Bovis, M. J.:
Earthflows in the interior plateau, southwest British Columbia,
Can. Geotech. J.,
22, 313–334, 1985.
Bozzano, F., Mazzanti, P., and Moretto, S.:
Discussion to: 'Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses' by T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini, G. Gigli, and N. Casagli,
Landslides,
15, 1437–1441, 2018.
Carlà, T., Farina, P., Intrieri, E., Botsialas, K., and Casagli, N.:
On the monitoring and early-warning of brittle slope failures in hard rock masses: Examples from an open-pit mine,
Eng. Geol.,
228, 71–81, 2017a.
Carlà, T., Intrieri, E., Di Traglia, F., Nolesini, T., Gigli, G., and Casagli, N.:
Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses,
Landslides,
14, 517–534, 2017b.
Carlà, T., Macciotta, R., Hendry, M., Martin, D., Edwards, T., Evans, T., Farina, P., Intrieri, E., and Casagli, N.:
Displacement of a landslide retaining wall and application of an enhanced failure forecasting approach,
Landslides,
15, 489–505, 2018.
Carlà, T., Intrieri, E., Raspini, F., Bardi, F., Farina, P., Ferretti, A., Colombo, D., Novali, F., and Casagli, N.:
Perspectives on the prediction of catastrophic slope failures from satellite InSAR,
Sci. Rep.-UK,
9, 1–9, 2019.
Carri, A., Valletta, A., Cavalca, E., Savi, R. and Segalini, A.:
Advantages of IoT-based geotechnical monitoring systems integrating automatic procedures for data acquisition and elaboration,
Sensors,
21, 2249, https://doi.org/10.3390/s21062249, 2021.
Casagli, N., Frodella, W., Morelli, S., Tofani, V., Ciampalini, A., Intrieri, E., Raspini, F., Rossi, G., Tanteri, L., and Lu, P.:
Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning,
Geoenviron. Disasters,
4, 1–23, 2017.
Chae, B. G., Park, H. J., Catani, F., Simoni, A., and Berti, M.:
Landslide prediction, monitoring and early warning: a concise review of state-of-the-art,
Geosci. J.,
21, 1033–1070, 2017.
Chen, M. and Jiang, Q.:
An early warning system integrating time-of-failure analysis and alert procedure for slope failures,
Eng. Geol.,
272, 105629, https://doi.org/10.1016/j.enggeo.2020.105629, 2020.
Cleveland, W. S.:
LOWESS: A program for smoothing scatterplots by robust locally weighted regression,
Am. Stat.,
35, 54, https://doi.org/10.2307/2683591, 1981.
Clifford, P.:
Monte Carlo methods,
in: Statistical methods for Physical Science,
edited by: Stanford, J. L. and Vardeman, S. B.,
Elsevier, San Diego, California, 125–153, 1994.
Deane, E.:
The Application of Emerging Monitoring Technologies on Very Slow Vegetated Landslides,
Dissertation,
University of Alberta, Edmonton, Alberta, Canada, 2020.
Desrues, M., Malet, J. P., Brenguier, O., Carrier, A., Mathy, A., and Lorier, L.:
Landslide kinematics inferred from in situ measurements: the Cliets rock-slide (Savoie, French Alps),
Landslides, 19, 19–34, https://doi.org/10.1007/s10346-021-01726-1, 2022.
Dick, G. J., Eberhardt, E., Cabrejo-Liévano, A. G., Stead, D. and Rose, N. D.:
Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data,
Can. Geotech. J.,
52, 515–529, 2015.
Donati, D., Stead, D., Lato, M., and Gaib, S.:
Spatio-temporal characterization of slope damage: insights from the Ten Mile Slide, British Columbia, Canada,
Landslides,
17, 1037–1049, 2020.
Dorberstein, D.:
Fundamentals of GPS Receivers: A Hardware Approach,
Springer Science & Business Media, Nipomo, CA, USA, 2011.
Gaib, S., Wilson, B., and Lapointe, E.:
Design, construction and monitoring of a test section for the stabilization of an active slide area utilizing soil mixed shear keys installed using cutter soil mixing,
in: Proceedings of the ISSMGE – TC 211 International Symposium on Ground Improvement IS-GI, Brussels, 31 May–1 June, 3, 147–158, 2012.
