the need for interdisciplinary approaches, including scientific communities and local knowledge, to understand GLOF risks in Asia. This study allows integration with other datasets, enabling future local and regional risk assessments.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Arnaud Caiserman, Roy C. Sidle, and Deo Raj Gurung
The Cryosphere, 16, 3295–3312, https://doi.org/10.5194/tc-16-3295-2022, https://doi.org/10.5194/tc-16-3295-2022, 2022
Short summary
Short summary
Snow avalanches cause considerable material and human damage in all mountain regions of the world. We present the first model to automatically inventory avalanche deposits at the scale of a catchment area – here the Amu Panj in Afghanistan – every year since 1990. This model called Snow Avalanche Frequency Estimation (SAFE) is available online on the Google Engine. SAFE has been designed to be simple and universal to use. Nearly 810 000 avalanches were detected over the 32 years studied.
Maurice van Tiggelen, Paul C. J. P. Smeets, Carleen H. Reijmer, Bert Wouters, Jakob F. Steiner, Emile J. Nieuwstraten, Walter W. Immerzeel, and Michiel R. van den Broeke
The Cryosphere, 15, 2601–2621, https://doi.org/10.5194/tc-15-2601-2021, https://doi.org/10.5194/tc-15-2601-2021, 2021
Short summary
Short summary
We developed a method to estimate the aerodynamic properties of the Greenland Ice Sheet surface using either UAV or ICESat-2 elevation data. We show that this new method is able to reproduce the important spatiotemporal variability in surface aerodynamic roughness, measured by the field observations. The new maps of surface roughness can be used in atmospheric models to improve simulations of surface turbulent heat fluxes and therefore surface energy and mass balance over rough ice worldwide.
Cited articles
Abermann, J., Eckerstorfer, M., Malnes, E., and Hansen, B. U.: A large wet
snow avalanche cycle in West Greenland quantified using remote sensing and
in situ observations, Nat. Hazards, 97, 517–534, https://doi.org/10.1007/s11069-019-03655-8, 2019.
Adler, C., Wester, P., Bhatt, I., Huggel, C., Insarov, G., Morecroft, M., Muccione, V., and Prakash, A.: Cross-Chapter Paper 5: Mountains, in: Climate Change 2022, Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H. O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2273–2318, https://doi.org/10.1017/9781009325844.022, 2022.
Afghanistan|Disaster Preparedness and Response: https://the.akdn/en/where-we-work/central-asia/afghanistan/disaster-preparedness-and-response-afghanistan (last access: 16 July 2023), 2023.
Alcaraz Tarragüel, A., Krol, B., and van Westen, C.: Analysing the
possible impact of landslides and avalanches on cultural heritage in Upper
Svaneti, Georgia, J. Cult. Herit., 13, 453–461,
https://doi.org/10.1016/j.culher.2012.01.012, 2012.
Alean, J.: Ice Avalanches: Some Empirical Information about their Formation
and Reach, J. Glaciol., 31, 324–333, https://doi.org/10.3189/S0022143000006663, 1985.
Ancey, C.: Snow Avalanches, in: Geomorphological Fluid Mechanics, edited by:
Balmforth, N. J. and Provenzale, A., Springer, Berlin, Heidelberg, 319–338,
ISBN 978-3-540-42968-5, https://doi.org/10.1007/3-540-45670-8_13, 2001.
Ancey, C., Bakkehøi, S., Birkeland, K., Decker, R., Hutter, C., Issler, D.,
Jóhannesson, T., Lied, K., Nishimura, K., Pudasaini, S. P., Schaerer, P., and Sokratov, S.: Some notes on the history of snow and avalanche research in Europe, Asia and America, ICE, 39, 3–11, 2005.
Ashraf, A. and Ahmad, I.: Prospects of cryosphere-fed Kuhl irrigation system
nurturing high mountain agriculture under changing climate in the Upper
Indus Basin, Sci. Total Environ., 788, 147752, https://doi.org/10.1016/j.scitotenv.2021.147752, 2021.
Ashraf, A. and Akbar, G.: Addressing Climate Change Risks Influencing
Cryosphere-Fed Kuhl Irrigation System in the Upper Indus Basin of Pakistan, International Journal of Environment, 9, 184–203, https://doi.org/10.3126/ije.v9i2.32700, 2020.
Azam, M. F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K., and Kargel,
J. S.: Review of the status and mass changes of Himalayan-Karakoram
glaciers, J. Glaciol., 64, 61–74, https://doi.org/10.1017/jog.2017.86, 2018.
Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural hazard fatalities in Switzerland from 1946 to 2015, Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, 2016.
Bair, E. H., Rittger, K., Ahmad, J. A., and Chabot, D.: Comparison of modeled snow properties in Afghanistan, Pakistan, and Tajikistan, The Cryosphere, 14, 331–347, https://doi.org/10.5194/tc-14-331-2020, 2020.
Balasubramanian, S., Hoelzle, M., and Waser, R.: Fountain scheduling
strategies for improving water-use efficiency of artificial ice reservoirs
(Ice stupas), Cold Reg. Sci. Technol., 205, 103706,
https://doi.org/10.1016/j.coldregions.2022.103706, 2023.
Ballesteros-Cánovas, J. A., Trappmann, D., Madrigal-González, J.,
Eckert, N., and Stoffel, M.: Climate warming enhances snow avalanche risk in
the Western Himalayas, P. Natl. Acad. Sci. USA, 115, 3410–3415,
https://doi.org/10.1073/pnas.1716913115, 2018.
Barbolini, M., Gruber, U., Keylock, C. J., Naaim, M., and Savi, F.:
Application of statistical and hydraulic-continuum dense-snow avalanche
models to five real European sites, Cold Reg. Sci. Technol., 31, 133–149, https://doi.org/10.1016/S0165-232X(00)00008-2, 2000.
Barbolini, M., Pagliardi, M., Ferro, F., and Corradeghini, P.: Avalanche
hazard mapping over large undocumented areas, Nat. Hazards, 56, 451–464, 2011.
Bartelt, P., Salm, B., and Gruber, U.: Calculating dense-snow avalanche
runout using a Voellmy-fluid model with active/passive longitudinal
straining, J. Glaciol., 45, 242–254, https://doi.org/10.3189/S002214300000174X, 1999.
