Articles | Volume 22, issue 11
https://doi.org/10.5194/nhess-22-3815-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-22-3815-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models
Qinke Sun
School of Geographic Sciences, East China Normal University, Shanghai
200241, China
Key Laboratory of Geographic Information Science (Ministry of
Education), East China Normal University, Shanghai 200241, China
School of Geographic Sciences, East China Normal University, Shanghai
200241, China
Key Laboratory of Geographic Information Science (Ministry of
Education), East China Normal University, Shanghai 200241, China
Institute of Remote Sensing and Earth Sciences, School of Information
Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional
Change, Hangzhou 311121, China
Xuewei Dang
Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070,
China
Kepeng Xu
School of Geographic Sciences, East China Normal University, Shanghai
200241, China
Key Laboratory of Geographic Information Science (Ministry of
Education), East China Normal University, Shanghai 200241, China
Yongqiang Fang
School of Geographic Sciences, East China Normal University, Shanghai
200241, China
Key Laboratory of Geographic Information Science (Ministry of
Education), East China Normal University, Shanghai 200241, China
School of Geographic Sciences, East China Normal University, Shanghai
200241, China
Key Laboratory of Geographic Information Science (Ministry of
Education), East China Normal University, Shanghai 200241, China
Min Liu
CORRESPONDING AUTHOR
School of Geographic Sciences, East China Normal University, Shanghai
200241, China
Key Laboratory of Geographic Information Science (Ministry of
Education), East China Normal University, Shanghai 200241, China
Related authors
No articles found.
Zijiang Song, Zhixiang Cheng, Yuying Li, Shanshan Yu, Xiaowen Zhang, Lina Yuan, and Min Liu
Earth Syst. Sci. Data, 17, 1501–1514, https://doi.org/10.5194/essd-17-1501-2025, https://doi.org/10.5194/essd-17-1501-2025, 2025
Short summary
Short summary
It is hard to access long-time series and high-resolution meteorological data for past years. In this paper, we propose the Geopotential-guided Attention Network (GeoAN) for downscaling which can produce high-resolution data using given low-resolution data. Quantitative and visual comparisons reveal our GeoAN produces better results with regard to most metrics. Using GeoAN, a historical meteorological dataset called MDG625 has been produced daily for the period since 1940.
Dongmei Tang, Yuanzhi Yao, and Xia Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-619, https://doi.org/10.5194/essd-2024-619, 2025
Manuscript not accepted for further review
Short summary
Short summary
We developed a global consumption-based carbon emissions gridded dataset (1 km) for deforestation from 2001 to 2015. Our dataset shows that trade-related emissions account for 31 % of global deforestation emissions, with high-income countries driving most of the emissions. This research highlights the importance of addressing consumption patterns in climate change strategies and offers valuable data to inform global policy and emission reduction efforts.
Xinlong Zhang, Jiayi Fang, Yue Qin, Weiping Wang, and Ping Shen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3799, https://doi.org/10.5194/egusphere-2024-3799, 2025
Preprint archived
Short summary
Short summary
Compound coastal extreme weather like strong winds and heavy rain can induce sea level rise. We studied global data and found that these extreme weather events are linked especially in colder regions. They happen more often and with greater impact than thought. The increased sea levels during these events heighten the risk of coastal flooding. Our research predicts these conditions will worsen throughout this century, emphasizing the need to prepare for more frequent and severe coastal weather.
Ye Li, Ye Huang, Yunshan Zhang, Wei Du, Shanshan Zhang, Tianhao He, Yan Li, Yan Chen, Fangfang Ding, Lin Huang, Haibin Xia, Wenjun Meng, Min Liu, and Shu Tao
Atmos. Chem. Phys., 23, 1091–1101, https://doi.org/10.5194/acp-23-1091-2023, https://doi.org/10.5194/acp-23-1091-2023, 2023
Short summary
Short summary
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants (POPs) listed among the 12 initial POPs that should be prohibited or limited under the Stockholm Convention. They are widely present in the environment and pose a threat to human health and ecosystems. Emission estimation for them is essential to understand and evaluate their environment fate and associated health effect. This work developed 12 dioxin-like UP-PCBs from 66 sources from 1960 to 2019 in China.
