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Abstract. A methodological approach is proposed to provide
an analytical (exponential-like) expression for the probabil-
ity of occurrence of tornadoes as a function of the convective
available potential energy and the wind shear (or, alterna-
tively, the storm relative helicity). The resulting expression
allows the probability of tornado occurrence to be calculated
using variables that are computed by weather prediction and
climate models, thus compensating for the lack of resolution
needed to resolve these phenomena in numerical simulations.

1 Introduction

Tornadoes are rapidly rotating columns of air (American Me-
teorological Society, 2020), extending vertically from the
surface to the base of a cumuliform cloud, and represent one
of the most severe weather phenomena in terms of victims
and damage. Considering only the USA, every year about
500 tornadoes (Kunkel et al., 2013) of intensity EF1 (en-
hanced Fujita scale; Fujita, 1971; Potter, 2007) or stronger
occur, producing an average of 125 victims and huge devas-
tation (Ashley, 2007). Numerical simulations of the very fine
spatial and temporal scale of tornadoes (typically with a di-
ameter of less than 2 km and a duration of less than 1000 s)
require resolutions that are orders of magnitude smaller than
those currently available in operational weather prediction
and climate models (Yokota et al., 2018). Further, the chaotic

dynamics of these vortices limit their deterministic predic-
tion (Markowski, 2020). Consequently, climatological stud-
ies focused on the identification of the environmental con-
ditions favourable to tornado-spawning severe convective
storms. Several thermodynamic and kinematic meteorolog-
ical parameters have been analysed, either individually or
considering combined instability indices, to identify the con-
ditions most favourable to the genesis of tornadoes (Brooks
et al., 2003; Romero et al., 2007; Taszarek et al., 2018, 2020;
Ingrosso et al., 2020; Bagaglini et al., 2021). This approach
is consistent with the basic idea that tornadoes result from
a multi-stage process, which takes into account that the tilt-
ing of the horizontal vorticity near the ground by a violent
updraught plays a basic role (Rotunno, 2013; Davies-Jones,
2015). Such a conceptual model is used here as a back-
ground framework for introducing an analytical formula for
the probability of tornado occurrence. A previous study de-
fined a tornado index limited to the USA based on a Poisson
regression between the observed U.S. climatology of torna-
does and monthly averaged environmental parameters from
reanalysis (Tippett et al., 2012). Other studies limited their
conclusions to the identification of the conditions that are as-
sociated with mesoscale convective hazards (Brooks, 2013;
Diffenbaugh et al., 2013). The expression that we propose in
this study is meant to provide a tool for supporting tornado
warning in operational weather predictions and estimating
changes in the frequency of tornado occurrence in climate
projections.
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2 Data and methods

Our analysis is based on tornadoes that occurred in the
USA (dataset provided by the Storm Prediction Cen-
ter (SPC), https://www.spc.noaa.gov/wcm/#dat, last access:
4 June 2023) and in Europe (dataset provided by the Euro-
pean Severe Weather Database (ESWD), https://www.essl.
org, last access: 4 June 2023, managed by the European Se-
vere Storm Laboratory (ESSL); Dotzek et al., 2009). We con-
sidered only tornadoes of category 2 or higher (F2+), fol-
lowing the idea that weak events might have an uncertain
signature in the environmental conditions and their report-
ing in official databases is less accurate. A total number of
3073 tornadoes have been considered in this study (2632 for
the USA and 441 for Europe; see the Supplement for den-
sity plots) during the period 2000–2018. Unfortunately, our
dataset does not allow us to differentiate supercellular tor-
nadoes from landspouts in most cases. The hourly fields of
ERA5 (ECMWF Reanalysis 5; Hersbach et al., 2020) are
used to establish a statistical link between the occurrence
of tornadoes and a set of meteorological variables, allow-
ing a straightforward physical interpretation of the results:
the updraught maximum parcel vertical velocity (WMAX),
which depends on the convective available potential energy
(CAPE), the mid-level wind shear (WS700), the low-level
storm relative helicity (SRH900), and the lifting condensa-
tion level (LCL; Kaltenböck et al., 2009). The Supplement
reports the expressions defining the variables used in this
study. The values of these variables have been extracted in
the period 2000–2018 in all cells where at least one tornado
occurred, considering the hourly reanalysis fields at 25 km
resolution. The values corresponding to the occurrence of
tornadoes have been selected considering the time step clos-
est to the recorded time of the tornado onset in the database.

