Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2111-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2111-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analyzing the informative value of alternative hazard indicators for monitoring drought hazard for human water supply and river ecosystems at the global scale
Claudia Herbert
CORRESPONDING AUTHOR
Institute of Physical Geography, Goethe University Frankfurt,
60438 Frankfurt am Main, Germany
Petra Döll
Institute of Physical Geography, Goethe University Frankfurt,
60438 Frankfurt am Main, Germany
Senckenberg Leibniz Biodiversity and Climate Research Centre Frankfurt (SBiK-F), 60325 Frankfurt am Main, Germany
Related authors
Hannes Müller Schmied, Denise Cáceres, Stephanie Eisner, Martina Flörke, Claudia Herbert, Christoph Niemann, Thedini Asali Peiris, Eklavyya Popat, Felix Theodor Portmann, Robert Reinecke, Maike Schumacher, Somayeh Shadkam, Camelia-Eliza Telteu, Tim Trautmann, and Petra Döll
Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, https://doi.org/10.5194/gmd-14-1037-2021, 2021
Short summary
Short summary
In a globalized world with large flows of virtual water between river basins and international responsibilities for the sustainable development of the Earth system and its inhabitants, quantitative estimates of water flows and storages and of water demand by humans are required. Global hydrological models such as WaterGAP are developed to provide this information. Here we present a thorough description, evaluation and application examples of the most recent model version, WaterGAP v2.2d.
Emmanuel Nyenah, Petra Döll, Martina Flörke, Leon Mühlenbruch, Lasse Nissen, and Robert Reinecke
Geosci. Model Dev., 18, 5635–5653, https://doi.org/10.5194/gmd-18-5635-2025, https://doi.org/10.5194/gmd-18-5635-2025, 2025
Short summary
Short summary
We reprogrammed the latest WaterGAP model (2.2e) to create a sustainable global hydrological model. By utilizing best software practices like modular design, version control, and clear documentation, the new WaterGAP supports collaboration across teams. It can be easily understood, applied, and enhanced by both novice and experienced modellers. Additionally, we share the reprogramming process to assist in the reprogramming of other large geoscientific research software.
Seyed-Mohammad Hosseini-Moghari and Petra Döll
Hydrol. Earth Syst. Sci., 29, 4073–4092, https://doi.org/10.5194/hess-29-4073-2025, https://doi.org/10.5194/hess-29-4073-2025, 2025
Short summary
Short summary
Modeling reservoir outflow and storage is challenging due to limited publicly available data and human decision-making. For 100 reservoirs in the US, we examined how calibrating reservoir algorithms against outflow and storage-related variables affects performance. We found that calibration notably improves storage simulations, while outflow simulations are more influenced by the quality of inflow data. We recommend using remotely sensed storage anomalies to calibrate reservoir algorithms.
Howlader Mohammad Mehedi Hasan, Petra Döll, Seyed-Mohammad Hosseini-Moghari, Fabrice Papa, and Andreas Güntner
Hydrol. Earth Syst. Sci., 29, 567–596, https://doi.org/10.5194/hess-29-567-2025, https://doi.org/10.5194/hess-29-567-2025, 2025
Short summary
Short summary
We calibrate a global hydrological model using multiple observations to analyse the benefits and trade-offs of multi-variable calibration. We found such an approach to be very important for understanding the real-world system. However, some observations are very essential to the system, in particular, streamflow. We also showed uncertainties in the calibration results, which are often useful for making informed decisions. We emphasize considering observation uncertainty in model calibration.
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev., 17, 8817–8852, https://doi.org/10.5194/gmd-17-8817-2024, https://doi.org/10.5194/gmd-17-8817-2024, 2024
Short summary
Short summary
Assessing water availability and water use at the global scale is challenging but essential for a range of purposes. We describe the newest version of the global hydrological model WaterGAP, which has been used for numerous water resource assessments since 1996. We show the effects of new model features, as well as model evaluations, against water abstraction statistics and observed streamflow and water storage anomalies. The publicly available model output for several variants is described.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Petra Döll, Howlader Mohammad Mehedi Hasan, Kerstin Schulze, Helena Gerdener, Lara Börger, Somayeh Shadkam, Sebastian Ackermann, Seyed-Mohammad Hosseini-Moghari, Hannes Müller Schmied, Andreas Güntner, and Jürgen Kusche
Hydrol. Earth Syst. Sci., 28, 2259–2295, https://doi.org/10.5194/hess-28-2259-2024, https://doi.org/10.5194/hess-28-2259-2024, 2024
Short summary
Short summary
Currently, global hydrological models do not benefit from observations of model output variables to reduce and quantify model output uncertainty. For the Mississippi River basin, we explored three approaches for using both streamflow and total water storage anomaly observations to adjust the parameter sets in a global hydrological model. We developed a method for considering the observation uncertainties to quantify the uncertainty of model output and provide recommendations.
