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Abstract. Urbanization and climate change are critical chal-
lenges in the 21st century. Flooding by extreme weather
events and human activities can lead to catastrophic im-
pacts in fast-urbanizing areas. However, high uncertainty
in climate change and future urban growth limit the abil-
ity of cities to adapt to flood risk. This study presents a
multi-scenario risk assessment method that couples a future
land use simulation (FLUS) model and floodplain inundation
model (LISFLOOD-FP) to simulate and evaluate the impacts
of future urban growth scenarios with flooding under climate
change (two representative concentration pathways (RCP2.6
and RCP8.5)). By taking the coastal city of Shanghai as an
example, we then quantify the role of urban planning policies
in future urban development to compare urban development
under multiple policy scenarios (business as usual, growth as
planned, growth as eco-constraints). Geospatial databases re-
lated to anthropogenic flood protection facilities, land subsi-
dence and storm surge are developed and used as inputs to the
LISFLOOD-FP model to estimate flood risk under various
urbanization and climate change scenarios. The results show
that urban growth under the three scenario models manifests
significant differences in expansion trajectories, influenced
by key factors such as infrastructure development and pol-
icy constraints. Comparing the urban inundation results for
the RCP2.6 and RCP8.5 scenarios, the urban inundation area
under the growth-as-eco-constraints scenario is less than that
under the business-as-usual scenario but more than that under

the growth-as-planned scenario. We also find that urbaniza-
tion tends to expand more towards flood-prone areas under
the restriction of ecological environment protection. The in-
creasing flood risk information determined by model simula-
tions helps us to understand the spatial distribution of future
flood-prone urban areas and promote the re-formulation of
urban planning in high-risk locations.

1 Introduction

Climate change and urbanization are global challenges for
the 21st century (Ramaswami et al., 2016; Pecl et al., 2017).
Floods have been key threats for many cities around the
world and are driven by global climate change (Hallegatte
et al., 2013; IPCC, 2014; Fang et al., 2020). Currently, more
than 600 million people worldwide live in coastal cities that
are less than 10 m above sea level (m a.s.l.; United Nations,
2017). The United Nations reports that the global popula-
tion living in cities is projected to reach 6.7 billion by 2050
(United Nations, 2018); especially in low-elevation coastal
areas, the population density is expected to be twice the cur-
rent population density (Van Coppenolle and Temmerman,
2019), which means that the populations of coastal cities
will become increasingly concentrated in the future and im-
pervious surfaces will become more numerous (Chen et al.,
2020; He et al., 2021). On the other hand, a National Oceanic
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and Atmospheric Administration (NOAA) report suggests
that the global mean sea level will rise around 0.2 to 2.0 m
by 2100 under a continuing global warming trend (Parris et
al., 2012). Additionally, properties and populations in many
coastal areas will suffer more severely in the future if the ef-
fects of land subsidence are taken into account (Vousdoukas
et al., 2018).

However, high uncertainty in flood risk and urban growth
leads to a lack of capacity of cities to respond to the flooding
arising from future climate change (Du et al., 2015; Tessler
et al., 2015; Fang et al., 2021). Therefore, there is an urgent
need for specialist knowledge and techniques to address the
conflict between urbanization and flood risk (Wang et al.,
2015; Lai et al., 2016; Bouwer, 2018; Haynes et al., 2018).
Studies on urban flood risk assessment are more likely to
simulate flood risk using different climate change scenarios
or integrating different flood sources (Huong and Pathirana,
2013; Muis et al., 2015; Dullo et al., 2021). For example,
Zhou et al. (2019) examine the impact of urban flood vol-
umes and associated risks under RCP2.6 and RCP8.5 scenar-
ios. Parodi et al. (2020) integrate the compound flood scenar-
ios such as wave height, storm surge and extreme sea level
due to sea level rise to assess coastal flood risk. However,
ignoring the uncertainty of urban growth in urban flood risk
assessment reduces the validity of the assessment (Gori et
al., 2019), and hence an increased understanding of possi-
ble urban growth scenarios is needed; otherwise there is a
lack of understanding of the consequences of future flood-
ing (Zhao et al., 2017; Kim and Newman, 2020). Although
there are some studies that have quantified urban growth and
assessed flood risk, such as in Chennai (Nithila Devi et al.,
2019), Guangzhou (Lin et al., 2020) and Shanghai (Shan et
al., 2022), these studies have not considered the development
of urban areas under different growth scenarios and the as-
sessment of flood impacts after the implementation of these
scenarios. In addition, the failure to integrate with broader
climate-change-related scenarios and possible extreme-case
flood risks has led to underinvestment in climate adaptation
actions by governments that do not adequately address the
spatial consequences of future floods (Reckien et al., 2018;
Berke et al., 2019). Thus, there is an urgent need to adopt
a more comprehensive approach to assess the complexity
of multiple possible scenarios of urbanization and dynamic
flood risk in an integrated manner.

