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Abstract. Streamflow drought hazard indicators (SDHIs) are
mostly lacking in large-scale drought early warning systems
(DEWSs). This paper presents a new systematic approach
for selecting and computing SDHIs for monitoring drought
for human water supply from surface water and for river
ecosystems. We recommend considering the habituation of
the system at risk (e.g., a drinking water supplier or small-
scale farmers in a specific region) to the streamflow regime
when selecting indicators; i.e., users of the DEWSs should
determine which type of deviation from normal (e.g., a cer-
tain interannual variability or a certain relative reduction of
streamflow) the risk system of interest has become used to
and adapted to. Distinguishing four indicator types, we clas-
sify indicators of drought magnitude (water anomaly during a
predefined period) and severity (cumulated magnitude since
the onset of the drought event) and specify the many rele-
vant decisions that need to be made when computing SD-
HIs. Using the global hydrological model WaterGAP 2.2d,
we quantify eight existing and three new SDHIs globally.
For large-scale DEWSs based on the output of hydrological
models, we recommend specific SDHIs that are suitable for
assessing the drought hazard for (1) river ecosystems, (2) wa-
ter users without access to large reservoirs, and (3) water
users with access to large reservoirs, as well as being suit-
able for informing reservoir managers. These SDHIs include
both drought magnitude and severity indicators that differ by
the temporal averaging period and the habituation of the risk
system to reduced water availability. Depending on the ha-
bituation of the risk system, drought magnitude is best quan-
tified either by the relative deviation from the mean or by

the return period of the streamflow value that is based on the
frequency of non-exceedance. To compute the return period,
we favor empirical percentiles over the standardized stream-
flow indicator as the former do not entail uncertainties due
to the fitting of a probability distribution and can be com-
puted for all streamflow time series. Drought severity should
be assessed with indicators that imply habituation to a certain
degree of interannual variability, to a certain reduction from
mean streamflow, and to the ability to fulfill human water de-
mand and environmental flows. Reservoir managers are best
informed by the SDHIs of the grid cell that represents inflow
into the reservoir. The DEWSs must provide comprehensive
and clear explanations about the suitability of the provided
indicators for specific risk systems.

1 Introduction

Drought occurs when there is a prolonged period with less
water than normal in different components of the hydrolog-
ical cycle (van Loon et al., 2016), but the term drought also
has the connotation that during the drought period there is
less water than required (Popat and Döll, 2021). No uni-
versal definition of “drought” exists (Lloyd-Hughes, 2014).
While drought is a local to regional phenomenon, its im-
pacts can have transnational to global dimensions, in particu-
lar related to crop production and trade (Wilhite and Glantz,
1985; van Loon, 2015; UNECE, 2015). Streamflow drought
in transboundary basins implies direct international impacts.
Hence, global-scale assessment, monitoring, and forecast-
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ing of drought hazards or risks have the potential to support
drought risk management (Pozzi et al., 2013).

A stakeholder survey encompassing 33 regional to global
drought early warning systems (DEWSs) revealed that
streamflow drought hazard indicators (SDHIs) are rarely ap-
plied in DEWSs, while drought hazard indicators based on
meteorological variables, soil moisture, and remotely sensed
vegetation conditions dominate (Bachmair et al., 2016).
Among SDHIs, streamflow percentiles are mostly applied,
e.g., in the US Drought Monitor. Other indicators include the
Palmer Hydrological Drought Severity Index (Palmer, 1965),
cumulative streamflow anomalies (Fleig et al., 2006; Lehner
et al., 2006; van Loon et al., 2012; Heudorfer and Stahl,
2017), and the standardized streamflow (Modarres, 2007;
Nalbantis and Tsakiris, 2009) or runoff index (Shukla and
Wood, 2008; Satoh et al., 2021). At the continental scale,
only the European Drought Observatory provides an SDHI
(Cammalleri et al., 2016a), which has also been tested for
global implementation in the Global Drought Observatory
(Cammalleri et al., 2020). There is currently no global-scale
operational streamflow drought hazard monitoring system.

SDHIs are commonly classified into threshold-based and
standardized indicators (van Loon, 2015). The threshold
level method (TLM) was first applied by Yevjevich (1967),
who determined that a drought event begins when stream-
flow falls below a certain threshold (e.g., a percentile) and
ends as soon as the threshold is exceeded. Then, drought
magnitude is the streamflow deficit in the considered period
(computed as the difference between the threshold stream-
flow and the actual streamflow in that period), while drought
severity is equivalent to the cumulative magnitude since the
beginning of the drought event. Standardized indicators such
as the standardized precipitation index (SPI) (McKee et al.,
1993) and the standardized streamflow index (SSI) (Zaid-
man et al., 2002; Modarres, 2007; Nalbantis and Tsakiris,
2009) quantify the anomaly of the variable (e.g., precipita-
tion or streamflow) during a certain period from the long-
term mean in units of standard deviation. Negative values
quantify the drought magnitude per time step. However, clas-
sification in threshold-based and standardized indicators is
somewhat misleading, since standardized indicators can also
be cumulated to derive drought severity, which requires set-
ting of a threshold as is the case for TLM indicators (Mc-
Kee et al., 1993; Barker et al., 2019; van Oel et al., 2018;
Tijdeman et al., 2020). On the other hand, comparing SSI
and threshold-based indicators directly implies that differ-
ent drought characteristics (magnitude and severity) are ana-
lyzed. Moreover, the term drought severity is sometimes used
to describe drought magnitude and vice versa (Steinemann
et al., 2015; Vidal et al., 2010; López-Moreno et al., 2009).
Certainly, an improved classification of drought hazard in-
dicators would facilitate a better understanding of drought
characteristics and guide the selection of appropriate drought
hazard indicators.

Previous research has revealed that there is often no com-
mon understanding among stakeholders about drought haz-
ard concepts (Steinemann et al., 2015). Also, in most de-
scriptions of drought indicator calculations, it is not made
explicit what is assumed to be “normal”, i.e., what people
and ecosystems are used to and adapted to; this is hereafter
referred to as habituation. For instance, defining the long-
term mean value of the physical variable per calendar month
as the normal state implies that people and ecosystems are
habituated to the seasonality of water availability. Applying
percentiles per calendar month instead implies habituation to
interannual variability. Clearly, the conception or selection of
hazard indicators needs to take into account the habituation
and related vulnerability of the system at risk, e.g., differ-
ent water users such as water supply companies, farmers, or
river ecosystems in a specific region. However, investigations
and guidance on how to select the optimal SDHI, consider-
ing both the targeted risk and the habituation of the system at
risk to the streamflow regime, are missing.

A further consideration in designing SDHIs is how to con-
ceptualize drought in intermittent or highly seasonal stream-
flow regimes. If periods of zero flow are a normal part of
the streamflow regime, as is the case in arid regions, then
it is meaningless to assess streamflow deficits during these
periods. Hence, arid regions are often excluded from global
drought analyses (Corzo Perez et al., 2011; Prudhomme et
al., 2014; Spinoni et al., 2019). To overcome these limita-
tions, van Huijgevoort et al. (2012) introduced a method that
combines the TLM with the consecutive dry period method
(CDPM) for streamflow, in analogy to the consecutive dry
days (CDD) approach for precipitation (Vincent and Mekis,
2006; Griffiths and Bradley, 2007). However, this method
may be too complex to be applied in DEWSs.

This paper analyzes which SDHIs are suitable for assess-
ing and monitoring drought hazard for human water sup-
ply from surface water and for river ecosystems in large-
scale DEWSs. We propose a systematic approach to indica-
tor selection, which encompasses the explicit consideration
of the habituation of people and river ecosystems to stream-
flow availability as well as a new classification system for
drought hazard indicators. This new methodology is exem-
plified at the global scale for eight existing and three newly
developed SDHIs using (a) modeled output from the global
water resources and use model WaterGAP 2.2d and (b) ob-
served monthly streamflow at four selected gauging stations.

The following section describes how streamflow and other
variables required for the computation of the SDHIs were
computed and defines the 11 investigated SDHIs. In Sect. 3,
we present the new systematic approach for selecting and
computing SDHIs. In Sect. 4, we analyze spatial and tem-
poral discrepancies and similarities of the indicators at the
global scale. In Sect. 5, we give recommendations on the suit-
ability of the indicators for large-scale applications. Finally,
we draw conclusions in Sect. 6.
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2 Methods and data

2.1 Streamflow data

2.1.1 Streamflow observations

Eight SDHIs were computed for four selected gauging
stations using monthly streamflow data from the Global
Runoff Data Centre (GRDC, 2019) for the period 1986–2015
(Figs. 6, S2, and S6). The stations comprise the Danube River
at Hofkirchen (Germany), the Angara River at Boguchany
(Russia), the White River near Oacoma (US), and the Or-
ange River at Vioolsdrif (South Africa). Moreover, a lim-
ited model validation was performed (Supplement S2) using
monthly streamflow data from 220 GRDC stations with con-
tinuous time series during the reference period 1986–2015.
The model validation focused on the correlation between ob-
served Q80 per calendar month (the streamflow that is ex-
ceeded in 8 out of 10 months) and Q80 as modeled by Wa-
terGAP.