Bowen Cao, Le Yu, Xuecao Li, Min Chen, Xia Li, Pengyu Hao, and Peng Gong
Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021, https://doi.org/10.5194/essd-13-5403-2021, 2021
Short summary
Short summary
In the study, the first 1 km global cropland proportion dataset for 10 000 BCE–2100 CE was produced through the harmonization and downscaling framework. The mapping result coincides well with widely used datasets at present. With improved spatial resolution, our maps can better capture the cropland distribution details and spatial heterogeneity. The dataset will be valuable for long-term simulations and precise analyses. The framework can be extended to specific regions or other land use types.
Jiayi Fang, Thomas Wahl, Jian Fang, Xun Sun, Feng Kong, and Min Liu
Hydrol. Earth Syst. Sci., 25, 4403–4416, https://doi.org/10.5194/hess-25-4403-2021, https://doi.org/10.5194/hess-25-4403-2021, 2021
Short summary
Short summary
A comprehensive assessment of compound flooding potential is missing for China. We investigate dependence, drivers, and impacts of storm surge and precipitation for coastal China. Strong dependence exists between driver combinations, with variations of seasons and thresholds. Sea level rise escalates compound flood potential. Meteorology patterns are pronounced for low and high compound flood potential. Joint impacts from surge and precipitation were much higher than from each individually.
Cited articles
Aerts, J. C. J. H., Botzen, W. J. W., Emanuel, K., Lin, N., De Moel, H., and
Michel-Kerjan, E. O.: Climate adaptation: Evaluating flood resilience
strategies for coastal megacities, Science, 344, 473–475,
https://doi.org/10.1126/science.1248222, 2014.
Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial
formulation of the shallow water equations for efficient two-dimensional
flood inundation modelling, J. Hydrol., 387, 33–45,
https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.
Berke, P. R., Malecha, M. L., Yu, S., Lee, J., and Masterson, J. H.: Plan
integration for resilience scorecard: evaluating networks of plans in six US
coastal cities, J. Environ. Plan. Manag., 62, 901–920,
https://doi.org/10.1080/09640568.2018.1453354, 2019.
Bouwer, L. M.: Next-generation coastal risk models, Nat. Clim. Change, 8,
765–766, https://doi.org/10.1038/s41558-018-0262-2, 2018.
Chen, G., Li, X., Liu, X., Chen, Y., Liang, X., Leng, J., Xu, X., Liao, W.,
Qiu, Y., Wu, Q., and Huang, K.: Global projections of future urban land
expansion under shared socioeconomic pathways, Nat. Commun., 11, 537,
https://doi.org/10.1038/s41467-020-14386-x, 2020.
Cochrane, L., Cundill, G., Ludi, E., New, M., Nicholls, R. J., Wester, P.,
Cantin, B., Murali, K. S., Leone, M., Kituyi, E., and Landry, M. E.: A
reflection on collaborative adaptation research in Africa and Asia, Reg.
Environ. Change, 17, 1553–1561, https://doi.org/10.1007/s10113-017-1140-6, 2017.
Dabrowa, A., Neal, J. C., and Bates, P. D.: Floods and Storms
Practical Exercises, in: Hydro-Meteorological Hazards, Risks and Disasters, chap. 8,
edited by: Shroder, J. F., Paron, P., and Baldassarre, G. D., Elsevier,
Boston, 213–229, https://doi.org/10.1016/B978-0-12-394846-5.00008-4, 2015.
Du, S., Van Rompaey, A., Shi, P., and Wang, J.: A dual effect of urban
expansion on flood risk in the Pearl River Delta (China) revealed by
land-use scenarios and direct runoff simulation, Nat. Hazards, 77,
111–128, https://doi.org/10.1007/s11069-014-1583-8, 2015.
Du, S., Scussolini, P., Ward, P. J., Zhang, M., Wen, J., Wang, L., Koks, E.,
Diaz-Loaiza, A., Gao, J., Ke, Q., and Aerts, J. C. J. H.: Hard or soft flood
adaptation? Advantages of a hybrid strategy for Shanghai, Glob. Environ.
Chang., 61, 102037, https://doi.org/10.1016/j.gloenvcha.2020.102037,
2020.
Dullo, T. T., Darkwah, G. K., Gangrade, S., Morales-Hernández, M., Sharif, M. B., Kalyanapu, A. J., Kao, S.-C., Ghafoor, S., and Ashfaq, M.: Assessing climate-change-induced flood risk in the Conasauga River watershed: an application of ensemble hydrodynamic inundation modeling, Nat. Hazards Earth Syst. Sci., 21, 1739–1757, https://doi.org/10.5194/nhess-21-1739-2021, 2021.