Laura Müller and Petra Döll
Geosci. Commun., 7, 121–144, https://doi.org/10.5194/gc-7-121-2024, https://doi.org/10.5194/gc-7-121-2024, 2024
Short summary
Short summary
To be able to adapt to climate change, stakeholders need to be informed about future uncertain climate change hazards. Using freely available output of global hydrological models, we quantified future local changes in water resources and their uncertainty. To communicate these in participatory processes, we propose using "percentile boxes" to support the development of flexible strategies for climate risk management worldwide, involving stakeholders and scientists.
Thedini Asali Peiris and Petra Döll
Hydrol. Earth Syst. Sci., 27, 3663–3686, https://doi.org/10.5194/hess-27-3663-2023, https://doi.org/10.5194/hess-27-3663-2023, 2023
Short summary
Short summary
Hydrological models often overlook vegetation's response to CO2 and climate, impairing their ability to forecast impacts on evapotranspiration and water resources. To address this, we suggest involving two model variants: (1) the standard method and (2) a modified approach (proposed here) based on the Priestley–Taylor equation (PT-MA). While not universally applicable, a dual approach helps consider uncertainties related to vegetation responses to climate change, enhancing model representation.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Eklavyya Popat and Petra Döll
Nat. Hazards Earth Syst. Sci., 21, 1337–1354, https://doi.org/10.5194/nhess-21-1337-2021, https://doi.org/10.5194/nhess-21-1337-2021, 2021
Short summary
Short summary
Two drought hazard indices are presented that combine drought deficit and anomaly aspects: one for soil moisture drought (SMDAI) where we simplified the DSI and the other for streamflow drought (QDAI), which is to our knowledge the first ever deficit anomaly drought index including surface water demand. Both indices are tested at the global scale with WaterGAP 2.2d outputs, providing more differentiated spatial and temporal patterns distinguishing the actual degree of respective drought hazard.
Hannes Müller Schmied, Denise Cáceres, Stephanie Eisner, Martina Flörke, Claudia Herbert, Christoph Niemann, Thedini Asali Peiris, Eklavyya Popat, Felix Theodor Portmann, Robert Reinecke, Maike Schumacher, Somayeh Shadkam, Camelia-Eliza Telteu, Tim Trautmann, and Petra Döll
Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, https://doi.org/10.5194/gmd-14-1037-2021, 2021
Short summary
Short summary
In a globalized world with large flows of virtual water between river basins and international responsibilities for the sustainable development of the Earth system and its inhabitants, quantitative estimates of water flows and storages and of water demand by humans are required. Global hydrological models such as WaterGAP are developed to provide this information. Here we present a thorough description, evaluation and application examples of the most recent model version, WaterGAP v2.2d.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Short summary
We analysed how and to which extent changes in water storage on continents had an effect on global ocean mass over the period 1948–2016. Continents lost water to oceans at an accelerated rate, inducing sea level rise. Shrinking glaciers explain 81 % of the long-term continental water mass loss, while declining groundwater levels, mainly due to sustained groundwater pumping for irrigation, is the second major driver. This long-term decline was partly offset by the impoundment of water in dams.
Cited articles
Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda,
M., Knutson, C., Smith, K. H., Wall, N., Fuchs, B., Crossman, N. D., and
Overton, I. C.: Drought indicators revisited: the need for a wider
consideration of environment and society, WIREs Water, 3, 516–536,
https://doi.org/10.1002/wat2.1154, 2016.
Barker, L. J., Hannaford, J., Parry, S., Smith, K. A., Tanguy, M., and Prudhomme, C.: Historic hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments across the UK, Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, 2019.