Bartelt, P., Buser, O., Valero, C. V., and Bühler, Y.: Configurational
energy and the formation of mixed flowing/powder snow and ice avalanches,
Ann. Glaciol., 57, 179–188, https://doi.org/10.3189/2016AoG71A464, 2016.
Bebi, P., Kulakowski, D., and Rixen, C.: Snow avalanche disturbances in
forest ecosystems – State of research and implications for management,
Forest Ecol. Manag., 257, 1883–1892, https://doi.org/10.1016/j.foreco.2009.01.050, 2009.
Benn, D. I. and Lehmkuhl, F.: Mass balance and equilibrium-line altitudes of
glaciers in high-mountain environments, Quatern. Int., 65–66, 15–29, https://doi.org/10.1016/S1040-6182(99)00034-8, 2000.
Berlin, C., Techel, F., Moor, B. K., Zwahlen, M., Hasler, R. M., and for the Swiss National Cohort study: Snow avalanche deaths in Switzerland from 1995 to 2014 – Results of a nation-wide linkage study, PLoS ONE, 14, e0225735,
https://doi.org/10.1371/journal.pone.0225735, 2019.
Bois, P., Obled, C., and Good, W.: Multivariate data analysis as a tool for
day-by-day avalanche forecast, in: Proceedings of the international
symposium on snow mechanics, Grindelwald, Switzerland, 1974, International Association of Hydrological Sciences Publ. No. 114, International Association of Hydrological Sciences, 391–403, 1975.
Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S.,
Immerzeel, W. W., Kulkarni, A., Li, H., Tahir, A. A., Zhang, G., and Zhang,
Y.: Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya
Region, in: The Hindu Kush Himalaya Assessment: Mountains, Climate Change,
Sustainability and People, edited by: Wester, P., Mishra, A., Mukherji, A.,
and Shrestha, A. B., Springer International Publishing, Cham, 209–255,
https://doi.org/10.1007/978- 3-319-92288-1, 2019.
Bründl, M., Etter, H.-J., Steiniger, M., Klingler, Ch., Rhyner, J., and Ammann, W. J.: IFKIS - a basis for managing avalanche risk in settlements and on roads in Switzerland, Nat. Hazards Earth Syst. Sci., 4, 257–262, https://doi.org/10.5194/nhess-4-257-2004, 2004.
Bühler, Y., Hüni, A., Christen, M., Meister, R., and Kellenberger,
T.: Automated detection and mapping of avalanche deposits using airborne
optical remote sensing data, Cold Reg. Sci. Technol., 57, 99–106, https://doi.org/10.1016/j.coldregions.2009.02.007, 2009.
Bühler, Y., Kumar, S., Veitinger, J., Christen, M., Stoffel, A., and Snehmani: Automated identification of potential snow avalanche release areas based on digital elevation models, Nat. Hazards Earth Syst. Sci., 13, 1321–1335, https://doi.org/10.5194/nhess-13-1321-2013, 2013.
Bühler, Y., von Rickenbach, D., Stoffel, A., Margreth, S., Stoffel, L., and Christen, M.: Automated snow avalanche release area delineation – validation of existing algorithms and proposition of a new object-based approach for large-scale hazard indication mapping, Nat. Hazards Earth Syst. Sci., 18, 3235–3251, https://doi.org/10.5194/nhess-18-3235-2018, 2018.
Bühler, Y., Hafner, E. D., Zweifel, B., Zesiger, M., and Heisig, H.: Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps, The Cryosphere, 13, 3225–3238, https://doi.org/10.5194/tc-13-3225-2019, 2019.
Bühler, Y., Bebi, P., Christen, M., Margreth, S., Stoffel, L., Stoffel,
A., Marty, C., Schmucki, G., Caviezel, A., and Kühne, R.: Automated
avalanche hazard indication mapping on a statewide scale, Natural Hazards
and Earth System Sciences, 22, 1825–1843, 2022.
Buser, O.: Avalanche forecast with the method of nearest neighbours: An
interactive approach, Cold Reg. Sci. Technol., 8, 155–163,
https://doi.org/10.1016/0165-232X(83)90006-X, 1983.
Buser, O.: Two Years Experience of Operational Avalanche Forecasting using
the Nearest Neighbours Method, Ann. Glaciol., 13, 31–34,
https://doi.org/10.3189/S026030550000759X, 1989.
Butler, D. R.: Snow-avalanche hazards, Southern Glacier National Park,
Montana: The nature of local knowledge and individual responses, Disasters,
11, 214–220, https://doi.org/10.1111/j.1467-7717.1987.tb00640.x, 1987.
Caiserman, A., Sidle, R. C., and Gurung, D. R.: Snow Avalanche Frequency Estimation (SAFE): 32 years of monitoring remote avalanche depositional zones in high mountains of Afghanistan, The Cryosphere, 16, 3295–3312, https://doi.org/10.5194/tc-16-3295-2022, 2022.
Cannon, F., Carvalho, L. M. V., Jones, C., Hoell, A., Norris, J., Kiladis,
G. N., and Tahir, A. A.: The influence of tropical forcing on extreme winter
precipitation in the western Himalaya, Clim. Dynam., 48, 1213–1232,
https://doi.org/10.1007/s00382-016-3137-0, 2017.
Caplan-Auerbach, J. and Huggel, C.: Precursory seismicity associated with
frequent, large ice avalanches on Iliamna volcano, Alaska, USA, J. Glaciol., 53, 128–140, https://doi.org/10.3189/172756507781833866, 2007.
Carey, M.: Living and dying with glaciers: people's historical vulnerability
to avalanches and outburst floods in Peru, Global Planet. Change, 47,
122–134, https://doi.org/10.1016/j.gloplacha.2004.10.007, 2005.
Casteller, A., Christen, M., Villalba, R., Martínez, H., Stöckli, V., Leiva, J. C., and Bartelt, P.: Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia, Argentina, Nat. Hazards Earth Syst. Sci., 8, 433–443, https://doi.org/10.5194/nhess-8-433-2008, 2008.
Casteller, A., Villalba, R., Araneo, D., and Stöckli, V.: Reconstructing
temporal patterns of snow avalanches at Lago del Desierto, southern
Patagonian Andes, Cold Reg. Sci. Technol., 67, 68–78,
https://doi.org/10.1016/j.coldregions.2011.02.001, 2011.