2.1.2 Modeled streamflow

A total of 11 SDHIs were computed for the whole land area
except Greenland and Antarctica with a spatial resolution of
0.5◦ using monthly time series of WaterGAP 2.2d model out-
put for the reference period 1986–2015 (Sect. 2.2). For com-
puting each indicator, we used the 30 monthly values avail-
able for each of the 12 calendar months individually to de-
termine distributions, thresholds, and deficits. All indicators
were computed using streamflow of the standard model run
(Qant) (“ant”: anthropogenic), in which the impact of hu-
man water use and human-made reservoirs on streamflow
is simulated. Naturalized (“nat”) streamflow (Qnat) without
these two types of human activities was only used for deriv-
ing environmental streamflow requirements for the indicator
CQDI1(WUs-EFR) (Sect. 2.3.5).

2.2 Global-scale simulation of streamflow and surface
water use

SDHIs were computed using output from the global water
availability and water use model WaterGAP 2.2d (Müller
Schmied et al., 2021). WaterGAP 2.2d has a spatial res-
olution of 0.5◦ latitude by 0.5◦ longitude (55 km× 55 km
at the Equator) and covers the whole global land area ex-
cept Antarctica. WaterGAP consists of the WaterGAP Global
Hydrology Model (WGHM) and five water use models for
the sectors households, manufacturing, and cooling of ther-
mal power plants (Flörke et al., 2013), as well as irriga-
tion and livestock. WGHM computes daily time series of
fast surface and subsurface runoff, groundwater recharge,
and streamflow, as well as water storage variations in the
canopy, snow, soil, groundwater, lakes, reservoirs, wetlands,
and rivers. Model input includes time series of climate data
between 1901 and 2016 and physio-geographic informa-

tion, such as land cover, soil type, relief, and hydrogeology.
For this study, WaterGAP 2.2d was forced by the WFDEI-
GPCC climate data set (Weedon et al., 2014), which was
developed by applying the forcing data methodology from
the EU project WATCH on ERA-Interim reanalysis data.
Daily model outputs of streamflow and surface water abstrac-
tions (WUs) were aggregated to monthly time series. Water-
GAP total runoff is calibrated against long-term mean annual
streamflow at 1319 gauging stations worldwide covering ap-
proximately 54 % of the Earth’s land area (except Greenland
and Antarctica). A detailed model description and evaluation
can be found in Müller Schmied et al. (2021). Please note
that while WaterGAP simulates the impact of reservoirs on
streamflow, the accuracy is very low as it is unknown how
all human-made reservoirs on Earth are managed such that a
generic algorithm is used to simulate human reservoir man-
agement decisions.

In several model intercomparison and assessment studies,
WaterGAP proved suitable for computing streamflow and
SDHIs, although the discrepancies between simulated and
observed low flows, seasonality, and interannual variability
can be significant at the regional scale (see the literature re-
view in the Supplement Sect. S1). A limited model validation
of the WaterGAP version 2.2d applied in this study (Sect. S2)
revealed that Q80 is overestimated by WaterGAP in 63 % of
all months and stations with median percent deviations be-
tween 35 % in February and −7 % in July (Fig. S1). In an-
other model validation exercise, SSI3 as modeled by Water-
GAP was compared to observed SSI3 at 183 gauging stations
(Sect. S2). With a median NSE of 0.5 and an interquartile
range of 0.2–0.7, WaterGAP 2.2d model output showed mod-
erate agreement with the observations. NSE exceeded 0.7 at
25 out of the 183 stations mainly located in central and east-
ern Europe and the United States.

2.3 SDHIs

2.3.1 Standardized streamflow anomaly indicators
SSI1 and SSI12

SSI1 was computed using mean monthly streamflow Qant
analogously to SPI1 (McKee et al., 1993) following the
method provided in Kumar et al. (2009). First, a gamma dis-
tribution was fitted to the 30 monthly streamflow values per
calendar month using the R package fitdistrplus. The proba-
bilities of the streamflow values were transformed to a vari-
able Z with a normal distribution that has a mean of zero
and a standard deviation of 1 (McKee et al., 1993; Stagge
et al., 2015) using an approximation method introduced by
Zelen and Severo (1965). The value of the variable Z (also
called z score) is equal to the value of the SSI1. Thus, an
SSI1 of −1 describes a streamflow value that is 1 standard
deviation lower than the mean streamflow of the calendar
month. The mean of the normal distribution is equal to the
median of the fitted nonlinear cumulative distribution func-
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tion (Vicente-Serrano et al., 2010). The gamma distribution
showed the best fit among 23 parametric probability distribu-
tions for most grid cells. The goodness of fit between simu-
lated streamflow values and the probability distribution was
assessed based on the one-sample Kolmogorov–Smirnov test
(KS test) at the 0.05 significance level. The fits were rejected
in 17 % to 21 % of all grid cells (excluding Greenland) de-
pending on the calendar month.

SSI12 was computed like SSI1, but with an averaging pe-
riod of 12 months. For SSI12, the fits were rejected in around
6 % of all grid cells (excluding Greenland) with only slight
variations among the calendar months.

2.3.2 Cumulative streamflow deficit indicators
CQDI1(Q50), CQDI1(Q80), CQDI1(Q80-HS),
and CQDI6(Q80)

CQDI1(Q50) is the cumulative, volume-based streamflow
deficit computed following the threshold level method
(TLM) (Sect. 1). It should be noted that the term “deficit”,
which is generally used for the TLM, refers to the negative
anomaly below a selected threshold, and not to an unsatis-
fied water demand. With CQDI1(Q50), a deficit is defined to
occur if modeled monthly streamflow is lower than the 50th
percentile (median) of the long-term calendar month stream-
flow (Eq. 1). The empirical percentile Q50 was computed in
R using the quantile function with the default quantile algo-
rithm. The streamflow deficit is computed as

streamflow deficitm,y = Q50m−Qm,y(for Qm,y < Q50m), (1)

withm representing the month, y the year, Q50m the calendar
month median, and Qm,y the current streamflow.

The last deficit month is the last month of the drought
event. Monthly deficits (drought magnitude) are accumulated
for all drought months to obtain severity. The cumulative
streamflow deficit (in units of m3) is normalized by mean
annual streamflow (in units of m3). A value of 2 [–], for ex-
ample, indicates that the cumulative streamflow deficit in a
certain month is twice the mean annual streamflow. Follow-
ing Spinoni et al. (2019), a drought event is defined to start
with at least 2 consecutive months with a deficit and it ends
(deficit set to zero) if there are 2 consecutive months with-
out a deficit (2-month criterion, 2mc). This approach avoids
short-term streamflow deficits that hardly pose a drought
hazard to humans and other biota being defined as drought
events (Spinoni et al., 2019). Any streamflow surplus over the
median in a single month between 2 deficit months does not
decrease the cumulative deficit value. Q50 as a rather high
threshold can be viewed as a “conservative upper bound for
low flows” (Smakhtin, 2001: 153).

Streamflow intermittency generally poses a problem, as
in grid cells where the threshold (in this case Q50) is zero
in a particular calendar month, droughts are never identi-
fied in this month. To overcome this problem, CQDI1(Q50)
allows an existing drought to continue during months with

Q50= 0, but only if Q in the respective month is also zero.
In months during which Q50 is zero but Q exceeds zero,
the drought event ends. This approach implies that a drought
event can be prolonged, but never begin, in calendar months
with Q50= 0.

CQDI1(Q80) was calculated in the same manner as
CQDI1(Q50) but using Q80 per calendar month as a thresh-
old. With Q80, a deficit is computed in 20 % of the 30 cal-
endar months. Q80 was computed in R using the quantile
function with the default quantile algorithm such that Q80
is a streamflow value slightly higher than the sixth-lowest
calendar month streamflow. Daily or monthly Q80 is often
used as a threshold for defining the onset and termination of
a streamflow deficit period (van Huijgevoort et al., 2014; van
Loon et al., 2014; Heudorfer and Stahl, 2017; Laaha et al.,
2017), but the selected threshold should represent local water
requirements (including environmental flow) (Cammalleri et
al., 2016a).

CQDI1(Q80-HS) is a variant of CQDI1(Q80) suitable in
intermittent and highly seasonal (HS) streamflow regimes
wherein people strongly rely on water storage in human-
made reservoirs that needs to be replenished by streamflow. It
allows an existing drought to continue in any month in which
Q80 is zero even if the current streamflow Q exceeds zero.
However, the cumulative deficit is reduced by any streamflow
surplus over the calendar month Q80. The rationale behind
this approach is that streamflow during low-flow months (cal-
endar months in which Q80 is zero) is not relevant for people
relying on large reservoirs. Below-normal water storage can
only marginally be replenished during a low-flow period, and
hence drought severity should remain at the level of the pre-
ceding high-flow period. Like CQDI1(Q80), a drought can
be prolonged but never begin in months with Q80= 0.

CQDI6(Q80) is computed like CQDI1(Q80) but applying
an averaging period of 6 months. The indicator is suitable in
regions with access to large reservoirs. In each month, the
streamflow deficit is computed by subtracting the average
streamflow of the preceding 6 months (including the current
month) from the long-term Q80 of the same 6 months during
the reference period.