Grebby, S., Sowter, A., Gluyas, J., Toll, D., Gee, D., Athab, A., and Girindran, R.:
Advanced analysis of satellite data reveals ground deformation precursors to the Brumadinho Tailings Dam collapse,
Communications Earth & Environment,
2, 1–9, 2021.
Guthrie, R. H.:
Socio-Economic Significance: Canadian Technical Guidelines and Best Practices Related to Landslides: A Nation
al Initiative for Loss Reduction,
Natural Resources Canada, Ottawa, ON, 2013.
Hampel, F. R.:
A general qualitative definition of robustness,
Ann. Math. Stat.,
42, 1887–1896, 1971.
Hongtao, N.:
Smart safety early warning model of landslide geological hazard based on BP neural network,
Safety Sci.,
123, 104572, https://doi.org/10.1016/j.ssci.2019.104572, 2020.
Huntley, D., Bobrowsky, P., Charbonneau, F., Journault, J., Macciotta, R., and Hendry, M.:
Innovative landslide change detection monitoring: application of space-borne InSAR techniques in the Thompson River valley, British Columbia, Canada,
Workshop on World Landslide Forum,
Ljubljana, Slovenia, 11–13 October, 3, 219–229, 2017.
Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., and Casagli, N.:
Design and implementation of a landslide early warning system,
Eng. Geol.,
147, 124–136, 2012.
Intrieri, E., Raspini, F., Fumagalli, A., Lu, P., Del Conte, S., Farina, P., Allievi, J., Ferretti, A., and Casagli, N.:
The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data,
Landslides,
15, 123–133, 2018.
Journault, J., Macciotta, R., Hendry, M. T., Charbonneau, F., Huntley, D., and Bobrowsky, P. T.:
Measuring displacements of the Thompson River valley landslides, south of Ashcroft, BC, Canada, using satellite InSAR,
Landslides,
15, 621–636, 2018.
Karl, J. H.:
Introduction to Digital Signal Processing,
Academic Press, San Diego, 1989.
Kothari, U. C. and Momayez, M.:
New approaches to monitoring, analyzing and predicting slope instabilities,
Journal of Geology and Mining Research,
10, 1–14, 2018.
Lacasse, S. and Nadim, F.:
Landslide risk assessment and mitigation strategy,
in: Landslides–Disaster Risk Reduction,
edited by: Sassa, K. and Canuti, P.,
Springer, Berlin, Heidelberg, 31–61, 2009.
Leroueil, S.:
Natural slopes and cuts: movement and failure mechanisms,
Géotechnique,
51, 197–243, 2001.
Macciotta, R. and Hendry, M. T.:
Remote sensing applications for landslide monitoring and investigation in western Canada,
Remote Sens.-Basel,
13, 366–389, 2021.
Macciotta, R., Carlà, T., Hendry, M., Evans, T., Edwards, T., Farina, P., and Casagli, N.:
The 10-mile Slide and response of a retaining wall to its continuous deformation,
Workshop on World Landslide Forum,
Ljubljana, Slovenia, 11–13 October, 553–562, 2017a.
Macciotta, R., Rodriguez, J., Hendry, M., Martin, C. D., Edwards, T., and Evans, T.:
The 10-mile Slide north of Lillooet, British Columbia–history, characteristics, and monitoring,
in: Proceedings, 3rd North American Symposium on Landslides, Roanoke, Virginia, 4–8 June, 937–948, 2017b.
Pearson, R. K.:
Outliers in process modeling and identification,
IEEE Trans. Contr. Syst. T.,
10, 55–63, 2002.
Reid, M. E., Godt, J. W., LaHusen, R. G., Slaughter, S. L., Badger, T. C., Collins, B. D., Schulz, W. H., Baum, R. L., Coe, J. A., Harp, E. L. and Schmidt, K. M.:
When hazard avoidance is not an option: lessons learned from monitoring the postdisaster Oso landslide, USA,
Landslides,
18, 2993–3009, 2021.
Rodriguez, J. L., Macciotta, R., Hendry, M., Edwards, T., and Evans, T.:
Slope hazards and risk engineering in the Canadian railway network through the Cordillera,
in: Proceedings of the AIIT International Congress on Transport Infrastructure and Systems (TIS 2017), Rome, Italy, 10–12 April, 163–168, 2017.