Chabot, D. and Kaba, A.: Avalanche Forecasting in the Central Asian Countries of Afghanistan, Pakistan and Tajikistan, in: International Snow Science Workshop 2016 Proceedings, 2–7 October 2016, Breckenridge, CO, USA, 480–483, https://arc.lib.montana.edu/snow-science/item/2310 (last access: 16 July 2023), 2016.
Christen, M., Bartelt, P., and Gruber, U.: AVAL-1D: An avalanche dynamics program for the practice, in: International Congress interpraevent, Matsumoto, Japan, 715–725, http://supplyline.cl/wp-content/uploads/2014/10/AVAL.pdf (last access: 16 July 2023), 2002.
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of
dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2010.
Chymyrov, A., Zeidler, A., Perzl, F., and Nazarkulov, K.: The Avalanche
Geodatabase Development and Hazard Mapping for the Bishkek-Osh Road in
Kyrgyzstan, International Journal of Geoinformatics, 15, 19–27, 2019.
Degen, A. A., Kam, M., Pandey, S. B., Upreti, C. R., Pandey, S., and Regmi,
P.: Transhumant pastoralism in yak production in the Lower Mustang District
of Nepal, Nomadic Peoples, 11, 57–85, 2007.
Deline, P., Hewitt, K., Reznichenko, N., and Shugar, D.: Rock Avalanches
onto Glaciers, in: Landslide Hazards, Risks, and Disasters, Academic Press, Boston, 263–319, https://doi.org/10.1016/B978-0-12-396452-6.00009-4, 2015.
Deng, Y. X.: Snow avalanche in Guxiang region of Xizang and its role in the
physical geographic processes of high mountains, Acta Geographica Sinica, 35, 242–250, 1980 (in Chinese).
Dewali, S. K., Joshi, J. C., Ganju, A., and Snehmani: A GPS-based real-time
avalanche path warning and navigation system, Geomat. Nat. Haz. Risk, 5, 56–80, 2014.
DRDO: Avalanche Hazard Mitigation in Western and Central Himalaya, Defence
Research and Development Organisation (DRDO), Ministry of Defence, Government of India, Delhi, 2018.
Eckerstorfer, M. and Grahn, J.: Snow avalanche detection using Sentinel-1 in
Langtang, Nepal, NORCE Norwegian Research Centre, ISBN 978-82-8408-179-3, 2021.
Eckerstorfer, M. and Malnes, E.: Manual detection of snow avalanche debris
using high-resolution Radarsat-2 SAR images, Cold Reg. Sci. Technol., 120, 205–218, https://doi.org/10.1016/j.coldregions.2015.08.016, 2015.
Eckerstorfer, M., Bühler, Y., Frauenfelder, R., and Malnes, E.: Remote
sensing of snow avalanches: Recent advances, potential, and limitations,
Cold Reg. Sci. Technol., 121, 126–140, https://doi.org/10.1016/j.coldregions.2015.11.001, 2016.
Eckerstorfer, M., Vickers, H., Malnes, E., and Grahn, J.: Near-Real Time
Automatic Snow Avalanche Activity Monitoring System Using Sentinel-1 SAR
Data in Norway, Remote Sens.-Basel, 11, 2863, https://doi.org/10.3390/rs11232863, 2019.
Eckert, N., Parent, E., Kies, R., and Baya, H.: A spatio-temporal modelling
framework for assessing the fluctuations of avalanche occurrence resulting
from climate change: application to 60 years of data in the northern French
Alps, Climatic Change, 101, 515–553, https://doi.org/10.1007/s10584-009-9718-8, 2010.
Eckert, N., Keylock, C. J., Castebrunet, H., Lavigne, A., and Naaim, M.:
Temporal trends in avalanche activity in the French Alps and subregions:
from occurrences and runout altitudes to unsteady return periods, J. Glaciol., 59, 93–114, https://doi.org/10.3189/2013JoG12J091, 2013.
Emerman, S. H., Adhikari, S., Panday, S., Bhattarai, T. N., Gautam, T.,
Fellows, S. A., Anderson, R. B., Adhikari, N., Karki, K., and Palmer, M. A.:
The Integration of the Direct and Indirect Methods in Lichenometry for
Dating Buddhist Sacred Walls in Langtang Valley, Nepal Himalaya, Arct. Antart. Alp. Res., 48, 9–31, https://doi.org/10.1657/AAAR0015-026, 2016.
Emmer, A., Allen, S. K., Carey, M., Frey, H., Huggel, C., Korup, O., Mergili, M., Sattar, A., Veh, G., Chen, T. Y., Cook, S. J., Correas-Gonzalez, M., Das, S., Diaz Moreno, A., Drenkhan, F., Fischer, M., Immerzeel, W. W., Izagirre, E., Joshi, R. C., Kougkoulos, I., Kuyakanon Knapp, R., Li, D., Majeed, U., Matti, S., Moulton, H., Nick, F., Piroton, V., Rashid, I., Reza, M., Ribeiro de Figueiredo, A., Riveros, C., Shrestha, F., Shrestha, M., Steiner, J., Walker-Crawford, N., Wood, J. L., and Yde, J. C.: Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective, Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, 2022.
Faillettaz, J., Funk, M., and Sornette, D.: Instabilities on Alpine temperate glaciers: new insights arising from the numerical modelling of Allalingletscher (Valais, Switzerland), Nat. Hazards Earth Syst. Sci., 12, 2977–2991, https://doi.org/10.5194/nhess-12-2977-2012, 2012.
Faillettaz, J., Funk, M., and Vagliasindi, M.: Time forecast of a break-off event from a hanging glacier, The Cryosphere, 10, 1191–1200, https://doi.org/10.5194/tc-10-1191-2016, 2016.
Faraz, S.: The glacier `marriages' in Pakistan’s high Himalayas, https://www.thethirdpole.net/en/climate/the-glacier-marriages-in-pakistans-high-himalayas/ (last access: 16 July 2023), 2020.
Fitzharris, B. B. and Bakkehøi, S.: A synoptic climatology of major
avalanche winters in Norway, J. Climatol., 6, 431–446,
https://doi.org/10.1002/joc.3370060408, 1986.
Fleetwood, L.: Science on the Roof of the World: Empire and the Remaking of
the Himalaya, Cambridge University Press, ISBN 978-1009123112, 2022.
Fuchs, S., Bründl, M., and Stötter, J.: Development of avalanche risk between 1950 and 2000 in the Municipality of Davos, Switzerland, Nat. Hazards Earth Syst. Sci., 4, 263–275, https://doi.org/10.5194/nhess-4-263-2004, 2004.