Fang, J., Lincke, D., Brown, S., Nicholls, R. J., Wolff, C., Merkens, J. L.,
Hinkel, J., Vafeidis, A. T., Shi, P., and Liu, M.: Coastal flood risks in
China through the 21st century – An application of DIVA, Sci. Total
Environ., 704, 135311, https://doi.org/10.1016/j.scitotenv.2019.135311, 2020.
Fang, J., Wahl, T., Zhang, Q., Muis, S., Hu, P., Fang, J., Du, S., Dou, T.,
and Shi, P.: Extreme sea levels along coastal China: uncertainties and
implications, Stoch. Env. Res. Risk A., 35, 405–418,
https://doi.org/10.1007/s00477-020-01964-0, 2021.
Gori, A., Blessing, R., Juan, A., Brody, S., and Bedient, P.: Characterizing
urbanization impacts on floodplain through integrated land use, hydrologic,
and hydraulic modeling, J. Hydrol., 568, 82–95,
https://doi.org/10.1016/j.jhydrol.2018.10.053, 2019.
Gounaridis, D., Chorianopoulos, I., Symeonakis, E., and Koukoulas, S.: A
Random Forest-Cellular Automata modelling approach to explore future land
use/cover change in Attica (Greece), under different socio-economic
realities and scales, Sci. Total Environ., 646, 320–335,
https://doi.org/10.1016/j.scitotenv.2018.07.302, 2019.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future
flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806,
https://doi.org/10.1038/nclimate1979, 2013.
Haynes, P., Hehl-Lange, S., and Lange, E.: Mobile Augmented Reality for Flood
Visualisation, Environ. Modell. Softw., 109, 380–389,
https://doi.org/10.1016/j.envsoft.2018.05.012, 2018.
He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., and Bryan, B. A.: Future
global urban water scarcity and potential solutions, Nat. Commun., 12,
1–11, https://doi.org/10.1038/s41467-021-25026-3, 2021.
Hoch, J. M., Eilander, D., Ikeuchi, H., Baart, F., and Winsemius, H. C.: Evaluating the impact of model complexity on flood wave propagation and inundation extent with a hydrologic–hydrodynamic model coupling framework, Nat. Hazards Earth Syst. Sci., 19, 1723–1735, https://doi.org/10.5194/nhess-19-1723-2019, 2019.
Hunt, A. and Watkiss, P.: Climate change impacts and adaptation in cities: A
review of the literature, Clim. Change, 104, 13–49,
https://doi.org/10.1007/s10584-010-9975-6, 2011.
Huong, H. T. L. and Pathirana, A.: Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam, Hydrol. Earth Syst. Sci., 17, 379–394, https://doi.org/10.5194/hess-17-379-2013, 2013.
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A:
Global and Sectoral Aspects. Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9781107415379, 2014.
Jia, H., Chen, F., Pan, D., Du, E., Wang, L., Wang, N., and Yang, A.: Flood
risk management in the Yangtze River basin – Comparison of 1998 and 2020
events, Int. J. Disast. Risk Re., 68, 102724,
https://doi.org/10.1016/j.ijdrr.2021.102724, 2022.
Kabat, P., Fresco, L. O., Stive, M. J. F., Veerman, C. P., van Alphen, J. S.
L. J., Parmet, B. W. A. H., Hazeleger, W., and Katsman, C. A.: Dutch coasts
in transition, Nat. Geosci., 2, 450–452, https://doi.org/10.1038/ngeo572, 2009.
Kim, Y. and Newman, G.: Advancing scenario planning through integrating
urban growth prediction with future flood risk models, Comput. Environ.
Urban Syst., 82, 101498,
https://doi.org/10.1016/j.compenvurbsys.2020.101498, 2020.
Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp,
S., Oppenheimer, M., Pollard, D., and Strauss, B. H.: Evolving understanding
of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level
projections, Earth's Future, 5, 1217–1233, https://doi.org/10.1002/2017EF000663, 2017.
Lai, C., Shao, Q., Chen, X., Wang, Z., Zhou, X., Yang, B., and Zhang, L.:
Flood risk zoning using a rule mining based on ant colony algorithm, J.
Hydrol., 542, 268–280, https://doi.org/10.1016/j.jhydrol.2016.09.003,
2016.