2.3.3 Empirical percentiles EP1 and cumulative
empirical percentiles CEP1(20 %)

Empirical streamflow percentiles EP1 were computed per
calendar month following Eq. (2) with an averaging period
of 1 month. EP1 expresses the frequency of non-exceedance,
while the inverse is the return period, in years, with

EP1= rank(Q)/n, (2)

where rank(Q) is the rank of a streamflow value of a certain
calendar month and n is the sample size, i.e., the number of
years in the reference period.

Rank 1 was assigned to the smallest streamflow value. If a
sample contained several months with the same streamflow
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value, the largest rank among these months was assigned to
the tied streamflow values. For a calendar month compris-
ing, for instance, 26 out of 30 months with zero streamflow,
a value of EP1= 26 / 30 would be assigned to the respec-
tive 26 months corresponding to a return period of 1.2 years.
This method slightly adjusts the approach by Tijdeman et
al. (2020), who used the average rank among the tied val-
ues. In the given example, this would result in EP1= 0.45
and a return period of 2.2 years for the first 26 values. In this
study, we chose the largest EP1 for tied values to reflect the
fact that frequent streamflow values have a high frequency of
non-exceedance and a low return period assuming that peo-
ple and the ecosystem are habituated to more frequent values
including zero streamflow.

CEP1(20 %) is the cumulative percentile-based deficit.
The monthly percentile deficit is computed by subtracting
the current streamflow percentile from a selected percentile
threshold (Eq. 3). In this study, a deficit is computed for the
six lowest calendar month values (20 % out of 30 values).
Consequently, the selected threshold percentile is slightly
higher than 20 % depending on the sample size (22.7 % in
this study with a sample size of 30 % and 22 % for a sam-
ple size of 40). Monthly percentile deficits are accumulated
for all drought months to obtain severity. Like CQDI1(Q80),
CEP1(20 %) allows an existing drought event to continue
during months in which both Q80 and the current stream-
flow are zero. The 2mc is also applied. Hence, CEP1(20 %)
identifies the same drought months as CQDI1(Q80). The per-
centile deficit is computed as

percentile deficitm,y = P20−EP1m,y(for EP1m,y < P20), (3)

with m representing the month, y the year, and EP1m,y the
current empirical streamflow percentile. With a sample size
of 30 calendar month values, the percentile threshold P20m
is 22.7 % such that 20 % of all calendar months are identified
as drought months.

2.3.4 Relative deviation from mean conditions RQDI1,
RQDI12, and cumulative CRQDI1( − 50 %)

RQDI1 is the relative deviation of monthly streamflow from
mean calendar month streamflow (MMQ) in percent. In each
month, it is calculated as the difference between monthly
streamflow and the respective MMQ, which is then divided
by MMQ.

RQDI12 is the relative deviation of mean streamflow dur-
ing the preceding 12 months (in km3 month−1) from mean
annual streamflow (in km3 month−1) during the reference
period. In this study, RQDI12 is only assessed for selected
gauging stations (Sect. S3), but not at the global scale.

The cumulative relative deviation CRQDI1(−50 %) is
computed using a threshold of RQDI1=−50 % and apply-
ing the 2mc (Sect. 2.3.2). Months with MMQ= 0, for which
the relative deviation is not computable, are defined to end
a drought event assuming that people are habituated to zero

streamflow in this month. The percent deficit is computed as

percent deficitm,y =−50%−RQDI1m,y
(for RQDI1<−50%) , (4)

with m representing the month, y the year, and RQDI1m,y
the current relative streamflow deviation in percent.

2.3.5 Water deficit indicators CQDI1(WUs) and
CQDI1(WUs-EFR)

The water deficit indicators CQDI1(WUs) and CQDI1(WUs-
EFR) are computed like CQDI1(Q80) but using as thresholds
mean monthly potential surface water abstraction (WUs) and
WUs plus environmental flow requirement (EFR), respec-
tively. Following Richter et al. (2012), EFR is assumed to
be 80 % of mean monthly naturalized streamflow Qnat per
calendar month such that 12 EFR values are obtained per
grid cell. WUs represents the simulated water demand (po-
tential water abstractions from surface water bodies) and not
the actual water abstraction (Müller Schmied et al., 2021),
but both values are similar in most grid cells. The satisfied (or
actual) water use is not suitable for identifying periods of wa-
ter deficit because it decreases along with water availability
during drought. Cumulative deficits are normalized by mean
annual streamflow. The indicators were not computed in grid
cells where mean annual surface water demand in the refer-
ence period is zero (approx. 9 % of all grid cells excluding
Greenland). For CQDI1(WUs), the water deficit is computed
as

water deficitm,y =WUsm−Qm,y(forQm,y <WUsm), (5)

with m representing the month, y the year, WUsm the mean
potential surface water abstraction per calendar month, and
Qm,y the current streamflow.

For CQDI1(WUs-EFR), the water deficit in each month is
computed as

water deficitm,y =WUsm+EFRm−Qm,y(for Qm,y

< (WUsm+EFRm)), (6)

with m representing the month, y the year, WUsm the
mean potential surface water abstraction per calendar month,
EFRm = 80 % of mean monthly naturalized streamflow Qnat
per calendar month, and Qm,y the current streamflow.

2.4 Probability of non-exceedance and return period of
drought events of a certain severity

Following the approach of Cammalleri et al. (2016a) to com-
pute the low-flow index (LFI), the probability of drought
events of a certain severity was computed for six cumulative
indicators: CEP1(20 %), four CQDI1 variants (thresholds
Q50, Q80, WUs, and WUs+EFR), and CRQDI1(−50 %).
First, the partial duration series of drought events was derived
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based on the severities of all drought events of the reference
period. Grid cells with fewer than six drought events were
excluded. The exponential cumulative distribution function
proposed in Cammalleri et al. (2016a) was used to estimate
the probability of non-exceedance p of a certain cumulative
streamflow deficit:

p(Si;λ)= 1− e−λSi (with Si > 0), (7)

where the variable Si is the severity of drought event i, as
quantified by a cumulative indicator, and the parameter λ is
the inverse of the mean of the severities of all completed
drought events. For instance, a value of p = 0.7 in a cer-
tain month denotes that, if the drought event ended in this
month, its severity would be larger than the severity of 70 %
of the drought events in the reference period. Different from
LFI, which is based on daily streamflow data, time series
of monthly streamflow were used for all indicators and the
2mc (see Sect. 2.3.2) was applied. Since p was computed
for each month of the reference period, it describes the non-
exceedance probability (or rather frequency) of both com-
pleted drought events and continuing droughts. Following
Sharma and Panu (2015) and Beguería (2005), the return pe-
riod Tri of a drought event with severity Si is computed as

Tri =
1

θ (1−p(Si))
, (8)

where θ is the average number of drought events per year
during the reference period.

3 Proposed systematic approach for selecting and
computing SDHIs

Wilhite and Glantz (1985) suggested distinguishing between
a conceptual and an operational drought definition, with the
former referring to the general qualitative concept of drought
and the latter allowing for a quantitative drought characteri-
zation including onset, severity, termination, and spatial ex-
tent. In Sect. 3.1, aspects that relate to the conceptual drought
definition are discussed comprising the description of the tar-
geted drought risk and the system at risk (see Sect. 1). In
particular, assumptions about the habituation (see Sect. 1) of
the system at risk to the streamflow regime are discussed, an
aspect that is currently not taken into account or not made
explicit in drought hazard studies. To translate these concep-
tual definitions into operational drought hazard indicators, a
new classification system for hazard indicators is proposed
in Sect. 3.2. The new systematic approach is illustrated in
Sect. 4 using modeled SDHIs at the global scale as well as
observation-based SDHIs at four gauging stations with dif-
ferent streamflow regimes and different assumed levels of
vulnerability.

3.1 Assumptions about habituation inherent in
drought hazard indicators

The selection of drought hazard indicators for a DEWS re-
quires a clear definition of “the risk of what for whom”.
Drought hazard indicators are risk-system-specific (Blauhut
et al., 2022), and there is not one that fits all. Drought is usu-
ally conceptualized as an anomaly (“less water than normal”)
and/or deficit (“less water than needed”). Consequently, the
selection of an indicator requires a definition, often based on
assumptions, about “what is normal or needed”, i.e., what the
risk system is habituated to. In the case of streamflow, peo-
ple and ecosystems are assumed to have adapted to certain
characteristics of the flow regime. For example, if drought in-
dicators are computed based on the calendar-month-specific
distribution of streamflow values, it is implicitly assumed
that the risk system has adapted to the seasonality of stream-
flow. But temporally constant thresholds, which have tradi-
tionally been used to define hydrological droughts (Stahl et
al., 2020), are also suitable for certain systems, e.g., for com-
puting drought hazard for electricity generation by thermal
power plants, which require a certain minimum streamflow
for operation.

At the global scale, it is unknown to which streamflow
characteristics different risk systems such as drinking wa-
ter supply, irrigation water supply, hydropower production,
and the river ecosystem are accustomed. Therefore, the 11
global-scale drought hazard indicators analyzed in this study
(Table 1) cover different types of habituation, including the
habituation to a certain degree of interannual variability of
streamflow, to streamflow seasonality, to a certain reduction
from mean calendar month or mean annual streamflow, and
to being able to fulfill the demand for surface water abstrac-
tions and environmental flow. It is up to the user of a large-
scale DEWS, who understands the local risk-system-specific
habituation to reduced water availability, to select the hazard
indicator that is appropriate for the risk system of interest.