Fujita, K., Inoue, H., Izumi, T., Yamaguchi, S., Sadakane, A., Sunako, S., Nishimura, K., Immerzeel, W. W., Shea, J. M., Kayastha, R. B., Sawagaki, T., Breashears, D. F., Yagi, H., and Sakai, A.: Anomalous winter-snow-amplified earthquake-induced disaster of the 2015 Langtang avalanche in Nepal, Nat. Hazards Earth Syst. Sci., 17, 749–764, https://doi.org/10.5194/nhess-17-749-2017, 2017.
Ganju, A. and Dimri, A. P.: Prevention and Mitigation of Avalanche Disasters
in Western Himalayan Region, Nat. Hazards, 31, 357–371,
https://doi.org/10.1023/B:NHAZ.0000023357.37850.aa, 2004.
Ganju, A., Thakur, N. K., and Rana, V.: Characteristics of avalanche accidents in western Himalayan region, India, in: Proceedings of the
International Snow Science Workshop, Penticton, BC, Canada, 29 September–4 October 2002, ISSW, 200–207, 2002.
Giacona, F., Eckert, N., Corona, C., Mainieri, R., Morin, S., Stoffel, M.,
Martin, B., and Naaim, M.: Upslope migration of snow avalanches in a warming
climate, P. Natl. Acad. Sci. USA, 118, e2107306118, https://doi.org/10.1073/pnas.2107306118, 2021.
Gidrometeoizdat: Avalanches Cadastre of USSR, GIMIZ, Leningrad, 1984.
Gilany, N. and Iqbal, J.: Simulation of Glacial Avalanche Hazards in Shyok
Basin of Upper Indus, Sci. Rep.-UK, 9, 20077, https://doi.org/10.1038/s41598-019-56523-7, 2019.
Gusain, H. S., Negi, H. S., Dhamija, S., Mishra, V. D., and Snehmani:
Development of avalanche information system using remote sensing and GIS
technology in the Indian Karakoram Himalaya, Current Science, 117, 104–109,
2019.
Hafner, E. D., Techel, F., Leinss, S., and Bühler, Y.: Mapping avalanches with satellites – evaluation of performance and completeness, The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, 2021.
Hancock, H., Hendrikx, J., Eckerstorfer, M., and Wickström, S.: Synoptic control on snow avalanche activity in central Spitsbergen, The Cryosphere, 15, 3813–3837, https://doi.org/10.5194/tc-15-3813-2021, 2021.
Hao, J., Huang, F., Liu, Y., Amobichukwu, C. A., and Li, L.: Avalanche
activity and characteristics of its triggering factors in the western
Tianshan Mountains, China, J. Mt. Sci., 15, 1397–1411,
https://doi.org/10.1007/s11629-018-4941-2, 2018.
Hao, J., Mind'je, R., Liu, Y., Huang, F., Zhou, H., and Li, L.: Characteristics and hazards of different snow avalanche types in a
continental snow climate region in the Central Tianshan Mountains, J. Arid
Land, 13, 317–331, https://doi.org/10.1007/s40333-021-0058-5, 2021a.
Hao, J., Zhang, Z., and Li, L.: Timing and identification of potential snow
avalanche types: a case study of the central Tianshan Mountains, Landslides,
18, 3845–3856, https://doi.org/10.1007/s10346-021-01766-7, 2021b.
Hao, J., Zhang, X., Cui, P., Li, L., Wang, Y., Zhang, G., and Li, C.:
Impacts of Climate Change on Snow Avalanche Activity Along a Transportation
Corridor in the Tianshan Mountains, Int. J. Disast. Risk Sc., https://doi.org/10.1007/s13753-023-00475-0, in press, 2023.
Hewitt, K.: Glacier Change, Concentration, and Elevation Effects in the
Karakoram Himalaya, Upper Indus Basin, Mt. Res. Dev., 31, 188–200, https://doi.org/10.1659/MRD-JOURNAL-D-11-00020.1, 2011.
Hovelsrud, G. K., Karlsson, M., and Olsen, J.: Prepared and flexible: Local
adaptation strategies for avalanche risk, Cogent Social Sciences, 4, 1460899,
https://doi.org/10.1080/23311886.2018.1460899, 2018.
Huggel, C., Zgraggen-Oswald, S., Haeberli, W., Kääb, A., Polkvoj, A., Galushkin, I., and Evans, S. G.: The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery, Nat. Hazards Earth Syst. Sci., 5, 173–187, https://doi.org/10.5194/nhess-5-173-2005, 2005.
Indira Gandhi National Open University: Understanding Natural Disasters: in UNIT 14 Avalanches: Case Studies, https://www.studocu.com/in/document/indira-gandhi-national-open-university/understanding-natural-disasters/unit-14-understanding-natural-resources-the/23729553, (last access: 16 July 2023), 2017.
Jomelli, V., Delval, C., Grancher, D., Escande, S., Brunstein, D., Hetu, B.,
Filion, L., and Pech, P.: Probabilistic analysis of recent snow avalanche
activity and weather in the French Alps, Cold Reg. Sci. Technol., 47, 180–192, https://doi.org/10.1016/j.coldregions.2006.08.003, 2007.
Joshi, J. C., Kumar, T., Srivastava, S., Sachdeva, D., and Ganju, A.: Application of Hidden Markov Model for avalanche danger simulations for road sectors in North-West Himalaya, Nat. Hazards, 93, 1127–1143, https://doi.org/10.1007/s11069-018-3343-7, 2018.
Kääb, A., Leinss, S., Gilbert, A., Bühler, Y., Gascoin, S.,
Evans, S. G., Bartelt, P., Berthier, E., Brun, F., Chao, W.-A., Farinotti,
D., Gimbert, F., Guo, W., Huggel, C., Kargel, J. S., Leonard, G. J., Tian,
L., Treichler, D., and Yao, T.: Massive collapse of two glaciers in western
Tibet in 2016 after surge-like instability, Nat. Geosci., 11, 114–120,
https://doi.org/10.1038/s41561-017-0039-7, 2018.
Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel, C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets, S., Dokukin, M., Paul, F., Gascoin, S., Berthier, E., and Kargel, J. S.: Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?, The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, 2021.