Beguería, S.: Uncertainties in partial duration series modelling of
extremes related to the choice of the threshold value, J. Hydrol.,
303, 215–230, https://doi.org/10.1016/j.jhydrol.2004.07.015, 2005.
Blauhut, V., Stahl, K., Stagge, J. H., Tallaksen, L. M., De Stefano, L., and Vogt, J.: Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors, Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, 2016.
Blauhut, V., Stoelzle, M., Ahopelto, L., Brunner, M. I., Teutschbein, C., Wendt, D. E., Akstinas, V., Bakke, S. J., Barker, L. J., Bartošová, L., Briede, A., Cammalleri, C., Kalin, K. C., De Stefano, L., Fendeková, M., Finger, D. C., Huysmans, M., Ivanov, M., Jaagus, J., Jakubínský, J., Krakovska, S., Laaha, G., Lakatos, M., Manevski, K., Neumann Andersen, M., Nikolova, N., Osuch, M., van Oel, P., Radeva, K., Romanowicz, R. J., Toth, E., Trnka, M., Urošev, M., Urquijo Reguera, J., Sauquet, E., Stevkov, A., Tallaksen, L. M., Trofimova, I., Van Loon, A. F., van Vliet, M. T. H., Vidal, J.-P., Wanders, N., Werner, M., Willems, P., and Živković, N.: Lessons from the 2018–2019 European droughts: a collective need for unifying drought risk management, Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, 2022.
Cammalleri, C., Vogt, J., and Salamon, P.: Development of an operational
low-flow index for hydrological drought monitoring over Europe, Hydrol.
Sci. J., 62, 346–358, https://doi.org/10.1080/02626667.2016.1240869,
2016a.
Cammalleri, C., Micale, F., and Vogt, J.: A novel soil moisture-based
drought severity index (DSI) combining water deficit magnitude and
frequency, Hydrol. Process., 30, 289–301,
https://doi.org/10.1002/hyp.10578, 2016b.
Cammalleri, C., Barbosa, P., and Vogt, J. V.: Evaluating simulated daily
discharge for operational hydrological drought monitoring in the Global
Drought Observatory (GDO), Hydrol. Sci. J., 65, 1316–1325,
https://doi.org/10.1080/02626667.2020.1747623, 2020.
Corzo Perez, G. A., van Huijgevoort, M. H. J., Voß, F., and van Lanen, H. A. J.: On the spatio-temporal analysis of hydrological droughts from global hydrological models, Hydrol. Earth Syst. Sci., 15, 2963–2978, https://doi.org/10.5194/hess-15-2963-2011, 2011.
Fleig, A. K., Tallaksen, L. M., Hisdal, H., and Demuth, S.: A global evaluation of streamflow drought characteristics, Hydrol. Earth Syst. Sci., 10, 535–552, https://doi.org/10.5194/hess-10-535-2006, 2006.
Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., and
Alcamo, J.: Domestic and industrial water uses of the past 60 years as a
mirror of socio-economic development: A global simulation study, Global
Environ. Change, 23, 144–156,
https://doi.org/10.1016/j.gloenvcha.2012.10.018, 2013.
GRDC: Global Runoff Data Centre, Federal Institute of Hydrology, Koblenz,
Germany, GRDC [data set], https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser#dataDownload/Home (last access: 6 June 2023), 2019.
Griffiths, M. L. and Bradley, R. S.: Variations of Twentieth-Century
Temperature and Precipitation Extreme Indicators in the Northeast United
States, J. Climate, 20, 5401–5417,
https://doi.org/10.1175/2007JCLI1594.1, 2007.
Haslinger, K., Koffler, D., Schöner, W., and Laaha, G.: Exploring the link between meteorological drought and streamflow: Effects of climate-catchment interaction, Water Resour. Res., 50, 2468–2487, https://doi.org/10.1002/2013WR015051, 2014.
Herbert, C. and Döll, P.: Streamflow drought hazard indicators for monitoring drought hazard for human water supply and river ecosystems at the global scale (WaterGAP 2.2d, WFDEI-GPCC), Zenodo [data set], https://doi.org/10.5281/zenodo.7764879, 2023.
Heudorfer, B. and Stahl, K.: Comparison of different threshold level methods
for drought propagation analysis in Germany, Hydrol. Res., 48,
1311–1326, https://doi.org/10.2166/nh.2016.258, 2017.