Liang, X., Liu, X., Li, X., Chen, Y., Tian, H., and Yao, Y.: Delineating
multi-scenario urban growth boundaries with a CA-based FLUS model and
morphological method, Landscape Urban Plan., 177, 47–63,
https://doi.org/10.1016/j.landurbplan.2018.04.016, 2018.
Lin, W., Sun, Y., Nijhuis, S., and Wang, Z.: Scenario-based flood risk
assessment for urbanizing deltas using future land-use simulation (FLUS):
Guangzhou Metropolitan Area as a case study, Sci. Total Environ., 739,
139899, https://doi.org/10.1016/j.scitotenv.2020.139899, 2020.
Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang,
S., Li, R., Yan, C., Wu, S., Shi, X., Jiang, N., Yu, D., Pan, X., and Chi,
W.: Spatiotemporal characteristics, patterns and causes of land use changes
in China since the late 1980s, Dili Xuebao/Acta Geogr. Sin., 69, 3–14,
https://doi.org/10.11821/dlxb201401001, 2014.
Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S., Wang, S., and
Pei, F.: A future land use simulation model (FLUS) for simulating multiple
land use scenarios by coupling human and natural effects, Landscape Urban
Plan., 168, 94–116, https://doi.org/10.1016/j.landurbplan.2017.09.019, 2017.
Muis, S., Güneralp, B., Jongman, B., Aerts, J. C. J. H., and Ward, P. J.:
Flood risk and adaptation strategies under climate change and urban
expansion: A probabilistic analysis using global data, Sci. Total Environ.,
538, 445–457, https://doi.org/10.1016/j.scitotenv.2015.08.068, 2015.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., and Ward, P. J.:
A global reanalysis of storm surges and extreme sea levels, Nat. Commun., 7,
11969, https://doi.org/10.1038/ncomms11969, 2016.
Nithila Devi, N., Sridharan, B., and Kuiry, S. N.: Impact of urban sprawl on
future flooding in Chennai city, India, J. Hydrol., 574, 486–496,
https://doi.org/10.1016/j.jhydrol.2019.04.041, 2019.
O'Loughlin, F. E., Neal, J., Schumann, G. J. P., Beighley, E., and Bates, P.
D.: A LISFLOOD-FP hydraulic model of the middle reach of the Congo, J.
Hydrol., 580, 124203, https://doi.org/10.1016/j.jhydrol.2019.124203, 2020.
Parodi, M. U., Giardino, A., van Dongeren, A., Pearson, S. G., Bricker, J. D., and Reniers, A. J. H. M.: Uncertainties in coastal flood risk assessments in small island developing states, Nat. Hazards Earth Syst. Sci., 20, 2397–2414, https://doi.org/10.5194/nhess-20-2397-2020, 2020.
Parris, A., Bromirski, P., Burkett, V., Cayan, D., Culver, M., Hall, J.,
Horton, R., Knuuti, K., Moss, R., Obeysekera, J., Sallenger, A., and Weiss,
J.: Global Sea Level Rise Scenarios for the US National Climate Assessment,
NOAA Tech Memo OAR CPO, 1–37,
https://scenarios.globalchange.gov/sites/default/files/NOAA_SLR_r3_0.pdf (last access: 17 May 2021), 2012.
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T.
C., Chen, I. C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengård,
B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B.,
Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., Lenoir,
J., Linnetved, H. I., Martin, V. Y., McCormack, P. C., McDonald, J.,
Mitchell, N. J., Mustonen, T., Pandolfi, J. M., Pettorelli, N., Popova, E.,
Robinson, S. A., Scheffers, B. R., Shaw, J. D., Sorte, C. J. B., Strugnell,
J. M., Sunday, J. M., Tuanmu, M. N., Vergés, A., Villanueva, C.,
Wernberg, T., Wapstra, E., and Williams, S. E.: Biodiversity redistribution
under climate change: Impacts on ecosystems and human well-being, Science, 355, eaai9214, https://doi.org/10.1126/science.aai9214, 2017.
Rajib, A., Liu, Z., Merwade, V., Tavakoly, A. A., and Follum, M. L.: Towards
a large-scale locally relevant flood inundation modeling framework using
SWAT and LISFLOOD-FP, J. Hydrol., 581, 124406,
https://doi.org/10.1016/j.jhydrol.2019.124406, 2020.
Ramaswami, A., Russell, A. G., Culligan, P. J., Rahul Sharma, K., and Kumar,
E.: Meta-principles for developing smart, sustainable, and healthy cities,
Science, 352, 940–943, https://doi.org/10.1126/science.aaf7160, 2016.
