Articles | Volume 23, issue 7
https://doi.org/10.5194/nhess-23-2443-2023
https://doi.org/10.5194/nhess-23-2443-2023
Brief communication
 | 
11 Jul 2023
Brief communication |  | 11 Jul 2023

Brief communication: Towards a universal formula for the probability of tornadoes

Roberto Ingrosso, Piero Lionello, Mario Marcello Miglietta, and Gianfausto Salvadori

Related authors

The impacts of climate change on tropical-to-extratropical transitions in the North-Atlantic basin
Aude Garin, Francesco S. R. Pausata, Mathieu Boudreault, and Roberto Ingrosso
EGUsphere, https://doi.org/10.5194/egusphere-2024-3435,https://doi.org/10.5194/egusphere-2024-3435, 2024
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
An appraisal of the value of simulated weather data for quantifying coastal flood hazard in the Netherlands
Cees de Valk and Henk van den Brink
Nat. Hazards Earth Syst. Sci., 25, 1769–1788, https://doi.org/10.5194/nhess-25-1769-2025,https://doi.org/10.5194/nhess-25-1769-2025, 2025
Short summary
Insights into thunderstorm characteristics from geostationary lightning jump and dive observations
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025,https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
The unique features in the 4 d widespread extreme rainfall event over North China in July 2023
Jinfang Yin, Feng Li, Mingxin Li, Rudi Xia, Xinghua Bao, Jisong Sun, and Xudong Liang
Nat. Hazards Earth Syst. Sci., 25, 1719–1735, https://doi.org/10.5194/nhess-25-1719-2025,https://doi.org/10.5194/nhess-25-1719-2025, 2025
Short summary
Classifying extratropical cyclones and their impact on Finland's electricity grid: insights from 92 damaging windstorms
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025,https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary
Evaluation of machine learning approaches for large-scale agricultural drought forecasts to improve monitoring and preparedness in Brazil
Joseph W. Gallear, Marcelo Valadares Galdos, Marcelo Zeri, and Andrew Hartley
Nat. Hazards Earth Syst. Sci., 25, 1521–1541, https://doi.org/10.5194/nhess-25-1521-2025,https://doi.org/10.5194/nhess-25-1521-2025, 2025
Short summary

Cited articles

American Meteorological Society (AMS): Glossary of Meteorology, AMS, https://glossary.ametsoc.org/wiki/Tornado (last access: 22 August 2022), 2020. a
Ashley, W. S.: Spatial and Temporal Analysis of Tornado Fatalities in the United States: 1880–2005, Weather Forecast., 22, 1214–1228, https://doi.org/10.1175/2007WAF2007004.1, 2007. a
Bagaglini, L., Ingrosso, R., and Miglietta, M. M.: Synoptic patterns and mesoscale precursors of Italian tornadoes, Atmos. Res., 253, 105503, https://doi.org/10.1016/j.atmosres.2021.105503, 2021. a
Brooks, H. E.: Severe thunderstorms and climate change, Atmos. Res., 123, 129–138, https://doi.org/10.1016/j.atmosres.2012.04.002, 2013. a
Brooks, H. E., Lee, J. W., and Craven, J. P.: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data, Atmos. Res., 67–68, 73–94, https://doi.org/10.1016/S0169-8095(03)00045-0, 2003. a
Download
Short summary
Tornadoes represent disruptive and dangerous weather events. The prediction of these small-scale phenomena depends on the resolution of present weather forecast and climatic projections. This work discusses the occurrence of tornadoes in terms of atmospheric variables and provides analytical expressions for their conditional probability. These formulas represent a tool for tornado alert systems and for estimating the future evolution of tornado frequency and intensity in climate projections.
Share
Altmetrics
Final-revised paper
Preprint