Karas, A., Karbou, F., Giffard-Roisin, S., Durand, P., and Eckert, N.:
Automatic Color Detection-Based Method Applied to Sentinel-1 SAR Images for
Snow Avalanche Debris Monitoring, IEEE T. Geosci. Remote, 60, 1–17, https://doi.org/10.1109/TGRS.2021.3131853, 2022.
Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashya, U. K., Bevington,
A., Fielding, E. J., Fujita, K., Geertsema, M., Miles, E. S., Steiner, J.,
Anderson, E., Bajracharya, S., Bawden, G. W., Breashears, D. F., Byers, A.,
Collins, B., Dhital, M. R., Donnellan, A., Evans, T. L., Geai, M. L.,
Glasscoe, M. T., Green, D., Gurung, D. R., Heijenk, R., Hilborn, A., Hudnut,
K., Huyck, C., Immerzeel, W. W., Liming, J., Jibson, R., Kääb, A.,
Khanal, N. R., Kirschbaum, D., Kraaijenbrink, P. D. A., Lamsal, D., Shiyin,
L., Mingyang, L., McKinney, D., Nahirnick, N. K., Zhuotong, N., Ojha, S.,
Olsenholler, J., Painter, T. H., Pleasants, M., Pratima, K. C., Yuan, Q. I.,
Raup, B. H., Regmi, D., Rounce, D. R., Sakai, A., Donghui, S., Shea, J. M.,
Shrestha, A. B., Shukla, A., Stumm, D., van der Kooij, M., Voss, K., Xin,
W., Weihs, B., Wolfe, D., Lizong, W., Xiaojun, Y., Yoder, M. R., and Young,
N.: Geomorphic and geologic controls of geohazards induced by Nepal's 2015
Gorkha earthquake, Science, 351, 159–163, https://doi.org/10.1126/science.aac8353,
2016.
Kattelmann, R. and Yamada, T.: Storms and Avalanches of November 1995, Khumbu Himal, Nepal, in: Proceedings of the 1996 International Snow Science Workshop, 6–11 October 1996, Banff, Canada, 276–278, 1996.
Keiler, M.: Development of the damage potential resulting from avalanche risk in the period 1950-2000, case study Galtür, Nat. Hazards Earth Syst. Sci., 4, 249–256, https://doi.org/10.5194/nhess-4-249-2004, 2004.
Korzeniowska, K., Bühler, Y., Marty, M., and Korup, O.: Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery, Nat. Hazards Earth Syst. Sci., 17, 1823–1836, https://doi.org/10.5194/nhess-17-1823-2017, 2017.
Kumar, S., Snehmani, Srivastava, P. K., Gore, A., and Singh, M. K.:
Fuzzy–frequency ratio model for avalanche susceptibility mapping, Int. J. Digit. Earth, 9, 1168–1184, 2016.
Kumar, S., Srivastava, P. K., and Snehmani: GIS-based MCDA–AHP modelling
for avalanche susceptibility mapping of Nubra valley region, Indian
Himalaya, Geocarto Int., 32, 1254–1267,
https://doi.org/10.1080/10106049.2016.1206626, 2017.
Kumar, S., Srivastava, P. K., and Snehmani: Geospatial Modelling and Mapping
of Snow Avalanche Susceptibility, J. Indian Soc. Remote, 46, 109–119,
https://doi.org/10.1007/s12524-017-0672-z, 2018.
Kutsch, E., Turner, N., Denyer, D., and Hällgren, M.: A case of dying
leadership: Examining the K2 disaster of 2008, Proceedings, 2017, 12001,
https://doi.org/10.5465/AMBPP.2017.12001abstract, 2017.
Laha, S., Kumari, R., Singh, S., Mishra, A., Sharma, T., Banerjee, A.,
Nainwal, H. C., and Shankar, R.: Evaluating the contribution of avalanching
to the mass balance of Himalayan glaciers, Ann. Glaciol., 58, 110–118, https://doi.org/10.1017/aog.2017.27, 2017.
Lashkari, S. H.: Avalanche risk reduction and community resilience building
in (Badakhshan, Afghanistan), PhD thesis, Brac University, https://dspace.bracu.ac.bd/xmlui/handle/10361/18046?show=full (last access: 16 July 2023), 2022.
Lato, M. J., Frauenfelder, R., and Bühler, Y.: Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery, Nat. Hazards Earth Syst. Sci., 12, 2893–2906, https://doi.org/10.5194/nhess-12-2893-2012, 2012.
Leinss, S., Bernardini, E., Jacquemart, M., and Dokukin, M.: Glacier detachments and rock-ice avalanches in the Petra Pervogo range, Tajikistan (1973–2019), Nat. Hazards Earth Syst. Sci., 21, 1409–1429, https://doi.org/10.5194/nhess-21-1409-2021, 2021.
Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L.,
Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W.,
Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schöber, J.,
and De Lannoy, G. J. M.: Snow depth variability in the Northern Hemisphere
mountains observed from space, Nat. Commun., 10, 1–12,
https://doi.org/10.1038/s41467-019-12566-y, 2019.
Lipovsky, P. S., Evans, S. G., Clague, J. J., Hopkinson, C., Couture, R.,
Bobrowsky, P., Ekström, G., Demuth, M. N., Delaney, K. B., Roberts, N.
J., Clarke, G., and Schaeffer, A.: The July 2007 rock and ice avalanches at
Mount Steele, St. Elias Mountains, Yukon, Canada, Landslides, 5, 445–455,
https://doi.org/10.1007/s10346-008-0133-4, 2008.
Liu, Y., Fang, Y., and Margulis, S. A.: Spatiotemporal distribution of seasonal snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis dataset, The Cryosphere, 15, 5261–5280, https://doi.org/10.5194/tc-15-5261-2021, 2021.
Mahboob, M. A., Iqbal, J., and Atif, I.: Modeling and Simulation of Glacier
Avalanche: A Case Study of Gayari Sector Glaciers Hazards Assessment, IEEE
T. Geosci. Remote, 53, 5824–5834, https://doi.org/10.1109/TGRS.2015.2419171, 2015.
Malik, I. and Owczarek, P.: Dendrochronological Records of Debris Flow and
Avalanche Activity in a Mid-Mountain Forest Zone (Eastern Sudetes – Central Europe), Geochronometria, 34, 57–66, https://doi.org/10.2478/v10003-009-0011-7, 2009.