The univariate analysis of the (conditional) probability P

of tornado occurrence is carried out by partitioning the ob-
served range spanned by each variable into 17 equiproba-
ble sub-intervals (bins). Such a number has been chosen as
a compromise between the need of a number of bins suf-
ficient for robust regressions and of a number of observa-
tions in each bin sufficient for a robust statistical analysis. An
empirical estimate of the probability of tornado occurrence,
conditional to the fact that the value of the variable lies in a
given bin, is computed as the relative frequency of tornadoes
in the bin. Its uncertainty is estimated via a suitable boot-
strap (Monte Carlo) procedure. An analytical expression of
y = log10P is found by a simple linear regression for WS700,
SRH900, and LCL, as well as by a non-linear regression for
WMAX (see the Supplement). Notice that first the climatol-
ogy of the variable of interest is calculated via the partition
mentioned above, and then it is compared with the tornadic
cases (an approach similar to the one adopted in Romero et
al., 2007).

3 Results

The univariate analysis shows that all the four variables con-
sidered in our study (i.e. WMAX, WS700, SRH900, LCL) are
significantly linked to the formation of tornadoes. However,
the formulas involving WS700 and WMAX, i.e.

log10P =−6.8+ 0.11WS700, (1)

log10P =−6.9+
WMAX

3+ 0.32WMAX
, (2)

describe a range of probabilities (from 10−7 to 10−4) wider
than that spanned by SRH900 and LCL. In the case of WS700,
the probability increases exponentially over the whole range.
Instead, the behaviour of log10P as a function of WMAX
is non-linear and shows a hyper-exponential increase in P

for low values (WMAX < 10 m s−1), when the probabil-
ity is small (about 10−7); in the intermediate range the
growth gradually slows down, and P becomes quasi-constant
for large values (WMAX > 30 m s−1), where the probabil-
ity tends to ≈ 10−4. For LCL and SRH900, the exponential
decrease and increase, respectively, only describe a narrow
range of probability (approximately from 10−6 to 10−5). In
other words, variations of these two variables do not allow us
to discriminate between the low and high probability of oc-
currence of tornadoes as effectively as in the case of WS700
and WMAX (see Fig. 1).

Concerning the bivariate analysis (i.e. considering the joint
behaviour of pairs of predictors), in analogy with the uni-
variate case, a 17× 17 grid matrix is constructed to partition
the whole two-dimensional domain in cells. The empirical
estimate of the (conditional) probability P of tornado occur-
rence, provided that the pair of variables lie in a given cell, is
empirically computed as above via the estimate of the rela-
tive frequency of occurrence. Six different bivariate analyses
are carried out considering all possible pair combinations of
WMAX, WS700, SRH900, and LCL. For the bivariate prob-
ability, non-linear expressions have been adopted for all the
pairs of variables involving WMAX and a multiple linear ex-
pression for the remaining pairs (see the Supplement). The
values of the parameters of the bivariate probability func-
tions have been estimated by a regression of the proposed
expressions over the empirical probabilities.

Considering the bivariate expression of P as a function of
the pairs (WMAX, LCL) and (WS700, SRH900), the second
variable lacks significance, meaning that it provides infor-
mation analogous to the first one of the pair (in fact, they are
fairly correlated), but the first variable provides more (uni-
variate) informative details than the second one in terms of
the range of P . Considering the pairs (WMAX, SRH900),
(WS700, LCL), and (SRH900, LCL), the probability of tor-
nadoes significantly depends on both variables, but they de-
scribe variation in P only over 2–3 orders of magnitude,
whereas using the pair (WMAX, WS700) shown in Fig. 2 it is
possible to discriminate between conditions where the prob-
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Figure 1. Univariate probability distribution for WMAX, WS700, SRH900, and LCL. Markers and whiskers denote the empirical probabilities
with uncertainty range. Lines denote the empirical estimates (continuous) with uncertainty ranges (dashed). Different colours represent
values based on the full dataset (USA and EU, black), the USA data only (red), and the European data only (EU, blue). Uncertainty ranges
correspond to a 95 % confidence level.

ability ranges from 10−7 to 10−3 (see the Supplement for the
figures regarding all the other pairs). In conclusion, a valu-
able fit of the probability of occurrence of tornadoes over the
range 10−7–10−3 is

log10P =−6.6+
WMAX

3.1+ 5.2WMAX/WS700
. (3)

All parameters of the univariate fits in Fig. 1 and bivari-
ate ones in Fig. 2 are statistically significant and significantly
different from zero, since the p values of the corresponding
tests are (much) smaller than 1 %. For all univariate linear
regressions, the adjusted R2 is larger than 90 %, and, in gen-
eral, the goodness of the fits is visually confirmed by the
overwhelming fraction (from 90 % to 100 %) of probabil-
ity values within the 95 % confidence bands. In the bivariate
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Figure 2. Bivariate probability distribution for (X1 =WMAX,X2 =WS700). The coloured surface shows the empirical fit of y = log10P .
Upward and downward triangles represent empirical estimates located above and below the fitted surface. All values are reported according
to the colour bar.

case, considering the multiple linear regressions of the pairs
(WS700, SRH900), (WS700, LCL), and (SRH900, LCL), R2

is, respectively, 70 %, 72 %, and 54 %: in general, these are
smaller than in the single-variable case, but this is justified
by the fact that the residual variances are about 3 times larger
than those estimated in the univariate case. For the three pairs
involving WMAX, R2 cannot be used to assess the goodness-
of-fit because the regression is non-linear. However, a slice
analysis of the fits (see the Supplement for details) shows
that the proposed models provide valuable fits over the whole
domain of interest.