Rodriguez, J., Hendry, M., Macciotta, R., and Evans, T.:
Cost-effective landslide monitoring GPS system: characteristics, implementation, and results,
Geohazards7, Canmore, Alberta, 3–6 June, 2018.
Rodriguez, J., Macciotta, R., Hendry, M. T., Roustaei, M., Gräpel, C., and Skirrow, R.:
UAVs for monitoring, investigation, and mitigation design of a rock slope with multiple failure mechanisms – a case study,
Landslides,
17, 2027–2040, 2020.
Salgado, C. M., Azevodo, C., Proença, H., and Vieira, S. M.:
Noise versus outliers,
in: Secondary Analysis of Electronic Health Records,
by: MIT Critical Data, Springer, Cambridge, Massachusetts, 163–183, 2016.
Schafer, M. B.:
Kinematics and Controlling Mechanics of Slow-moving Ripley Landslide,
Dissertation,
University of Alberta, Edmonton, Alberta, Canada, 2016.
Schafer, R. W.:
What is a Savitzky–Golay filter? [lecture notes],
IEEE Signal Proc. Mag.,
28, 111–117, 2011.
Smith, S.:
Digital Signal Processing: A Practical Guide for Engineers and Scientists,
Elsevier, Burlington, Massachusetts, 2013.
Thiebes, B., Bell, R., Glade, T., Jäger, S., Mayer, J., Anderson, M., and Holcombe, L.:
Integration of a limit-equilibrium model into a landslide early warning system,
Landslides,
11, 859–875, 2014.
Tofani, V., Rasipini, F., Catani, F., and Casagli, N.:
Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring,
Remote Sens.-Basel,
5, 1045–1065, 2013.
UNISDR:
United Nations International Strategy for Disaster Reduction: Terminology on Disaster Risk Reduction, International Strategy for Disaster Reduction, Geneva, Switzerland,
available at:
http://www.unisdr.org (last access: 12 February 2021), 2009.
Wang, G.:
GPS landslide monitoring: single base vs. network solutions-a case study based on the Puerto Rico and Virgin Islands permanent GPS network,
J. Geodet. Sci.,
1, 191–203, 2011.
William, S. C.:
Robust locally weighted regression and smoothing scatterplots,
J. Am. Stat. Assoc.,
74, 829–836, 1979.
Woods, A., Hendry, M. T., Macciotta, R., Stewart, T., and Marsh, J.:
GB-InSAR monitoring of vegetated and snow-covered slopes in remote mountainous environments,
Landslides,
17, 1713–1726, 2020.
Woods, A., Macciotta, R., Hendry, M. T., Stewart, T., and Marsh, J.:
Updated understanding of the deformation characteristics of the Checkerboard Creek rock slope through GB-InSAR monitoring,
Eng. Geol.,
281, 105974, https://doi.org/10.1016/j.enggeo.2020.105974, 2021.
Yao, Z., Xie, J., Tian, Y., and Huang, Q.:
Using Hampel identifier to eliminate profile-isolated outliers in laser vision measurement,
J. Sensors,
2019, 3823691, https://doi.org/10.1155/2019/3823691, 2019.
Yin, Y., Wang, H., Gao, Y., and Li, X.:
Real-time monitoring and early warning of landslides at relocated Wushan Tow, the Three Gorges Reservoir, China,
Landslides,
7, 339–349, 2010.
Zhang, Y. G., Tang, J., He, Z. Y., Tan, J., and Li, C.:
A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide,
Nat. Hazards,
105, 783–813, 2021.
Zhang, Y. H., Ma, H. T. and Yu, Z. X.:
Application of the method for prediction of the failure location and time based on monitoring of a slope using synthetic aperture radar,
Environ. Earth Sci.,
80, 1–13, 2021.
Zhou, X. P., Liu, L. J., and Xu, C.:
A modified inverse-velocity method for predicting the failure time of landslides,
Eng. Geol.,
268, 105521, https://doi.org/10.1016/j.enggeo.2020.105521, 2020.
Zimek, A. and Filzmoser, P.:
There and back again: Outlier detection between statistical reasoning and data mining algorithms,
WIREs Data Min. Knowl.,
8, 1280, https://doi.org/10.1002/widm.1280, 2018.