Kumar, N. M., Murthy, C. S., Sesha Sai, M. V. R., and Roy, P. S.: On the use
of Standardized Precipitation Index (SPI) for drought intensity assessment,
Met. Apps, 16, 381–389, https://doi.org/10.1002/met.136, 2009.
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D., Van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R., Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015 drought from a hydrological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, 2017.
Lehner, B., Döll, P., Alcamo, J., Henrichs, T., and Kaspar, F.:
Estimating the Impact of Global Change on Flood and Drought Risks in Europe:
A Continental, Integrated Analysis, Clim. Change, 75, 273–299,
https://doi.org/10.1007/s10584-006-6338-4, 2006.
Lloyd-Hughes, B.: The impracticality of a universal drought definition,
Theor. Appl. Climatol., 117, 607–611,
https://doi.org/10.1007/s00704-013-1025-7, 2014.
López-Moreno, J. I., Vicente-Serrano, S. M., Beguería, S.,
García-Ruiz, J. M., Portela, M. M., and Almeida, A. B.: Dam effects on
droughts magnitude and duration in a transboundary basin: The Lower River
Tagus, Spain and Portugal, Water Resour. Res., 45, 1–13,
https://doi.org/10.1029/2008WR007198, 2009.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales: Preprints, 8th Conference on Applied Climatology, 17–22 January, Anaheim, California, American Meteorological Society, 6 pp., 179–184, 1993.
Modarres, R.: Streamflow drought time series forecasting, Stoch. Environ. Res.
Ris. Assess., 21, 223–233, https://doi.org/10.1007/s00477-006-0058-1, 2007.
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d – Standard model output, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.918447, 2020.
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation, Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021.
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: WaterGAP v2.2d. In The global water resources and use model WaterGAP v2.2d: model description and evaluation (v2.2d, Vol. 14, Number 2, pp. 1037–1079). Zenodo [data set], https://doi.org/10.5281/zenodo.6902111, 2022.
Nalbantis, I. and Tsakiris, G.: Assessment of Hydrological Drought
Revisited, Water Resour. Manage., 23, 881–897,
https://doi.org/10.1007/s11269-008-9305-1, 2009.
Palmer, W. C.: Meteorological Drought: Research Paper 45, U.S. Department of Commerce, Weather Bureau, Washington, D.C., 58 pp., 1965.
Popat, E. and Döll, P.: Soil moisture and streamflow deficit anomaly index: an approach to quantify drought hazards by combining deficit and anomaly, Nat. Hazards Earth Syst. Sci., 21, 1337–1354, https://doi.org/10.5194/nhess-21-1337-2021, 2021.
Pozzi, W., Sheffield, J., Stefanski, R., Cripe, D., Pulwarty, R., Vogt, J.
V., Heim, R. R., Brewer, M. J., Svoboda, M., Westerhoff, R., van Dijk, A. I.
J. M., Lloyd-Hughes, B., Pappenberger, F., Werner, M., Dutra, E.,
Wetterhall, F., Wagner, W., Schubert, S., Mo, K., Nicholson, M., Bettio, L.,
Nunez, L., van Beek, R., Bierkens, M., Goncalves, L. G. G. de, Mattos, J. G.
Z. de, and Lawford, R.: Toward Global Drought Early Warning Capability:
Expanding International Cooperation for the Development of a Framework for
Monitoring and Forecasting, B. Am. Meteorol. Soc.,
94, 776–785, https://doi.org/10.1175/BAMS-D-11-00176.1, 2013.
Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W.,
Dankers, R., Fekete, B. M., Franssen, W., Gerten, D., Gosling, S. N.,
Hagemann, S., Hannah, D. M., Kim, H., Masaki, Y., Satoh, Y., Stacke, T.,
Wada, Y., and Wisser, D.: Hydrological droughts in the 21st century,
hotspots and uncertainties from a global multimodel ensemble experiment,
P. Natl. Acad. Sci. USA, 111, 3262–3267, https://doi.org/10.1073/pnas.1222473110, 2014.
Richter, B. D., Davis, M. M., Apse, C., and Konrad, C.: A PRESUMPTIVE
STANDARD FOR ENVIRONMENTAL FLOW PROTECTION, River Res. Applic., 28,
1312–1321, https://doi.org/10.1002/rra.1511, 2012.