4 Discussion

Further investigations are required to ensure the validity of
the expressions in Eqs. (1), (2), and (3) in different environ-
mental and geomorphological conditions. Hypothesis-testing
the similarity of the populations of tornado probabilities PEU
and PUSA, obtained using only EU and only USA data, re-
spectively, has been carried out by using a Kolmogorov–
Smirnov-like (KS) approach (Lopes, 2011) adopting the met-
ric d0 =max|PEU−PUSA|. The significance level of the dif-
ference is assessed by computing the fraction of statistics ex-
ceeding d0 using a Monte Carlo permutation procedure. Con-

sidering the univariate models, the null hypothesis that PEU
and PUSA, as a function of WMAX and WS700, are statisti-
cally compatible cannot be rejected at 95 % and 99 % levels
(suggesting that Eqs. 1 and 2 are acceptable in different ge-
ographical domains), whereas it is rejected at a level larger
than 99 % for PEU and PUSA as a function of SRH900 and
LCL. Considering the bivariate conditional probabilities, the
null hypothesis – that PEU and PUSA are statistically com-
patible – could not be rejected (at a 90 % level) only for the
pair (WMAX, SRH900). In this case, the overall conditional
probability (combining USA and EU data) is

log10P =−6.6+ 0.34WMAX0.37
|SRH900|

0.12. (4)

For all other pairs the null hypothesis could be rejected at the
99 % level.

Possible explanations of the lack of compatibility between
conditional probabilities obtained using the EU and USA
datasets alone could be different tornado damage-reporting
practices (leading to different counting and attributions of
tornadoes to the EF/F scale) and different meteorological
and/or morphological conditions in the two domains. In spite
of these limitations, as well as the need for further investi-
gations, the proposed statistical models suitably fit the con-
ditional probabilities of tornado occurrence. In particular,
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Eq. (3) has the merit of fitting the bulk of all available data
and Eqs. (1), (2), and (4) of being robust with respect to the
considered geographical domains.

The formulas of Eqs. (1)–(4), and particularly the bivari-
ate expressions of Eqs. (3) and (4), outline a new statistical
tool that can be used for diagnosing the likelihood of tor-
nadoes with potential applications to short–medium range
weather predictions and future changes in their frequency in
climate projections. Former results considered monthly aver-
age probability (Tippett et al., 2012) or provided a modest fit
to the data and were based on a smaller dataset (Cohen et al.,
2018). The closest analogue to our approach is the formula of
tornado probability in Grieser and Haines (2020), who con-
sidered two parameters: one describing vertical changes in
temperature and a composite parameter merging CAPE and
wind shear. Our results differ from Grieser and Haines (2020)
in the adopted methodology for estimating the probability of
occurrence of tornadoes. Grieser and Haines (2020) propose
a linear regression of the logistic function, whereas we pro-
pose a non-linear bivariate fit of the logarithm of the prob-
ability. In addition, our study shows that the relationship of
CAPE to the probability of tornado occurrence departs sig-
nificantly from a linear dependence and that the interaction
between the action of CAPE and wind shear in the lower tro-
posphere cannot be adequately represented by their additive
combination, further expanding the outcomes of Grieser and
Haines (2020). Finally, Grieser and Haines (2020) used their
formula for estimating past occurrence rates of tornado oc-
currences, while, to our best knowledge, this is the first time
that analytical expressions in the form of Eqs. (3) and (4) are
proposed in the scientific literature with the general aim of
describing probability of tornadoes at high time and space
resolution with applications in weather forecasting and cli-
mate projections.

Data availability. The list of tornadoes in the USA can be freely
downloaded at https://www.spc.noaa.gov/wcm/#dat (NOAA NWS
SPC, 2023). The list of tornadoes in Europe has been obtained from
https://www.essl.org/cms/european-severe-weather-database/ (Eu-
ropean Severe Storms Laboratory, 2023). ERA-5 data can be freely
downloaded from https://cds.climate.copernicus.eu/cdsapp#!/home
(Copernicus Climate Change Service, 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-23-2443-2023-supplement.
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