Margreth, S. and Funk, M.: Hazard mapping for ice and combined snow/ice
avalanches – two case studies from the Swiss and Italian Alps, Cold Reg. Sci. Technol., 30, 159–173, https://doi.org/10.1016/S0165-232X(99)00027-0, 1999.
Margreth, S., Funk, M., Tobler, D., Dalban, P., Meier, L., and Lauper, J.:
Analysis of the hazard caused by ice avalanches from the hanging glacier on
the Eiger west face, Cold Reg. Sci. Technol., 144, 63–72,
https://doi.org/10.1016/j.coldregions.2017.05.012, 2017.
Martha, T. R., Roy, P., Jain, N., Khanna, K., Mrinalni, K., Kumar, K. V.,
and Rao, P. V. N.: Geospatial landslide inventory of India – an insight into
occurrence and exposure on a national scale, Landslides, 18, 2125–2141,
https://doi.org/10.1007/s10346-021-01645-1, 2021.
Martin, E., Giraud, G., Lejeune, Y., and Boudart, G.: Impact of a climate
change on avalanche hazard, Ann. Glaciol., 32, 163–167,
https://doi.org/10.3189/172756401781819292, 2001.
Martinez-Vazquez, A. and Fortuny-Guasch, J.: A GB-SAR Processor for Snow
Avalanche Identification, IEEE T. Geosci. Remote., 46, 3948–3956, https://doi.org/10.1109/TGRS.2008.2001387, 2008.
McClung, D. and Schaerer, P. A.: The Avalanche Handbook, The Mountaineers
Books, 350 pp., ISBN 978-0898868098, 2006.
McClung, D. M.: Avalanche character and fatalities in the high mountains of
Asia, Ann. Glaciol., 57, 114–118, 2016.
McVeigh, C.: Himalayan herding is alive and well: The economics of
pastoralism in the Langtang valley, Nomadic Peoples, 8, 107–124, 2004.
Mock, C. J. and Birkeland, K. W.: Snow Avalanche Climatology of the Western
United States Mountain Ranges, B. Am. Meteorol. Soc., 81, 2367–2392, https://doi.org/10.1175/1520-0477(2000)081<2367:SACOTW>2.3.CO;2, 2000.
Muhammad, S. and Thapa, A.: Daily Terra–Aqua MODIS cloud-free snow and Randolph Glacier Inventory 6.0 combined product (M*D10A1GL06) for high-mountain Asia between 2002 and 2019, Earth Syst. Sci. Data, 13, 767–776, https://doi.org/10.5194/essd-13-767-2021, 2021.
Muntán, E., Andreu, L., Oller, P., Gutiérrez, E., and Martínez, P.: Dendrochronological study of the Canal del Roc Roig avalanche path: first results of the Aludex project in the Pyrenees, Ann. Glaciol., 38, 173–179, https://doi.org/10.3189/172756404781815077, 2004.
Norris, J., Carvalho, L. M. V., Jones, C., and Cannon, F.: WRF simulations
of two extreme snowfall events associated with contrasting extratropical
cyclones over the western and central Himalaya, J. Geophys. Res.-Atmos., 120, 3114–3138, https://doi.org/10.1002/2014JD022592, 2015.
Nüsser, M., Dame, J., Parveen, S., Kraus, B., Baghel, R., and Schmidt,
S.: Cryosphere-Fed Irrigation Networks in the Northwestern Himalaya:
Precarious Livelihoods and Adaptation Strategies Under the Impact of Climate
Change, Mt. Res. Dev., 39, R1–R11, https://doi.org/10.1659/MRD-JOURNAL-D-18-00072.1, 2019.
Patil, A., Singh, G., Kumar, S., Mani, S., Bandyopadhyay, D., Nela, B. R.,
Musthafa, M., and Mohanty, S.: Snow characterization and avalanche detection
in the Indian Himalaya, in: IGARSS 2020–2020 IEEE International Geoscience
and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September 2020–2 October 2020, IEEE, 2005–2008, https://doi.org/10.1109/IGARSS39084.2020.9324621, 2020.
Peitzsch, E., Boilen, S., Logan, S., Birkeland, K., and Greene, E.: Research
note: How old are the people who die in avalanches? A look into the ages of
avalanche victims in the United States (1950–2018), Journal of Outdoor
Recreation and Tourism, 29, 100255, https://doi.org/10.1016/j.jort.2019.100255, 2020.
Petley, D.: Global patterns of loss of life from landslides, Geology, 40,
927–930, https://doi.org/10.1130/G33217.1, 2012.
Petley, D. N., Hearn, G. J., Hart, A., Rosser, N. J., Dunning, S. A., Oven,
K., and Mitchell, W. A.: Trends in landslide occurrence in Nepal, Nat.
Hazards, 43, 23–44, https://doi.org/10.1007/s11069-006-9100-3, 2007.
Plafker, G. and Ericksen, G. E.: Chapter 8 – Nevados Huascarán
Avalanches, Peru, in: Developments in Geotechnical Engineering,
edited by: Voight, B., Elsevier, 14, 277–314, 1978.
Prakash, S., Giri, R. K., and Chand, S.: Environmental hazard – landslides
and avalanches (Kashmir region), International Journal of Physics and
Mathematical Sciences, 4, 87–99, 2014.
Pralong, A. and Funk, M.: On the instability of avalanching glaciers, J. Glaciol., 52, 31–48, https://doi.org/10.3189/172756506781828980, 2006.
Pralong, A., Birrer, C., Stahel, W. A., and Funk, M.: On the predictability of ice avalanches, Nonlin. Processes Geophys., 12, 849–861, https://doi.org/10.5194/npg-12-849-2005, 2005.
Ragettli, S., Pellicciotti, F., Immerzeel, W. W., Miles, E. S., Petersen,
L., Heynen, M., Shea, J. M., Stumm, D., Joshi, S., and Shrestha, A.:
Unraveling the hydrology of a Himalayan catchment through integration of
high resolution in situ data and remote sensing with an advanced simulation
model, Adv. Water Resour., 78, 94–111, https://doi.org/10.1016/j.advwatres.2015.01.013, 2015.
Ranghieri, F., Fallesen, D. M. G., Jongman, B., Balog-Way, S. A. B., Mashahid, S. S., Siercke, G. A., and Simpson, A. L.: Disaster risk profile: Afghanistan, World Bank Institute, Washington, DC, USA, http://documents.worldbank.org/curated/en/284301491559464423/Disaster-risk-profile-Afghanistan (last access: 16 July 2023), 2017.