Satoh, Y., Shiogama, H., Hanasaki, N., Pokhrel, Y., Boulange, J. E. S.,
Burek, P., Gosling, S. N., Grillakis, M., Koutroulis, A., Müller
Schmied, H., Thiery, W., and Yokohata, T.: A quantitative evaluation of the
issue of drought definition: a source of disagreement in future drought
assessments, Environ. Res. Lett., 16, 104001,
https://doi.org/10.1088/1748-9326/ac2348, 2021.
Sharma, T. C. and Panu, U. S.: Predicting return periods of hydrological
droughts using the Pearson 3 distribution: a case from rivers in the
Canadian prairies, Hydrol. Sci. J., 60, 1783–1796,
https://doi.org/10.1080/02626667.2014.934824, 2015.
Shukla, S. and Wood, A. W.: Use of a standardized runoff index for
characterizing hydrologic drought, Geophys. Res. Lett., 35, 2,
https://doi.org/10.1029/2007GL032487, 2008.
Smakhtin, V.: Low flow hydrology: a review, J. Hydrol., 240,
147–186, https://doi.org/10.1016/S0022-1694(00)00340-1, 2001.
Spinoni, J., Barbosa, P., Jager, A. de, McCormick, N., Naumann, G., Vogt, J.
V., Magni, D., Masante, D., and Mazzeschi, M.: A new global database of
meteorological drought events from 1951 to 2016, J. Hydrol.-Reg. Stud., 22, 100593, https://doi.org/10.1016/j.ejrh.2019.100593,
2019.
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., van Loon, A. F., and
Stahl, K.: Candidate Distributions for Climatological Drought Indices (SPI
and SPEI ), Int. J. Climatol., 35, 4027–4040,
https://doi.org/10.1002/joc.4267, 2015.
Stahl, K., Vidal, J.-P., Hannaford, J., Tijdeman, E., Laaha, G., Gauster,
T., and Tallaksen, L. M.: The challenges of hydrological drought definition,
quantification and communication: an interdisciplinary perspective, Proc.
IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, 2020.
Steinemann, A., Iacobellis, S. F., and Cayan, D. R.: Developing and
Evaluating Drought Indicators for Decision-Making, J.
Hydrometeorol., 16, 1793–1803, https://doi.org/10.1175/JHM-D-14-0234.1,
2015.
Tijdeman, E., Stahl, K., and Tallaksen, L. M.: Drought Characteristics
Derived Based on the Standardized Streamflow Index: A Large Sample
Comparison for Parametric and Nonparametric Methods, Water Resour. Res., 56, 10,
https://doi.org/10.1029/2019WR026315, 2020.
UNECE: Policy Guidance Note on the Benefits of Transboundary Water
Cooperation: Identification, Assessment and Communication,
https://www.unece.org/fileadmin/DAM/env/water/publications/WAT_Benefits_of_Transboundary_Cooperation/ECE_MP.WAT_47_PolicyGuidanceNote_BenefitsCooperation_1522750_E_pdf_web.pdf (last access: 6 June 2023), 2015.
van Huijgevoort, M. H. J., Hazenberg, P., van Lanen, H. A. J., and Uijlenhoet, R.: A generic method for hydrological drought identification across different climate regions, Hydrol. Earth Syst. Sci., 16, 2437–2451, https://doi.org/10.5194/hess-16-2437-2012, 2012.
van Huijgevoort, M., van Lanen, H., Teuling, A. J., and Uijlenhoet, R.:
Identification of changes in hydrological drought characteristics from a
multi-GCM driven ensemble constrained by observed discharge, J.
Hydrol., 512, 421–434, https://doi.org/10.1016/j.jhydrol.2014.02.060,
2014.