Percentile-based indicators including empirical stream-
flow percentiles, standardized indicators, and TLM indica-
tors with a low streamflow percentile as a threshold are often
applied in DEWSs (Bachmair et al., 2016; Cammalleri et al.,
2016a). They are perceived as statistically consistent across
different temporal and spatial scales, indicating the rarity of
the event (Steinemann et al., 2015; WMO and GWP, 2016).
Utilization of percentile-based indicators (e.g., SSI12, SSI1,
and CQDI1(Q80) in Table 1) implies that people in differ-
ent climate regions and social systems are equally habituated
to a certain interannual variability, which is most likely not
the case. The 20th streamflow percentile (or SSI1=−0.84)
would correspond to a low relative streamflow deviation
(e.g., −20 %) in a humid region (low interannual variability)
compared to a higher deviation (e.g., −50 %) in a semi-arid
region (high interannual variability). Hence, percentile-based
indicators might underestimate streamflow drought hazard
in semi-arid areas where people (and ecosystems, although
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Table 1. Characteristics of SDHIs suitable for global-scale assessments, classified according to inherent assumptions about habituation of
people or other biota. The general terms “a certain degree” or “a certain reduction” in the first column are specified in a drought assessment
by selected thresholds for drought definition.

Assumed habituation and suitable indicator
People or other biota accustomed to Characteristics

a certain degree of interan-
nual variability

SSI12, EP121, CQDI1(Q80-
HS), CQDI6(Q80)

Suitable for quantifying drought hazard (1) for human water supply in
regions with large human-made reservoirs or lakes that buffer seasonal
streamflow deficits as well as (2) for large lake and wetland ecosys-
tems.

seasonality and a certain
degree of interannual vari-
ability

SSI1, EP1, CQDI1(Q80) Suitable for quantifying drought hazard for human water supply and
river ecosystems in regions without access to reservoirs. Streamflow
drought hazard might be underestimated in regions with high vulner-
ability and interannual variability.

seasonality and median calendar month
streamflow
CQDI1(Q50)

Using such a high threshold (median of calendar monthly streamflow)
can be beneficial in highly vulnerable regions where people cannot
even cope with small reductions from median calendar month stream-
flow.

and being able to fulfill de-
mand for surface water ab-
stractions
CQDI1(WUs)

The system at risk is accustomed to the seasonality of human water
demand (WUs). People are used to being able to fulfill human water
demand.
The health of river ecosystems is not taken into account.
An indicator of water deficit rather than drought hazard.

and being able to fulfill de-
mand for surface water ab-
stractions and environmental
flow
CQDI1(WUs-EFR)

The system at risk is accustomed to the seasonality of human water
demand (WUs) and to the seasonality of environmental flow require-
ments (EFR).
Alternative 1, EFR based on Qant2: the river ecosystem has adjusted
to the altered flow regime over the last decades, which is considered
the “new normal status”.
Alternative 2, EFR based on Qnat2: the natural flow regime is the as-
pired status.

and a certain reduction from
mean calendar month stream-
flow RQDI1

Suitable in highly vulnerable regions where people cannot even cope
with small reductions from mean calendar month streamflow.
Drought hazard might be overestimated in regions with low vulnera-
bility and low interannual variability.

a certain reduction from
mean annual streamflow

RQDI12 Suitable in study regions with large human-made reservoirs or lakes,
which buffer seasonal streamflow deficits.
Drought hazard might be overestimated in regions with low vulnera-
bility and interannual variability.

temporally constant mini-
mum streamflow

Not included in this study Identifies drought hazard whenever water availability drops beneath
a certain level (e.g., water intake for cooling of thermal power plants
has to be reduced). Identifies no drought in the wet season.

1 EP12: empirical streamflow percentile with an averaging period of 12 months (not analyzed in this study). 2 Qant, Qnat: modeled anthropogenic streamflow altered by human
water use and human-made reservoirs (Qant); naturalized modeled streamflow (Qnat).

possibly to a lower degree) are often more vulnerable to re-
ductions in water availability. Regions with high interannual
variability are depicted in Fig. A1b. Here, drought hazard in-
dicators that quantify relative deviations from the long-term
mean or median (RQDI1, RQDI12 in Table 1) or TLM in-
dicators with higher percentiles as a threshold (CQDI1(Q50)
in Table 1) might be better suited to define drought condi-
tions. Such indicators appear to be less preferred as periods

with the same indicator value have different probabilities of
occurrence in different regions and thus not the same rar-
ity (Steinemann et al., 2015). Contrastingly, river ecosystems
are, in the ideal case, perfectly adjusted to interannual vari-
ability of streamflow such that percentile-based drought haz-
ard indicators are often suitable for drought hazard assess-
ment for river ecosystems. In conclusion, percentile-based
hazard indicators and relative deviations from the long-term
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mean or median should be used complementarily in large-
scale DEWSs to cover different types of habituation.

The selected averaging period defines whether people are
habituated to the annual or seasonal flow regime. One can as-
sume that river ecosystems are generally accustomed to sea-
sonality. Therefore, indicators with a short averaging period
of, for example, 1 month (EP1, SSI1, RQDI1 and CQDI1
variants in Table 1) are appropriate for quantifying drought
hazard for river ecosystems. Furthermore, short averaging
periods are suitable in regions where farmers and other wa-
ter users do not have access to large water storage such as
reservoirs, lakes, or groundwater (either due to missing in-
frastructure or due to water use restrictions). As these users
abstract water directly from the stream, they are very vul-
nerable to seasonal (monthly) streamflow deficits. Indicators
with longer averaging periods (SSI12, RQDI12), on the other
hand, are suitable in regions with large human-made reser-
voirs, which are usually replenished during the wet season
such that streamflow deficits during the low-flow months are
irrelevant. People in these regions are therefore only vul-
nerable to either interannual variability (SSI12) or mean an-
nual conditions (RQDI12), but not to seasonality. Certainly,
other averaging periods may be suitable depending on the
region-specific storage capacity. Since volume-based indica-
tors (TLM indicators) are also important components in wa-
ter resources management (van Loon, 2015), the indicators
CQDI1(Q80-HS) and CQDI6(Q80) are assessed as alterna-
tives for SSI12 and RQDI12 (or rather the cumulated vari-
ants CSSI12 and CRQDI12) in regions with highly seasonal
streamflow regimes (Fig. A1a) and large reservoirs.

For water managers, the status of the actual water deficit
in terms of unsatisfied water demand might be as informative
as the status of streamflow anomaly. Drought hazard is gen-
erally defined as a climate-induced anomaly, i.e., a period of
below-normal water availability (McKee et al., 1993; van La-
nen, 2006; van Loon, 2015). This concept can be broadened
by assuming that a drought only occurs if the anomaly coin-
cides with a water deficit for people or ecosystems (Cam-
malleri et al., 2016b; Popat and Döll, 2021; Wilhite and
Glantz, 1985). Nevertheless, only a few studies exist wherein
the combination of anomaly and deficit is translated into
drought hazard indicators for soil moisture (Palmer, 1965;
Cammalleri et al., 2016b; Popat and Döll, 2021) and stream-
flow (Popat and Döll, 2021). In the present study, the wa-
ter deficit aspect of drought is represented by the indicators
CQDI1(WUs) and CQDI1(WUs-EFR) (Table 1). Applica-
tion of these indicators implies that the system at risk is ha-
bituated to the satisfaction of seasonal water demand. While
CQDI1(WUs) neglects the water requirements of the ecosys-
tem, CQDI1(WUs-EFR) assumes that the river ecosystem
is habituated to the seasonality and magnitude of natural
streamflow. As EFR might never be fulfilled in the case of
strongly altered streamflow regimes, Qnat in the EFR com-
putation can be replaced by Qant, implying that the river
ecosystem has already adapted to the altered streamflow con-

ditions (Table 1). Figure A1c shows regions where human
water demand is high compared to available streamflow and
where a drought hazard due to unsatisfied human surface wa-
ter demand is likely.

3.2 Levels of drought characterization

Translating conceptual drought definitions into operational,
quantitative drought hazard indicators is not straightforward
due to the complexity of the underlying natural processes
and the large number of indicators and methods that can
be applied. In the literature, there is agreement about which
drought characteristics are relevant for operational applica-
tions comprising the temporal component (onset, termina-
tion, duration) and the spatial extent as well as drought mag-
nitude and severity, from which other metrics such as in-
tensity, return period, and frequency or probability of occur-
rence can be derived (van Lanen et al., 2017). We understand
drought magnitude as an anomaly or deficit occurring within
a predefined period and severity as the accumulated deficit
between the magnitude and a selected threshold since the
onset of drought, which is defined by water availability drop-
ping below the threshold (van Lanen et al., 2017). However,
the terms drought magnitude and severity, which represent
different levels of drought characterization, are not applied
consistently in the literature. The terms are not made explicit
and are sometimes interchanged (Steinemann et al., 2015; Vi-
dal et al., 2010; López-Moreno et al., 2009). In particular, the
commonly accepted classification of SDHIs into threshold-
based and standardized indicators (van Loon, 2015) is some-
what misleading, since the former represents time series of
severity and the latter time series of magnitude.