This paper uses the coupling of the future land use simula-
tion (FLUS) model and the 2D floodplain inundation model
(LISFLOOD-FP) to explore the possible interaction between
different urbanization development scenarios and climate
change scenarios. The FLUS model improves the simulation
accuracy of the model by combining artificial neural network
(ANN) and cellular automaton (CA) models to simulate non-
linear land use changes while considering parameters related
to environment, society, climate change, etc. (Liu et al., 2017;
Zhai et al., 2020). The LISFLOOD-FP model has become a
mature hydrodynamic model that can predict potential flood

events in near real time and is widely used in engineering ap-
plications (Wing et al., 2019; Sosa et al., 2020). The coastal
metropolitan area of Shanghai in the Yangtze River Delta in
China, one of the fastest-urbanizing cities in the world, is
used as a case study.

The paper asks how different urban growth scenarios com-
bined with climate change scenario analysis may help to in-
form preparedness for flood risks from climate change in ur-
ban flood risk assessments. To answer this question, we first
assumed some future simulation scenarios by considering the
factors that influence urban growth and lead to flood risk.
Secondly, we coupled urban growth and flood risk scenarios
and compared them using climate change scenarios from two
representative concentration pathways (RCP2.6 and RCP8.5)
proposed by the Intergovernmental Panel on Climate Change
(IPCC). Finally, we assessed the risk of flooding in differ-
ent urban development scenarios. The research illustrates the
importance of assessing the performance of different future
urban development scenarios in response to climate change,
and the simulation study of urban risks will prove to decision
makers that incorporating disaster prevention measures into
urban development plans will help to reduce disaster losses
and improve the ability of urban systems to respond to floods.

2 Study area and datasets

2.1 Study area

As the alluvial plain of the Yangtze River Delta, Shang-
hai is located on the coast of the East China Sea between
30◦40′–31◦53′ N and 120◦52′–122◦12′ E, which borders the
provinces of Jiangsu and Zhejiang to the west (Fig. 1). It is a
typical middle-latitude transition belt, a marine–land transi-
tional zone, and also a typical estuarine and coastal city with
a fragile ecological environment. The land area of Shang-
hai is about 6340.50 km2, accounting for 0.06 % of the to-
tal area of China, and has 213 km of coastlines. The Shang-
hai metropolitan area has undergone rapid urban expansion
in the past decades and has become one of the largest ur-
ban areas in the world in both size and population (Sun et
al., 2020). However, Shanghai’s topography is low, with an
average elevation of 4 m a.s.l., and there is no natural bar-
rier against storm surges. In 1905, one of the deadliest storm
surges occurred in Shanghai, killing more than 29 000 peo-
ple. Typhoon Winnie made landfall in Shanghai 2 years later
and flooded more than 5000 households (Du et al., 2020).
The reasons for Shanghai’s greater vulnerability might in-
clude the multiple effects of sea level rise due to climate
warming, ground subsidence and storm surge water gain.

2.2 Data

The research used three main categories of data, including
basic data, scenario constraint data and flood simulation data
(Table 1). The basic data include land use, topography, traf-
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Figure 1. Location map of the study area. The main inland rivers in Shanghai flow into the East China Sea through the Huangpu River. The
lines with colored vectors in the figure indicate the different dike crest levels in Shanghai.

fic network, traffic site and socioeconomic data. The land use
data with a resolution of 100 m× 100 m from the Resource
and Environmental Science and Data Center of the Chinese
Academy of Sciences comprise currently the most accurate
land use remote sensing monitoring data product in China
(Liu et al., 2014). The data for 2005 and 2010 were derived
from Landsat TM and Landsat ETM+ remote sensing image
data, respectively, and the data for 2015 were interpreted us-
ing Landsat 8 remote sensing imagery. After the data were
corrected and visually interpreted, the comprehensive evalu-
ation accuracy of the interpretation accuracy of the first-class
types of cultivated land, woodland, grassland, water area, ur-
ban land and unused land reached more than 94.30 %, and
the discrimination accuracy rate on the map patches reached
98.70 % (Xu et al., 2017). Within the allowable error range,
they can be used as the basic data for analyzing land use
changes.

Topography factors (digital elevation model, DEM; slope),
traffic network factors (distance to railway, highway, sub-
way and main roads), traffic site factors (distance to the
city center, train station and airports), socioeconomic factors
(population; gross domestic product, GDP), etc., as well as
planning constraints, were determined to be spatial-influence
factors of the flood risk assessment of the Shanghai area.
The Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) Global Digital Elevation Model

(GDEM), which has a 30 m resolution, served as the ba-
sis data for terrain heights and slopes. The ASTER GDEM
has been shown to be the most stable data performer among
six types of open-access DEM products (SRTM, ASTER
GDEM, AW3D, MERIT, NASADEM and CoastalDEM) for
flood inundation simulations with different return periods
(Xu et al., 2021). The traffic network and site were col-
lected from open-source data retrieved from OpenStreetMap
(OSM), and point of interest (POI) data were extracted from
Tencent Maps. The Euclidean distance was calculated for all
vector data. The data of population and GDP were provided
by the Resource and Environmental Science and Data Cen-
ter of the Chinese Academy of Sciences (Xu, 2017a, b), and
their time span was consistent with the land use data. Ac-
cording to the simulation forecast demand, all materials were
converted into a 100× 100 m grid by resampling. The factors
limiting space development were the basic ecological control
line, permanent basic cropland and cultural protection con-
trol line as outlined in the Shanghai Master Plan 2017–2035
(Shanghai Municipal People’s Government, 2018). All the
impact factor data were normalized, and the range of values
is between 0 and 1 for subsequent data mining.