Rao, N. M.: Avalanche protection and control in the Himalayas, Defence. Sci.
J., 35, 255–266, 1985.
Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the Himalayas, Quatern. Int., 65–66, 31–47, https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
Röthlisberger, H.: Ice Avalanches, J. Glaciol., 19, 669–671, https://doi.org/10.3189/S0022143000029580, 1977.
Sampl, P. and Zwinger, T.: Avalanche simulation with SAMOS, Ann. Glaciol.,
38, 393–398, https://doi.org/10.3189/172756404781814780, 2004.
Sardar, T., Xu, A., and Raziq, A.: Snow Avalanche Susceptibility Based
Assessment of Release Zones over Complex Terrain of Siachen Glacier Applying
Ramms and Dsr as Active Macroclimatic Factor, Procedia Comput. Sci., 107, 427–435, 2017.
Schauer, A. R., Hendrikx, J., Birkeland, K. W., and Mock, C. J.: Synoptic atmospheric circulation patterns associated with deep persistent slab avalanches in the western United States, Nat. Hazards Earth Syst. Sci., 21, 757–774, https://doi.org/10.5194/nhess-21-757-2021, 2021.
Schweizer, J. and Jamieson, J. B.: Snowpack properties for snow profile
analysis, Cold Reg. Sci. Technol., 37, 233–241, https://doi.org/10.1016/S0165-232X(03)00067-3, 2003.
Schweizer, J., Bartelt, P., and van Herwijnen, A.: Chapter 12 - Snow
avalanches, in: Snow and Ice-Related Hazards, Risks, and Disasters (Second
Edition), edited by: Haeberli, W. and Whiteman, C., Elsevier, 377–416,
https://doi.org/10.1016/B978-0-12-394849-6.00012-3, 2021.
Semakova, E. and Bühler, Y.: TerraSAR-X/TanDEM-X data for natural
hazards research in mountainous regions of Uzbekistan, JARS, 11, 036024,
https://doi.org/10.1117/1.JRS.11.036024, 2017.
Semakova, E., Myagkov, S., and Armstrong, R. L.: The current state of
avalanche risk analysis and hazard mapping in Uzbekistan, in: International Snow Science Workshop, Davos, Switzerland, 27 September–2 October 2009, ISSW, 509–513, 2009.
Semakova, E., Safronov, V., Mamaraimov, A., Nurtaev, B., Semakov, D., and
Bühler, Y.: Applying numerical snow avalanche simulations for hazard
assessment in the Kamchik pass area, Uzbekistan, in: International Snow Science Workshop, Innsbruck, Austria, 7–12 October 2018, ISSW, 701–704, 2018.
Sharma, S. S. and Ganju, A.: Complexities of avalanche forecasting in
Western Himalaya – an overview, Cold Reg. Sci. Technol., 31, 95–102, https://doi.org/10.1016/S0165-232X(99)00034-8, 2000.
Shugar, D. H., Jacquemart, M., Shean, D., Bhushan, S., Upadhyay, K., Sattar,
A., Schwanghart, W., McBride, S., Vries, M. V. W. de, Mergili, M., Emmer,
A., Deschamps-Berger, C., McDonnell, M., Bhambri, R., Allen, S., Berthier,
E., Carrivick, J. L., Clague, J. J., Dokukin, M., Dunning, S. A., Frey, H.,
Gascoin, S., Haritashya, U. K., Huggel, C., Kääb, A., Kargel, J. S.,
Kavanaugh, J. L., Lacroix, P., Petley, D., Rupper, S., Azam, M. F., Cook, S.
J., Dimri, A. P., Eriksson, M., Farinotti, D., Fiddes, J., Gnyawali, K. R.,
Harrison, S., Jha, M., Koppes, M., Kumar, A., Leinss, S., Majeed, U., Mal,
S., Muhuri, A., Noetzli, J., Paul, F., Rashid, I., Sain, K., Steiner, J.,
Ugalde, F., Watson, C. S., and Westoby, M. J.: A massive rock and ice
avalanche caused the 2021 disaster at Chamoli, Indian Himalaya, Science, 373, 300–306, https://doi.org/10.1126/science.abh4455, 2021.
Singh, A. and Ganju, A.: A supplement to nearest-neighbour method for
avalanche forecasting, Cold Reg. Sci. Technol., 39, 105–113, 2004.
Singh, A., Srinivasan, K., and Ganju, A.: Avalanche forecast using numerical
weather prediction in Indian Himalaya, Cold Reg. Sci. Technol., 43, 83–92, https://doi.org/10.1016/j.coldregions.2005.05.009, 2005.
Singh, A., Juyal, V., Kumar, B., Gusain, H. S., Shekhar, M. S., Singh, P.,
Kumar, S., and Negi, H. S.: Avalanche hazard mitigation in east Karakoram
mountains, Nat. Hazards, 105, 643–665, 2021.
Singh, D. and Ganju, A.: Expert system for prediction of avalanches, Current
Science, 94, 1076–1081, 2008.
Singh, D. K., Gusain, H. S., Mishra, V. D., and Gupta, N.: Avalanche Hazard
Mitigation in Western & Central Himalaya-II, Defence Research and
Development Organisation, 2019a.
Singh, D. K., Mishra, V. D., Gusain, H. S., Gupta, N., and Singh, A. K.:
Geo-spatial Modeling for Automated Demarcation of Snow Avalanche Hazard
Areas Using Landsat-8 Satellite Images and In Situ Data, J. Indian Soc. Remote, 47, 513–526, https://doi.org/10.1007/s12524-018-00936-w, 2019b.
Singh, D. K., Mishra, V. D., and Gusain, H. S.: Simulation and Analysis of a
Snow Avalanche Accident in Lower Western Himalaya, India, J. Indian Soc.
Remote, 48, 1555–1565, https://doi.org/10.1007/s12524-020-01178-5, 2020.
Singh, V., Thakur, P. K., Garg, V., and Aggarwal, S. P.: ASSESSMENT OF SNOW AVALANCHE SUSCEPTIBILITY OF ROAD NETWORK - A CASE STUDY OF ALAKNANDA BASIN, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-5, 461–468, https://doi.org/10.5194/isprs-archives-XLII-5-461-2018, 2018.