To facilitate a better understanding of the informative
value of SDHIs, we suggest a new indicator classification
that includes four types of indicators and distinguishes sever-
ity from magnitude indicators (Fig. 1). The indicator types
(columns in Fig. 1) include the volume-based anomaly, the
standardized or percentile-based anomaly, and the relative
deviation (Sect. 2.3). Deficit anomaly indicators (last column
in Fig. 1) combine an anomaly indicator with an indicator
of the deficit with respect to optimal water availability (e.g.,
Popat and Döll, 2021). For each indicator type, two levels
of drought characterization, drought magnitude (level 1) and
severity (level 2), can be computed.

The dark grey boxes in Fig. 1 represent decisions regard-
ing time step length and averaging period, as well as drought
threshold and definition of drought events (minimum length
of drought event, pooling of drought events). These decisions
depend on the assumed habituation of people and ecosys-
tems to certain streamflow conditions (Sect. 3.1 and Table 1).
Beige and orange boxes contain indicators that are expressed
in absolute or relative values and in frequency or probabil-
ity of occurrence, respectively. Indicators applied in drought
monitoring (CQDI1, low-flow index – LFI, percentiles, SSI,
RDPI) or in the literature (pQ, cumulative SSI, streamflow
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Figure 1. Classification system including four types of drought hazard indicators, indicating (1) the magnitude of the drought at a certain
time step as a deficit and/or anomaly (level 1) or (2) the severity of the drought event, i.e., the cumulative magnitude of drought since drought
onset (level 2). Both magnitude and severity can be expressed in terms of frequency or probability to compare the drought of interest to
other droughts. The dark grey boxes indicate decisions that have to be made when computing the indicators, e.g., which averaging period
is selected. Indicators in bold have already been applied in the literature. Assumptions about the habituation of people and ecosystems
determine the selection of the type of indicator, the averaging period, and the threshold (see Table 1).
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deficit anomaly indicator QDAI) are written in bold. The
units of the four indicator types differ at both level 1 and
2, but indicators can be directly compared when expressed in
units of probability (or frequency) of non-exceedance.

Figure 1 shows that drought hazard indicators pertaining to
one of the four indicator types can be transformed between
level 1 (magnitude) and level 2 (severity) while still sharing
the type-specific conceptual drought definition. Furthermore,
the classification system clarifies that each indicator type re-
quires a threshold setting either at level 1 or 2. Hence, the
term “threshold-based” applies to any indicator of drought
severity, and it is therefore not a suitable criterion for distin-
guishing types of indicators.

The differentiation of indicator types can be ambiguous.
For instance, standardized and percentile-based anomaly in-
dicators are subsumed in Fig. 1 (column 2), although there is
a minor conceptual difference between them as highlighted
by Tijdeman et al. (2020). While standardized indicators
show the non-exceedance probability enabling extrapolation,
empirical percentiles represent the historical non-exceedance
frequency within the boundaries of observations. We account
for this aspect by including the terms frequency and proba-
bility in Fig. 1.

On the other hand, volume-based and standardized or
percentile-based anomaly indicators are presented as differ-
ent indicator types, although they can be based on the same
conceptual drought definition if equivalent thresholds are ap-
plied. If Q80 is used as a threshold for CQDI1 and −0.84
for cumulative SSI1 (corresponding to the 20th percentile for
cumulative EP1 and a return period of 5 years), both indica-
tors capture the same drought signal. Differences between
the drought signals are then attributable to the computational
methods for the standardization of streamflow. Analyzing the
sensitivity of SSI1 to different parametric and nonparametric
standardization methods in European river basins, Tijdeman
et al. (2020) revealed considerable differences in computed
SSI1 among seven probability distributions (and two fitting
methods) and five nonparametric methods. A major differ-
ence between volume-based and standardized indicators is
that the former detect absolute drought deficits and the lat-
ter relative drought deficits. This can result in different fre-
quency values for the same drought event.

4 Similarities and discrepancies in SDHIs as quantified
by a global hydrological model

The objective of this section is to identify which of the SD-
HIs presented in Table 1 can be meaningfully quantified at
the global scale using WaterGAP 2.2d and which SDHIs
are appropriate for monitoring different drought hazards in
large-scale DEWSs. We emphasize that the objective is not
a drought impact assessment, which is beyond the scope of
this study. We want to show how the conceptual discrepan-
cies and similarities between SDHIs (Sect. 3), which are of

a general nature and apply to any month of the reference pe-
riod, are translated into global-scale hazard indicators and
how these indicators should be interpreted by end users of
a large-scale DEWS. The indicators are illustrated in global
maps for 2 example months capturing known drought events
in Europe (July 2003) and South Africa (September 1993),
two regions that are characterized by different streamflow
regimes and assumed habituation. Following the classifica-
tion of Table 1, SDHIs are differentiated by drought mag-
nitude (Figs. 2 and S3) and drought severity, the latter ei-
ther expressed as volume-based anomaly or deficit (Figs. 3
and S4) or as frequency of non-exceedance (denoted with
the suffix “_f”) (Figs. 5 and S5). In addition, CQDI1(Q80)
and CQDI1(Q80-HS) are compared at the global scale with
respect to drought occurrence during the whole reference
period (Fig. 4). SDHIs are further illustrated for four se-
lected gauging stations with different streamflow regimes
and assumed vulnerabilities of the risk system to streamflow
anomalies (Figs. 6, S2, and S6). These include two stations
with low interannual streamflow variability (Danube River at
Hofkirchen, Germany, with probably low vulnerability and
Angara River at Boguchany, Russia, with possibly higher
vulnerability) and two stations with high interannual vari-
ability (White River near Oacoma, US, with probably low
vulnerability and Orange River at Vioolsdrif, South Africa,
with possibly higher vulnerability).

4.1 SDHIs based on empirical percentiles or
standardized streamflow

EP1 patterns (Fig. 2c for July 2003 and Fig. S3c for
September 1993) are very similar to SSI1 (Fig. 2a and
S3a) since both indicators are based on the same concep-
tual drought definition (Sect. 3.1). Both indicators gener-
ally identify the same drought regions. However, drought
classes differ in many regions of the world, with EP1 indicat-
ing both higher and lower drought magnitude. For instance,
in eastern France, EP1 indicates a higher drought magni-
tude class in July 2003 (return period RP> 20 years) than
SSI1 (RP> 10 years) and vice versa in southern Germany. In
September 1993, SSI1 indicates a higher drought hazard than
EP1 for the Orange River along the Namibia–South Africa
border, but a lower hazard in a few grid cells in central South
Africa and Lesotho. These differences can be attributed to the
fitting of the gamma distribution in the case of SSI1 and the
assignment of the maximum rank among tied values within a
streamflow sample in the case of EP1 (Sect. 2.3.3).

Comparing SSI1 with empirical percentiles, Tijdeman et
al. (2020) identified several advantages and limitations for
both indicators. SSI1 has the disadvantage that for differ-
ent streamflow regimes, different parametric probability dis-
tributions would be required to achieve the best fit, which
reduces consistency at the global scale. In this study, the
gamma distribution showed the best fit among 23 paramet-
ric probability distributions for most grid cells and was ap-

Nat. Hazards Earth Syst. Sci., 23, 2111–2131, 2023 https://doi.org/10.5194/nhess-23-2111-2023



C. Herbert and P. Döll: SDHIs for large-scale DEWSs 2121

Figure 2. Magnitude of drought hazard (level 1 in Fig. 1): non-cumulative anomaly in July 2003 as indicated by SSI1 (a), RQDI1 (b),
EP1 (c), and SSI12 (d) for the reference period 1986–2015. For the standardized indicators and EP1, the z scores and the corresponding
frequencies of non-exceedance and return periods are shown. In the blue grid cells in (c), drought identification is not possible with EP1,
since Q80 and Q are zero. The notation “nc” indicates not computable.

plied in each month and grid cell. Of course, using only one
distribution for the whole globe results in poorly fitting dis-
tributions for some cells and months (Tijdeman et al., 2020).
Grid cells where gamma fitting was rejected in the calendar
months July and September based on the KS test (Sect. 2.3.1)
are shown in grey in Figs. 2a and S3a (18 % of all grid cells
excluding Greenland). EP1 does not require fitting of a distri-
bution and can therefore be computed in more grid cells than
SSI1. Only if a sample includes more zero flows than the se-
lected threshold is drought identification not possible (blue
grid cells in Figs. 2c). On the other hand, if Q80 is zero and
the current streamflow exceeds zero, it is possible to define
the current month as not a drought month (shown in beige in
Fig. 2a and c). EP1 has the disadvantage that it only allows
the quantification of the historical non-exceedance frequency
within the reference period, while probabilistic information,
for example on extreme events such as a 100-year drought,
cannot be derived (Tijdeman et al., 2020). Nonetheless, EP1
seems to be more suitable for a global-scale DEWS, as the in-
dicator does not entail the possibly large uncertainties due to
the fitting of a probability distribution and can be computed
in more grid cells than SSI1.