Van Lanen H A. J.: Drought propagation through the hydrological cycle, in: Climate variability and change, 122–127, edited by: Demuth, S., Gustard, A., Planos, E., Scatena. F., and Servat, E., IAHS Publication 308, Wallingford, UK, ISBN 978-1901502787, 716 pp., 2006.
van Lanen, H., Vogt, J. V., Andreu, J., Carrão, H., Stefano, L. de,
Dutra, E., Feyen, L., Forzieri, G., Hayes, M., Iglesias, A., Lavaysse, C.,
Naumann, G., Pulwarty, R., Spinoni, J., Stahl, K., Stefanski, R.,
Stilianakis, N., Svoboda, M., and Tallaksen, L. M. (Eds.): Climatological
risk: droughts: edited by: Poljanšek, K., Marín Ferrer, M., De Groeve, T., and
Clark, I, Science for disaster risk management 2017: knowing better
and losing less, 556 pp., https://doi.org/10.2788/688605, 2017.
van Loon, A. F.: Hydrological drought explained, WIREs Water, 2, 359–392,
https://doi.org/10.1002/wat2.1085, 2015.
van Loon, A. F., Tijdeman, E., Wanders, N., van Lanen, H. A. J., Teuling, A.
J., and Uijlenhoet, R.: How climate seasonality modifies drought duration
and deficit, J. Geophys. Res.-Atmos., 119, 4640–4656,
https://doi.org/10.1002/2013JD020383, 2014.
Van Loon, A. F., Van Huijgevoort, M. H. J., and Van Lanen, H. A. J.: Evaluation of drought propagation in an ensemble mean of large-scale hydrological models, Hydrol. Earth Syst. Sci., 16, 4057–4078, https://doi.org/10.5194/hess-16-4057-2012, 2012.
Van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., Gleeson, T., Van Dijk, A. I. J. M., Tallaksen, L. M., Hannaford, J., Uijlenhoet, R., Teuling, A. J., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., and Van Lanen, H. A. J.: Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches, Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, 2016.
van Oel, P. R., Martins, E. S. P. R., Costa, A. C., Wanders, N., and van
Lanen, H. A. J.: Diagnosing drought using the downstreamness concept: the
effect of reservoir networks on drought evolution, Hydrol. Sci.
J., 63, 979–990, https://doi.org/10.1080/02626667.2018.1470632, 2018.
Vincent, L. A. and Mekis, É.: Changes in Daily and Extreme Temperature
and Precipitation Indices for Canada over the Twentieth Century,
Atmos.-Ocean, 44, 177–193, https://doi.org/10.3137/ao.440205, 2006.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010.
Vidal, J.-P., Martin, E., Franchistéguy, L., Habets, F., Soubeyroux, J.-M., Blanchard, M., and Baillon, M.: Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite, Hydrol. Earth Syst. Sci., 14, 459–478, https://doi.org/10.5194/hess-14-459-2010, 2010.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50,
7505–7514, https://doi.org/10.1002/2014WR015638, 2014.
Wilhite, D. and Glantz, M.: Understanding the drought phenomenon: the role
of definitions, Water Int., 10, 111–120,
https://doi.org/10.1080/02508068508686328, 1985.
WMO and GWP: Handbook of Drought Indicators and Indices (M. Svoboda and B.A.
Fuchs). Integrated Drought Management Programme (IDMP), Integrated Drought
Management Tools and Guidelines Series 2. Geneva, ISBN 978-91-87823-24-4, 52 pp., 2016.
Yevjevich, V.: An objective approach to definitions and investigations of
continental hydrological droughts, Hydrology Papers Colorado State
University, Vol. 23, 25 pp., 1967.
Zaidman, M. D., Rees, H. G., and Young, A. R.: Spatio-temporal development of streamflow droughts in north-west Europe, Hydrol. Earth Syst. Sci., 6, 733–751, https://doi.org/10.5194/hess-6-733-2002, 2002.
Zelen, M. and Severo, N. C.: Probability functions, in: Handbook of mathematical functions with formulas, graphs, and mathematical tables, edited by: Abramowitz, M. and Stegun, I. A., Dover Publications Inc., New York, ISBN 9780486612724, 1046 pp., 1965.
Short summary
This paper presents a new method for selecting streamflow drought hazard indicators for monitoring drought hazard for human water supply and river ecosystems in large-scale drought early warning systems. Indicators are classified by their inherent assumptions about the habituation of people and ecosystems to the streamflow regime and their level of drought characterization, namely drought magnitude (water deficit at a certain point in time) and severity (cumulated magnitude since drought onset).
This paper presents a new method for selecting streamflow drought hazard indicators for...
Altmetrics
Final-revised paper
Preprint