Smith, T. and Bookhagen, B.: Changes in seasonal snow water equivalent
distribution in High Mountain Asia (1987 to 2009), Science Advances, 4,
e1701550, https://doi.org/10.1126/sciadv.1701550, 2018.
Snehmani, Bhardwaj, A., Pandit, A., and Ganju, A.: Demarcation of potential
avalanche sites using remote sensing and ground observations: a case study
of Gangotri glacier, Geocarto Int., 29, 520–535, https://doi.org/10.1080/10106049.2013.807304, 2014.
Steiner, J. F. and Acharya, A.: fidelsteiner/HiAVAL: HiAVAL 1.0.0 (v1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7066940, 2023.
Steiner, J. F. and Shrestha, F.: fidelsteiner/HMAGLOFDB: HMAGLOFDB v1.0.1 (v1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.7271187, 2023.
Techel, F., Jarry, F., Kronthaler, G., Mitterer, S., Nairz, P., Pavšek, M., Valt, M., and Darms, G.: Avalanche fatalities in the European Alps: long-term trends and statistics, Geogr. Helv., 71, 147–159, https://doi.org/10.5194/gh-71-147-2016, 2016.
Thakuri, S., Chauhan, R., and Baskota, P.: Glacial Hazards and Avalanches in
High Mountains of Nepal Himalaya, Nepal Mountain Academy, 87–104, 2020.
Tuladhar, S., Pasakhala, B., Maharjan, A., and Mishra, A.: Unravelling the
linkages of cryosphere and mountain livelihood systems: A case study of
Langtang, Nepal, Advances in Climate Change Research, 12, 119–131,
https://doi.org/10.1016/j.accre.2020.12.004, 2021.
Tumajer, J. and Treml, V.: Reconstruction ability of dendrochronology in
dating avalanche events in the Giant Mountains, Czech Republic,
Dendrochronologia, 34, 1–9, https://doi.org/10.1016/j.dendro.2015.02.002, 2015.
Turchaninova, A. S., Lazarev, A. V., Marchenko, E. S., Seliverstov, Yu. G.,
Sokratov, S. A., Petrakov, D. A., Barandun, M., Kenzhebaev, R., and Saks,
T.: Methods of snow avalanche nourishment assessment (on the example of
three Tian Shan glaciers), Ice and Snow, 59, 460–474,
https://doi.org/10.15356/2076-6734-2019-4-438, 2019.
Tveiten, I. N.: Glacier growing: A local response to water scarcity in Baltistan and Gilgit, Pakistan, Master thesis, Department of International Environment and Development Studies, Norwegian University of Life Science, Oslo, Norway, 64 pp., 2007.
Veldhuijsen, S. B. M., Kok, R. J. de, Stigter, E. E., Steiner, J. F.,
Saloranta, T. M., and Immerzeel, W. W.: Spatial and temporal patterns of
snowmelt refreezing in a Himalayan catchment, J. Glaciol., 68, 369–389,
https://doi.org/10.1017/jog.2021.101, 2022.
Vickers, H., Eckerstorfer, M., Malnes, E., Larsen, Y., and Hindberg, H.: A
method for automated snow avalanche debris detection through use of
synthetic aperture radar (SAR) imaging, Earth and Space Science, 3, 446–462, https://doi.org/10.1002/2016EA000168, 2016.
Vincent, C., Thibert, E., Harter, M., Soruco, A., and Gilbert, A.: Volume
and frequency of ice avalanches from Taconnaz hanging glacier, French Alps,
Ann. Glaciol., 56, 17–25, https://doi.org/10.3189/2015AoG70A017, 2015.
Wang, Y. L.: The relation between the growth of seasonal depth hoar and the
avalanches in China, Journal of Glaciology and Geocryology, 20, 173–180,
1988.
Wester, P., Mishra, A., Mukherji, A., and Shrestha, A. B. (Eds.): The Hindu
Kush Himalaya Assessment, in: Mountains, Climate Change, Sustainability and
People, Springer International Publishing, https://doi.org/10.1007/978-3-319-92288-1, 2019.
Wu, N., Shaoliang, Y., Joshi, S., and Bisht, N.: Yak on the Move:
Transboundary Challenges and Opportunities for Yak Raising in a Changing
Hindu Kush Himalayan Region, ICIMOD, Kathmandu, Nepal, 214 pp., ISBN 9789291153749, 2016.
Yang, J., Li, C., Li, L., Ding, J., Zhang, R., Han, T., and Liu, Y.:
Automatic Detection of Regional Snow Avalanches with Scattering and
Interference of C-band SAR Data, Remote Sens.-Basel, 12, 2781,
https://doi.org/10.3390/rs12172781, 2020.
Yang, J., He, Q., and Liu, Y.: Winter–Spring Prediction of Snow Avalanche
Susceptibility Using Optimisation Multi-Source Heterogeneous Factors in the
Western Tianshan Mountains, China, Remote Sens.-Basel, 14, 1340, https://doi.org/10.3390/rs14061340, 2022.
Yanlong, W. and Maohuan, H.: An outline of avalanches in China, Cold Reg.
Sci. Technol., 13, 11–18, https://doi.org/10.1016/0165-232X(86)90003-0, 1986.
Yanlong, W. and Maohuan, H.: An outline of avalanches in the southeastern
Tibet Plateau, China, Ann. Glaciol., 16, 146–150,
https://doi.org/10.3189/1992AoG16-1-146-150, 1992.
Yariyan, P., Avand, M., Abbaspour, R. A., Karami, M., and Tiefenbacher, J.
P.: GIS-based spatial modeling of snow avalanches using four novel ensemble
models, Sci. Total Environ., 745, 141008, https://doi.org/10.1016/j.scitotenv.2020.141008, 2020.
Zakir, Z. H.: Avalanche Harvesting – An innovative approach towards creation
of solid water reservoirs and avalanche/flood risk reduction, University of
Baltistan Skardu, Skardu, Gilgit-Baltistan, 2021.
Short summary
All accessible snow and ice avalanches together with previous scientific research, local knowledge, and existing or previously active adaptation and mitigation solutions were investigated in the high mountain Asia (HMA) region to have a detailed overview of the state of knowledge and identify gaps. A comprehensive avalanche database from 1972–2022 is generated, including 681 individual events. The database provides a basis for the forecasting of avalanche hazards in different parts of HMA.
All accessible snow and ice avalanches together with previous scientific research, local...
Altmetrics
Final-revised paper
Preprint