4.2 SDHIs assuming habituation to mean streamflow
or interannual variability of streamflow

With percentile-based indicators (e.g., EP1, SSI1), risk sys-
tems in different regions are assumed to be equally habit-
uated to a certain interannual streamflow variability, which
is most likely not the case as interannual variability varies
strongly (Fig. A1b). Comparing two regions with high and
low interannual variability, the same streamflow percentile
or z score corresponds to a much higher relative deviation
from mean calendar month streamflow (RQDI1) if interan-
nual variability is high. For instance, at the Orange River
and White River with high interannual variability (Fig. S2),
SSI1 values below −0.84 (RP> 5 years) always correspond
to RQDI1 values below −70 % and −60 %, respectively. At
the Danube River and Angara River (Fig. S2) (low interan-
nual variability), RQDI1 of−50 % is (almost) never reached,
while maximum SSI1 values are higher than at the Orange
River and White River. Hence, SSI1 might underestimate
drought magnitude if interannual variability is high, espe-
cially for vulnerable systems.

At the global scale, RQDI1 (Figs. 2b and S3b) identifies
most of the drought hotspots as indicated by EP1 (Figs. 2c
and S3c), although the relative levels of magnitude differ.
These differences correspond well to the interannual stream-
flow variability depicted in Fig. A1b. Drought hotspots ac-
cording to EP1 in regions with low interannual variability
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(parts of North America, northern Europe, northern Rus-
sia) only show moderate relative streamflow deviations by
global comparison. This is because RQDI1 values of −50 %
or lower are never reached in these regions, as illustrated at
the Danube and Angara stations (see above). Here, RQDI1
might underestimate drought magnitude. On the other hand,
in regions with high interannual variability (e.g., large parts
of Africa, central Asia, western US), both drought magni-
tude and the affected area are larger according to RQDI1.
Here, RQDI1 can draw attention to potential drought impacts
in regions with higher suspected vulnerability (e.g., south-
ern Africa) that would otherwise be overlooked using EP1
or SSI1. In regions where people are probably well accus-
tomed to the interannual variability of streamflow (e.g., west-
ern US), RQDI1 is less suited than EP1 to indicate drought
magnitude. At the severity level, regions with low interannual
variability are excluded using CRQDI1(−50 %)_f (Figs. 4d
and S5d) due to the low threshold of −50 % (grid cells in
light grey).

4.3 SDHIs taking into account human water use and
EFR

The water deficit indicators CQDI1(WUs) and CQDI1(WUs-
EFR) (Figs. 3c, d and S4c, d) define drought as “less
water than needed” as opposed to the anomaly indicator
CQDI1(Q80) (Figs. 3a and S4a) indicating “less water than
normal” (or rather less water in a certain month than in 80%
of the years). Consequently, the spatial pattern of the for-
mer is very different from CQDI1(Q80) patterns. For in-
stance, the drought event in 2003 in central and eastern Eu-
rope (Fig. 3) identified by CQDI1(Q80) is not indicated by
CQDI1(WUs), while the latter shows an additional drought
hazard in the northern part of South Africa (Fig. S4). This
is because CQDI1(WUs) strongly depends on surface water
stress, which is generally low in Europe and high in South
Africa (Fig. A1c). The spatial patterns of CQDI1(WUs)
correlate well with Fig. A1c, comparing human water de-
mand for surface water as a fraction of mean streamflow.
CQDI1(WUs-EFR) additionally considers the environmen-
tal flow requirement (EFR) computed as 80% of naturalized
mean calendar month streamflow. Like RQDI1, the indica-
tor thus depends on mean monthly streamflow, and the spa-
tial pattern corresponds well to the map of interannual vari-
ability (Fig. A1b). A comparison between CQDI1(WUs) and
CQDI1(WUs-EFR) shows that only in a few regions is hu-
man water demand the dominant component determining the
water deficit. In most regions, EFR leads to high cumula-
tive deficits even if seasonal human water demand is small
(< 10 % of available streamflow, Fig. A1c). CQDI1(WUs-
EFR) is the only indicator in this study that explicitly takes
into account the health of the river ecosystem, an aspect
that should be included in a global-scale DEWS. Alter-
natively, the cumulative anomaly deficit indicator (QDAI)
(Popat and Döll, 2021), considering EFR based on a similar

approach, can inform decision-makers and water users about
the drought hazard for water supply. In strongly altered flow
regimes, wherein simulated anthropogenic monthly stream-
flow (Qant) is always below 80 % of mean monthly natu-
ralized streamflow (Qnat), time series of CQDI1(WUs-EFR)
are continuously increasing, and it is not possible to distin-
guish drought events. In such cases, it is more meaningful to
set EFR to 80 % of mean monthly Qant, implying that the
altered flow regime is the “new normal” (see also Table 1).

4.4 SDHIs for reservoir management or water users
with access to reservoirs

In large-scale hydrological modeling, it is very difficult to
accurately simulate how human-made reservoirs affect wa-
ter availability, i.e., how they impact downstream stream-
flow and how reservoir storage varies in time. Therefore, it
is more informative to use time series of reservoir inflow
(streamflow data) instead of reservoir storage for assessing
drought hazard for these risk systems. For water users that
depend on large reservoirs, streamflow deficits during the
low-flow months are not relevant, since reservoirs can store
water from the high-flow season. Hence, drought magnitude
should be assessed using SDHIs with longer averaging pe-
riods that either assume habituation to interannual variabil-
ity (e.g., SSI12, EP12, Table 1) or mean annual conditions
(RQDI12, Table 1), but not seasonality. At the four investi-
gated gauging stations (Fig. S2), the relation between SSI12
and RQDI12 is the same as for SSI1 and RQDI1 (Sect. 4.2).
If interannual variability is high (Orange River and White
River), SSI12 values correspond to much higher RQDI12
values compared to the stations with low interannual vari-
ability (Danube River and Angara River). To obtain drought
severity, these indicators can be cumulated using a suitable
threshold. As described in Sect. 4.2, a threshold of−50 % for
RQDI12 would exclude regions with low interannual vari-
ability, where this value is rarely reached, and where RQDI12
might underestimate drought magnitude.

In addition to these magnitude indicators, the volume-
based severity indicators CQDI1(Q80-HS) and CQDI6(Q80)
were assessed. With CQDI1(Q80-HS), an existing drought is
allowed to continue in months in which the calendar month
Q80 is zero, even if streamflow Q exceeds zero. In contrast,
CQDI1(Q80) only allows a drought to continue if Q80 and
Q are zero. A comparison of the two indicators (Fig. 4) re-
veals that the impact of the HS method is rather small at
the global scale but can be relevant at the regional scale.
Figure 4a depicts the fraction of drought months as a per-
centage of all 360 months during the reference period as
indicated by CQDI1(Q80). Using Q80 as a threshold im-
plies that the time series should be in drought 20 % of the
time. The fact that this percentage is often reduced and
sometimes increased can be attributed to the 2-month crite-
rion (Sect. 2.3.2) (1-month droughts are ignored, and several
droughts are pooled) and to drought prolongation if Q80 and
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Figure 3. Severity of drought hazard (level 2 in Fig. 1): cumulative deficit in July 2003 since the onset of a drought event as indicated by
CQDI1(Q80) (a), CQDI6(Q80) (b), CQDI1(WUs) (c), and CQDI1(WUs-EFR) (d) for the reference period 1986–2015. Grid cells with a
deficit of zero are shown in beige. Values larger than zero and below 0.1 are shown in green. A value of 0.1, for example, denotes that the
current cumulative deficit is equivalent to 10 % of mean annual streamflow (MAQ). WUs: mean annual surface water withdrawals.

Figure 4. Comparison of CQDI1(Q80) and CQDI1(Q80-HS) in the reference period 1986–2015: percent of months in drought based on
CQDI1(Q80) (a) and the increase due to the “HS method” in percent points (b). Both indicators allow an existing drought to continue in
months in which Q80 and the current streamflow Q are zero. The HS method additionally facilitates drought prolongation in months with
Q80= 0 if Q> 0. Neither indicator allows a drought to begin in months with Q80= 0. Drought prolongation in the case of Q80= 0 is only
possible if a streamflow deficit was computed in at least 2 antecedent months with Q80> 0 (2mc, Sect. 2.3.2). In (a), the fraction of drought
months is reduced to < 20 % if 1-month droughts are ignored (2mc). In grid cells with 0 % in (a), Q80 is either always zero, or the few
calendar months with Q80> 0 result in 1-month droughts only. The fraction can be increased to> 20 % in the case of drought pooling (2mc)
or in the case of drought prolongation if Q80= 0. MAQ: mean annual streamflow.

Q are zero. The HS method leads to an increase in drought
months by up to 3 percent points (corresponding to 11 out
of 360 months) in 6 % of all grid cells, e.g., parts of In-
dia, Pakistan, Afghanistan, Iran, and the western US, all of
which are regions with highly seasonal streamflow regimes
(Fig. 4b). Larger increases of up to 12 percent points are only
computed in 0.4 % of all grid cells. Hence, the additional in-
formation value of CQDI1(Q80-HS) in a large-scale DEWS
would be small. Instead, CQDI variants with longer averag-
ing periods like CQDI6(Q80) (Figs. 3b and S4b) are more
suitable for assessing risk systems with reservoirs. The time
series of CQDI6(Q80) at the four gauging stations (Fig. S2)
illustrate how the maximum drought severity is shifted by 1

month or more compared to CQDI1(Q80), reflecting the fact
that a reservoir storage requires several months of “normal”
streamflow to be replenished.