Reckien, D., Salvia, M., Heidrich, O., Church, J. M., Pietrapertosa, F., De
Gregorio-Hurtado, S., D'Alonzo, V., Foley, A., Simoes, S. G., Krkoška
Lorencová, E., Orru, H., Orru, K., Wejs, A., Flacke, J., Olazabal, M.,
Geneletti, D., Feliu, E., Vasilie, S., Nador, C., Krook-Riekkola, A.,
Matosović, M., Fokaides, P. A., Ioannou, B. I., Flamos, A., Spyridaki,
N. A., Balzan, M. V., Fülöp, O., Paspaldzhiev, I., Grafakos, S., and
Dawson, R.: How are cities planning to respond to climate change? Assessment
of local climate plans from 885 cities in the EU-28, J. Clean. Prod., 191,
207–219, https://doi.org/10.1016/j.jclepro.2018.03.220, 2018.
Shan, X., Yin, J., and Wang, J.: Risk assessment of shanghai extreme flooding
under the land use change scenario, Nat. Hazards, 110, 1039–1060,
https://doi.org/10.1007/s11069-021-04978-1, 2022.
Shanghai Municipal People's Government: Shanghai Master Plan (2017–2035), Shanghai Urban Planning and Land Resource Administration Bureau, Shanghai, http://www.shanghai.gov.cn/newshanghai/xxgkfj/2035004.pdf (last access: 15 May 2021), 2018.
Song, J., Fu, X., Wang, R., Peng, Z.-R., and Gu, Z.: Does planned retreat
matter? Investigating land use change under the impacts of flooding induced
by sea level rise, Mitig. Adapt. Strat. Gl., 23, 703–733,
https://doi.org/10.1007/s11027-017-9756-x, 2018.
Sosa, J., Sampson, C., Smith, A., Neal, J., and Bates, P.: A toolbox to
quickly prepare flood inundation models for LISFLOOD-FP simulations,
Environ. Modell. Softw., 123, 104561,
https://doi.org/10.1016/j.envsoft.2019.104561, 2020.
Sun, L., Chen, J., Li, Q., and Huang, D.: Dramatic uneven urbanization of
large cities throughout the world in recent decades, Nat. Commun., 11,
5366, https://doi.org/10.1038/s41467-020-19158-1, 2020.
Tessler, Z. D., Vorosmarty, C. J., Grossberg, M., Gladkova, I., Aizenman,
H., Syvitski, J. P. M., and Foufoula-Georgiou, E.: Profiling risk and
sustainability in coastal deltas of the world, Science, 349,
638–643, https://doi.org/10.1126/science.aab3574, 2015.
United Nations: Factsheet: People and oceans, https://www.un.org/sustainabledevelopment/wp-content/uploads/2017/05/Ocean-fact-sheet-package.pdf (last access: 17 June 2021), 2017.
United Nations: 2018 Revision of World Urbanization Prospects, https://population.un.org/wup/ (last access: 16 May 2021), 2018.
Van Coppenolle, R. and Temmerman, S.: A global exploration of tidal wetland
creation for nature-based flood risk mitigation in coastal cities, Estuar.
Coast. Shelf S., 226, 106262, https://doi.org/10.1016/j.ecss.2019.106262, 2019.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva,
S., Jackson, L. P., and Feyen, L.: Global probabilistic projections of
extreme sea levels show intensification of coastal flood hazard, Nat.
Commun., 9, 1–12, https://doi.org/10.1038/s41467-018-04692-w, 2018.
Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S., and Bai, X.: Flood hazard
risk assessment model based on random forest, J. Hydrol., 527, 1130–1141,
https://doi.org/10.1016/j.jhydrol.2015.06.008, 2015.
Wing, O. E. J., Sampson, C. C., Bates, P. D., Quinn, N., Smith, A. M., and
Neal, J. C.: A flood inundation forecast of Hurricane Harvey using a
continental-scale 2D hydrodynamic model, J. Hydrol. X, 4, 100039,
https://doi.org/10.1016/j.hydroa.2019.100039, 2019.
Xian, S., Yin, J., Lin, N., and Oppenheimer, M.: Influence of risk factors
and past events on flood resilience in coastal megacities: Comparative
analysis of NYC and Shanghai, Sci. Total Environ., 610–611, 1251–1261,
https://doi.org/10.1016/j.scitotenv.2017.07.229, 2018.