4.5 Range of drought severity as quantified by the
various SDHIs

A direct comparison between different severity indicators is
possible when the time series of drought severity are trans-
formed into frequency of non-exceedance. Figures 5 and S5
depict the probability (frequency) of non-exceedance p of
drought severity in July 2003 and September 1993, respec-
tively, between four CQDI1 variants, the cumulative rel-
ative deviation CRQDI1 with a threshold of −50 %, and

https://doi.org/10.5194/nhess-23-2111-2023 Nat. Hazards Earth Syst. Sci., 23, 2111–2131, 2023



2124 C. Herbert and P. Döll: SDHIs for large-scale DEWSs

the cumulative empirical percentile CEP1 with a thresh-
old of 20 %. The indicators are denoted with the suffix “f”
for frequency. A p value of 0.7, for example, indicates
a high drought hazard, with the severity up to July 2003
being higher than the severity of 70 % of all completed
drought events in the reference period. In both example
months, the spatial extent of regions with p > 0.7, i.e., severe
droughts, is larger according to the indicators that do not as-
sume habituation to interannual variability (CQDI1(Q50)_f,
CQDI1(WUs)_EFR_f, and CRQDI1(−50 %)_f). Spatial pat-
terns of CQDI1(Q50)_f and CQDI1(WUs-EFR)_f are rather
similar. Correspondence between these two indicators is
higher than between CQDI1(Q50)_f and CQDI1(Q80)_f.
CRQDI1(−50 %)_f identifies fewer regions with severe
drought status compared to CQDI1(Q50)_f but more regions
compared to CQDI1(Q80)_f.

Spatial patterns of CQDI1(Q80)_f (Figs. 5a and S5a) and
CEP1(20 %)_f (Figs. 5b and S5b) are very similar, since they
are based on the same drought concept. Nonetheless, small
differences occur in all identified drought hotspots, which
can be explained by the fact that the former quantifies ab-
solute and the latter relative streamflow anomalies per cal-
endar month, leading to a different ranking of low-flow and
high-flow droughts during the reference period. This rela-
tion is illustrated for the Danube gauging station in Fig. 6
and for the other three investigated stations in Fig. S6. Al-
though CEP1(20 %) (in units of cumulative percent) and
CQDI1(Q80) (in units of mean annual streamflow) capture
the same drought signal at the four stations, the relative lev-
els among the drought events differ. In Fig. 6, the three most
severe droughts according to CQDI1(Q80) are the drought
events in 1998, followed by 2014 and 2003. In contrast, the
2003 drought, which occurred mainly during the low-flow
period (August to November), has the second-highest sever-
ity according to CEP1(20 %). The high-flow drought from
March to May 2011, on the other hand, has a lower sever-
ity rank according to CEP1(20 %). The differences are more
pronounced with higher seasonal variability (Orange River
and White River, Fig. S6) but almost negligible if seasonal-
ity is very low (Angara River, Fig. S6). Consequently, in a
large-scale DEWS, CEP1(20 %) appears to be more suitable
in regions where the risk system is more vulnerable to low-
flow droughts than to high-flow droughts. These differences
would not occur if volume-based monthly streamflow deficits
were normalized using mean monthly streamflow. They only
occur if they are either not normalized (e.g., the low-flow in-
dex – LFI, Cammalleri et al., 2016a) or normalized against
mean annual streamflow volume (e.g., van Loon et al., 2014,
and all CQDI1 variants in this paper).

5 Recommendations for SDHIs in continental and
global DEWSs

Continental and global DEWSs, which encompass near-real-
time monitoring as well as seasonal forecasts, aim to provide
information about drought hazards for diverse risk systems,
which are characterized by different risk bearers (e.g., hu-
man water supply, river ecosystems), habituation, streamflow
regimes, and water storage capacities. Therefore, a large-
scale DEWS should provide data for a rather large number
of drought hazard indicators together with a clear description
of suitability for different risk systems including the under-
lying assumptions about habituation (or adaptation) of the
risk bearer to the streamflow regime (Sect. 3.1). Then, end
users can select and combine several drought hazard indica-
tors that are most informative. Table 2 lists the SDHIs that
should be provided by large-scale DEWSs, differentiating
three risk groups and three main types of habituation. In a
DEWS, drought magnitude indicators should be clearly dif-
ferentiated from drought severity indicators (Sect. 3.2), and
the specific suitability of each SDHI for different risk sys-
tems should be explained comprehensively.

To assess drought magnitude, we recommend using em-
pirical percentiles and relative deviations to cover risk sys-
tems that are either habituated to a certain degree of inter-
annual variability or to a certain reduction to mean calen-
dar month streamflow. An averaging period of 1 month is
suitable for river ecosystems and water users without access
to large reservoirs, who depend on the currently available
streamflow. Longer averaging periods of 6 or 12 months are
suitable for people who have access to or are downstream of
reservoirs that are replenished during high-flow periods and
that can alleviate short periods of below-normal streamflow.
For reservoir managers, EP and RQDI with short and longer
averaging periods (1, 6, and 12 months) are recommended
for monitoring current reservoir inflow anomalies as well as
reservoir storage anomalies (with different averaging periods
depending on the storage capacity of the reservoir). Due to
model uncertainties, time series of reservoir storage as sim-
ulated by WaterGAP should not be used for drought assess-
ment. Importantly, reservoir managers should only consider
SDHIs of the grid cells that represent inflow into the reser-
voir. This also applies if drought hazard for large lakes is
analyzed by SHDIs.

We favor empirical percentiles (EP) over SSI as the for-
mer are more transparent to end users of a DEWS and do
not entail uncertainties due to the fitting of a probability
distribution. Moreover, application of one selected probabil-
ity distribution function at large scales will always exclude
many grid cells where the fitting is not possible. Here, other
methods such as empirical percentiles would be required in
any case. Expressing percentiles as a return period (in years)
may further increase the transparency of EP as end users
are accustomed to quantifying flood hazards by return pe-
riods. If the current streamflow is lower than the 30 val-
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Figure 5. Probability of non-exceedance of drought events (level 2 in Fig. 1) in July 2003 for the cumulative indicators CQDI1(Q80)_f (a),
CEP1(20 %)_f (b), CQDI1(Q50)_f (c), CRQDI1(−50 %)_f (d), CQDI1(WUs-EFR)_f (e), and CQDI6(Q80)_f (f) for the reference period
1986–2015. A value of 0.8, for example, indicates that the cumulative anomaly or deficit, i.e., the severity up to this month, is higher than
the severity of 80 % of all drought events in the reference period. The probability of non-exceedance was not computed for grid cells shown
in light grey, where fewer than six drought events were computed in the reference period (Sect. 2.4). The notation “nc” stands for “not
computable”.

Figure 6. Drought severity per month during the reference period 1986–2015 at the Danube River, Hofkirchen, Germany, as indicated by
CQDI1(Q80) (blue) and CEP1(20 %) (red). MAQ: mean annual streamflow.

ues of the reference period, EP would only indicate a re-
turn period> 30 years (or a z score below−1.83), while SSI
would indicate an extrapolated value, albeit with high un-
certainty (Tijdeman et al., 2020). Hence, 40 reference years
should be used, if possible, to differentiate severe and ex-
treme droughts with return periods of up to 40 years (equiv-
alent to z=−1.96). In addition to the streamflow-based in-
dicators, the standardized precipitation–potential evapotran-

spiration index (SPEI) (Vicente-Serrano et al., 2010) is sug-
gested in regions with (suspected) poor quality of hydro-
logical model output. Longer averaging periods of 6 and
12 months are recommended to consider the delayed re-
sponse of streamflow to below-normal precipitation and po-
tential evapotranspiration. However, it should be noted that
meteorological indicators have limitations in describing hy-
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Table 2. SDHIs for human water supply and river ecosystems that should be provided by large-scale DEWSs for different risk groups. Italic
font: indicator assumes habituation to a certain degree of interannual variability (see Fig. A1b). Bold font: indicator assumes the ability to
fulfill seasonally varying demand for surface water abstractions and environmental flow. Normal font: indicator assumes habituation to a
certain reduction from mean monthly streamflow, and it is likely suitable for highly vulnerable systems with high interannual streamflow
variability. All indicators assume habituation to the seasonality of streamflow.

Risk group Indicators of Indicators of
drought magnitude1 drought severity

Water users without access to large
reservoirs and river ecosystems

Return period based on EP13

RQDI14
CQDI1(Q80)5, CQDI1(Q80)_f6

with streamflow deficitm,y =Q80m−Qm,y
CEP1(20 %)_f7

with percentile deficitm,y =P20 - EP1m,y
CRQDI1(−50 %)_f8

with percent deficitm,y = −50 % – RQDI1m,y
CQDI1(WUs-EFR)9, CQDI1(WUs-EFR)_f10

with water deficitm,y = WUsm + EFRm −
Qm,y

Water users who have access to or
are downstream of large reservoirs

Same as in first row but with averag-
ing periods of 6 and 12 months

Same as in first row but with averaging periods of
6 and 12 months

Reservoir managers2 Same as in first row but with averag-
ing periods of 1, 6, and 12 month(s)

Same as in first row but with averaging periods of
1, 6, and 12 month(s)

1 In regions with (suspected) poor quality of hydrological model output, analysis of SPEI6 and SPEI12 is suggested in addition to SDHIs. 2 Reservoir managers should be
informed to consider SDHIs of the grid cells that represent inflow into the reservoir.
3 EP1: empirical streamflow percentile per calendar month with an averaging period of 1 month, with 0<EP1≤ 100 %. EP1 expresses the frequency of non-exceedance
of the current streamflow. The return period, in years, is computed as 100 /EP1. The lower the EP1 and the higher the return period, the higher the drought hazard.
4 RQDI1: relative deviation of monthly streamflow from mean calendar month streamflow (MMQ) in percent. It is calculated as the difference between monthly
streamflow and the respective MMQ, which is then divided by MMQ. The indicator is not computable in months with MMQ= 0.
5 CQDI1(Q80): cumulative volume-based streamflow deficit with an averaging period of 1 month divided by mean annual streamflow. A deficit occurs if monthly
streamflow Qm,y falls below Q80m (the 20th percentile) of the long-term calendar month streamflow. Monthly deficits are accumulated for all drought months to obtain
severity. A drought event starts with at least 2 consecutive months with a deficit, and it ends (deficit set to zero) if there are 2 consecutive months without a deficit (2mc:
2-month criterion). Any streamflow surplus over Q80 in a single month between 2 deficit months does not decrease the cumulative deficit. To address flow intermittency,
an existing drought continues during months in which both Q80 and the current streamflow are zero. If Q80= 0 and the current streamflow exceeds zero, the drought
event ends. Hence, a drought can be prolonged, but never begin, in calendar months with Q80= 0. The indicator is expressed in units of mean annual streamflow.
6 CQDI1(Q80)_f: the frequency of non-exceedance of drought events of a certain severity as quantified by CQDI1(Q80), with values between 0 and 1. A high frequency
value indicates a high drought hazard. First, the partial duration series of drought events is derived based on the severities of all drought events of the reference period.
Grid cells with fewer than six drought events are excluded. Second, the frequency of non-exceedance is quantified using the exponential cumulative distribution function.
Preferably, the indicator should be expressed as the return period Tr = 1/(θ(1-CQDI1(Q80)_f)), with θ as the average number of drought events per year during the
reference period.
7 CEP1(20 %)_f: the frequency of non-exceedance of drought events of a certain severity (see above) as quantified by the cumulative percentile-based anomaly
CEP1(20 %). The monthly percentile deficit is computed by subtracting the current streamflow percentile EP1m,y from the percentile threshold P20. Like CQDI1(Q80),
CEP1(20 %) allows an existing drought event to continue during months in which both Q80 and the current streamflow are zero. The 2mc is also applied. As the unit of
CEP1(20 %) (cumulative percent) is not informative, the indicator should be provided in frequency of non-exceedance or preferably as the return period
Tr = 1/(θ(1-CEP1(20 %)_f)), with θ as the average number of drought events per year during the reference period.
8 CRQDI1(−50 %)_f: the frequency of non-exceedance of drought events of a certain severity (see above) as quantified by the cumulative relative streamflow deviation
CRQDI1(−50 %). The monthly percentile deficit is computed by subtracting the relative deviation of the current month RQDI1m,y from the threshold −50 %. Months
with MMQ= 0, for which the relative deviation is not computable, are defined to end a drought event assuming that people are habituated to zero streamflow in this
month. The 2mc is also applied. As the unit of CRQDI1(−50 %) (cumulative percent) is not informative, the indicator should be provided in frequency of non-exceedance
or preferably the return period Tr = 1/(θ(1-CRQDI1(−50 %)_f)), with θ as the average number of drought events per year during the reference period.
9 CQDI1(WUs-EFR): cumulative, volume-based water deficit with an averaging period of 1 month divided by mean annual streamflow. It is computed like CQDI1(Q80)
but using the threshold mean monthly potential surface water abstraction WUsm plus environmental flow requirement (EFRm) per calendar month. EFR is assumed to be
80 % of mean monthly naturalized streamflow Qnat per calendar month. As EFR might never be fulfilled in the case of strongly altered streamflow regimes, Qnat can be
replaced by Qant, implying that the river ecosystem has adapted to the altered streamflow conditions. WUs represents the water demand from surface water bodies. The
indicator is not computed in grid cells where mean annual WUs in the reference period is zero (approx. 9 % of all grid cells excluding Greenland). The indicator is
expressed in units of mean annual streamflow.
10 CQDI1(WUs-EFR)_f: the frequency of non-exceedance of drought events of a certain severity (see above) as quantified by CQDI1(WUs-EFR). The indicator should
be expressed as the return period Tr = 1/(θ(1-CQDI1(WUs-EFR)_f)), with θ as the average number of drought events per year during the reference period.

drological drought processes (Haslinger et al., 2014; Blauhut
et al., 2016; Laaha et al., 2017).

Drought severity should be assessed with indicators that
imply habituation to a certain degree of interannual vari-
ability (CEP(20 %) and CQDI(Q80)), to a certain reduction
from mean monthly streamflow (CRQDI(−50 %)), and to

the ability to fulfill seasonally varying human water demand
from surface water and environmental flow (CQDI(WUs-
EFR)). Recommended averaging periods are the same as for
magnitude indicators. With exceptions, we recommend that
drought severity at a certain point in time be expressed in
terms of the probability or frequency of non-exceedance (re-
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turn period) of a drought event with such severity. These
recommendations also relate to variable types other than
streamflow (precipitation, soil moisture, etc.) and other spa-
tial scales. In addition, the CQDIs should be provided in
units of mean annual streamflow. CRQDI1(−50 %) is pre-
ferred over CQDI1(Q50), which is based on a similar as-
sumption about habituation since percent deviations are of-
ten applied in climate change impact studies and may thus
be easier to grasp. Moreover, CQDI1(WUs-EFR) is pre-
ferred over CQDI1(WUs) since the environmental compo-
nent of water demand should be considered in a DEWS.
Regarding the percentile-based indicators CEP1(20 %) and
CQDI1(Q80 %), the problem of flow intermittency is over-
come by allowing an existing drought to continue during
months in which Q80 and the current streamflow are zero.
CEP1 was found to be more sensitive to low-flow droughts
than CQDI1, and it is therefore preferred over the latter
if the risk system is more vulnerable to low-flow droughts
than to high-flow droughts. CQDI1(Q80-HS), conceptual-
ized for risk systems with reservoirs, is not recommended
due to the small impact of the HS criterion (Sect. 2.3.2) at
the global scale.

According to Stahl et al. (2020), practitioners often use
particular streamflow values rather than anomalies as the
trigger for management actions. These practitioners could
use forecasted RQDI1 as provided by the global-scale DEWS
to determine whether this trigger will be reached by com-
puting streamflow from RQDI1 and observed mean monthly
streamflow.

6 Conclusions

This paper presents a new systematic approach for select-
ing global-scale streamflow drought hazard indicators (SD-
HIs) for monitoring drought hazard for human water supply
and river ecosystems in large-scale drought early warning
systems (DEWSs). The methodology replaces the conven-
tional and imprecise classification into threshold-based and
standardized indicators by a new classification scheme that
distinguishes indicators pertaining to four indicator types by
(a) their inherent assumptions about the habituation of peo-
ple and the ecosystem to the streamflow regime and (b) their
level of drought characterization, namely drought magnitude
and drought severity. The new scheme facilitates a better un-
derstanding of the information value of drought hazard in-
dicators. It can support the development of a (large-scale)
DEWS as well as water managers who rely on drought haz-
ard indicators for their decision-making.

When providing drought hazard information in a global-
or continental-scale DEWS, it is unknown which streamflow
characteristics people and river ecosystems are locally ac-
customed to, and it is uncertain to what degree people have
access to water stored in reservoirs. The suitability of hazard
indicators is region- and risk-system-specific (Blauhut et al.,
2022) and can only be evaluated with local knowledge about
the vulnerability of the system at risk. Therefore, a large-
scale DEWS should provide data for a rather large number of
drought hazard indicators that characterize the condition of
various water flows (streamflow, actual evapotranspiration as
a fraction of potential evapotranspiration) and water storage
compartments (snow, soil, groundwater, lakes). Clear expla-
nations for the end users about the suitability of drought haz-
ard indicators for specific risk systems need to be provided in
DEWSs. When selecting hazard indicators, we recommend
that end users make their assumptions about the habituation
of the risk bearer explicit before selecting a drought hazard
indicator that fits these assumptions. We suggest that future
studies analyze how well these hazard indicators, in com-
bination with suitable vulnerability and exposure indicators,
can estimate drought impacts in the targeted risk systems at
regional or national scales.
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Appendix A

Figure A1. Seasonal streamflow variability indicated by the seasonal amplitude (Q in calendar month with highest mean monthly Q minus
Q in calendar month with lowest mean monthlyQ divided by MMQ – mean monthlyQ over all calendar months) (a), interannual streamflow
variability indicated by the average of the 12 calendar month values of (Q20–Q80) /Qmean (b), and average of the 12 calendar month values
of WUsmean /Qmean (c). All values in percent.
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