Xu, K., Fang, J., Fang, Y., Sun, Q., Wu, C., and Liu, M.: The Importance of
Digital Elevation Model Selection in Flood Simulation and a Proposed Method
to Reduce DEM Errors: A Case Study in Shanghai, Int. J. Disaster Risk Sc., 12, 890–902,
https://doi.org/10.1007/s13753-021-00377-z, 2021.
Xu, W. and Yang, L.: Evaluating the urban land use plan with transit
accessibility, Sustain. Cities Soc., 45, 474–485,
https://doi.org/10.1016/j.scs.2018.11.042, 2019.
Xu, X.: China GDP Spatial Distribution Kilometer Grid Dataset, Data Registration and publishing System of Resources and Environmental Sciences Data Center, Chinese Academy of Sciences [data set],
http://www.resdc.cn/DOI/doi.aspx?DOIid=33 (last access: 18 February 2021), 2017a.
Xu, X.: China Population Spatial Distribution Kilometer Grid Dataset, Data Registration and publishing System of Resources and Environmental Sciences Data Center, Chinese Academy of Sciences
[data set], http://www.resdc.cn/DOI/DOI.aspx?DOIid=32 (last access: 18 February 2021), 2017b.
Xu, X., Liu, J., Zhang, Z., Zhou, W., Zhang, S., Li, R., Yan, C., Wu, S., and
Shi, X.: A Time Series Land Ecosystem Classification Dataset of China in
Five-Year Increments (1990–2010), J. Glob. Chang. Data Discov., 1,
52–59, https://doi.org/10.3974/geodp.2017.01.08, 2017.
Yin, J., Yu, D., Yin, Z., Wang, J., and Xu, S.: Modelling the combined
impacts of sea-level rise and land subsidence on storm tides induced
flooding of the Huangpu River in Shanghai, China, Clim. Change, 119,
919–932, https://doi.org/10.1007/s10584-013-0749-9, 2013.
Yin, J., Jonkman, S., Lin, N., Yu, D., Aerts, J., Wilby, R., Pan, M., Wood,
E., Bricker, J., Ke, Q., Zeng, Z., Zhao, Q., Ge, J., and Wang, J.: Flood
Risks in Sinking Delta Cities: Time for a Reevaluation?, Earth's Future,
8, e2020EF001614, https://doi.org/10.1029/2020EF001614, 2020.
Zhai, Y., Yao, Y., Guan, Q., Liang, X., Li, X., Pan, Y., Yue, H., Yuan, Z.,
and Zhou, J.: Simulating urban land use change by integrating a
convolutional neural network with vector-based cellular automata, Int. J.
Geogr. Inf. Sci., 34, 1475–1499, https://doi.org/10.1080/13658816.2020.1711915,
2020.
Zhao, G., Bates, P., and Neal, J.: The Impact of Dams on Design Floods in the
Conterminous US, Water Resour. Res., 56, 1–15, https://doi.org/10.1029/2019WR025380,
2020.
Zhao, L., Song, J., and Peng, Z.-R.: Modeling Land-Use Change and Population
Relocation Dynamics in Response to Different Sea Level Rise Scenarios: Case
Study in Bay County, Florida, J. Urban Plan. Dev., 143, 04017012,
https://doi.org/10.1061/(asce)up.1943-5444.0000398, 2017.
Zhou, L., Dang, X., Sun, Q., and Wang, S.: Multi-scenario simulation of urban
land change in Shanghai by random forest and CA-Markov model, Sustain.
Cities Soc., 55, 102045, https://doi.org/10.1016/j.scs.2020.102045, 2020.
Zhou, Q., Leng, G., Su, J., and Ren, Y.: Comparison of urbanization and
climate change impacts on urban flood volumes: Importance of urban planning
and drainage adaptation, Sci. Total Environ., 658, 24–33,
https://doi.org/10.1016/j.scitotenv.2018.12.184, 2019.
Short summary
Flooding by extreme weather events and human activities can lead to catastrophic impacts in coastal areas. The research illustrates the importance of assessing the performance of different future urban development scenarios in response to climate change, and the simulation study of urban risks will prove to decision makers that incorporating disaster prevention measures into urban development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods.
Flooding by extreme weather events and human activities can lead to catastrophic impacts in...
Special issue
Altmetrics
Final-revised paper
Preprint