The storm surge data are derived from the Global Tide and
Surge Reanalysis (GTSR) dataset, which contains the values
of storm surge and extreme water levels for different return
periods simulated using hydrodynamic modeling based on
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the water levels of global tide stations from 1979–2016. The
data are vector data covering the global coastline and were
obtained from 4TU.ResearchData (see Supplement Fig. S1
for GTSR data in this study area). This dataset has been
widely used in different regions of the world and has been
validated to be of good accuracy (Muis et al., 2016). In ad-
dition, artificially constructed flood defenses have been con-
sidered to reasonably evaluate the inundation impact of the
flooding. The constructed flood defense data were obtained
from the historical archival of the Shanghai Water Authority
(Yin et al., 2020). All data sources are listed in Table 1.

3 Methodology

The presented approach for relative sea level rise scenario
flood risk assessment is the integration of the FLUS model
and LISFLOOD-FP model. In the framework, the FLUS
model combined with a Markov chain model is designed to
stimulate complex land use change processes in three dif-
ferent scenarios through 2030 to 2050, which include busi-
ness as usual (BU), growth as planned (GP) and growth as
eco-constraints (GE). A Markov chain model is used to pre-
dict land use demand in 2030 and 2050, combining plan-
ning policy factors, which is one of the crucial data inputs in
the FLUS model. Next, the LISFLOOD-FP two-dimensional
flood model is used to explore the potential flooding areas
under the RCP2.6 and RCP8.5 scenarios in 2030 and 2050
to avoid the overestimation of the submerged range based on
the GIS-based elevation area method. This model also con-
siders the compound influence of sea level rise, storm surge
and land subsidence. Finally, via ArcGIS spatial comprehen-
sive analysis, the flooding of different land types is calculated
employing different flooding scenarios. The overall flowchart
of research is illustrated in Fig. 2.

3.1 Markov chain model

The Markov chain model refers to the random transition pro-
cess of a state from one state to another, and its future state is
only related to the state at the previous moment. In the study
of land use change, the type of land use at a certain moment
is only related to the type of land use at the previous moment.
Therefore, land use change is a typical Markov process and
has been widely used in the prediction of land use changes
(Zhou et al., 2020). We predicted future land use by Eq. (1):

S(t+1) = Pi,j × St , (1)

where St and St+1 represent the land use at times t and t + 1
and Pi,j is a state transition matrix in which land use type i

is converted to land use type j . This model has a good pre-
dictive effect on the process state (Gounaridis et al., 2019).
Therefore, we use the Markov chain to calculate the proba-
bility of the conversion of various land types and then predict
the number of future land changes.

3.2 The future land use simulation (FLUS) model

The FLUS model is an upgraded version of a cellular au-
tomata model (Liu et al., 2017) which can solve the com-
plex land use simulation problems by self-adaptive inertia
and a competition mechanism. FLUS shows the highest cur-
rent performances among other simulation models such as
CLUE-S, SLEUTH and LTM and has been applied to land
use change simulation research at different scales and for dif-
ferent purposes (Liang et al., 2018; Lin et al., 2020).

As the most important scheme to manage the space of the
urban area, an urban land use plan can reflect the general ar-
rangement of land use in the future (Xu and Yang, 2019).
In this research, three categories of urban growth scenarios
are simulated through the FLUS model. The similarity of the
three scenarios is that they use factors that affect urban de-
velopment and changes, such as population, GDP, traffic and
slope, as the main spatial driving factors. The difference are
as follows:

i. Business as usual (BU). BU is natural growth with-
out development laws and regulations. Its development
is based on the premise of the current urban develop-
ment patterns. Therefore, the land demand predicted by
Markov is used as the constraint condition for the iter-
ation of the CA model in the subsequent application of
the scenario.

ii. Growth as planned (GP). Under the GP scenario, the
urban growth projection is closely linked to the master
plan for Shanghai in terms of quantity, reflecting how
the city government prefers to develop. The master plan
requires that the total area of planned urban construction
land does not exceed 3200 km2 in 2035. We choose an
urban area of 2768 km2 in 2030 and 3200 km2 in 2050
as the constraints under the GP scenario. The reason is
that the Markov chain model projections result in an ur-
ban area that is 2768 km2 in 2030 and 3270 km2 in 2050,
and the total urban construction land area in 2035 of
the Shanghai Master Plan 2017–2035 does not exceed
3200 km2.

iii. Growth as eco-constraints (GE). The GE scenario is an
eco-environmental protection scenario in which devel-
opment is limited by ecological environment protection.
Combined with Shanghai’s ecological and environmen-
tal protection requirements and the distribution of per-
manent basic farmland, sensitive areas restricted for de-
velopment are identified in the scenario, and we also
establish a cultural protection control line for strength-
ening historical and cultural protection. In addition, the
number of areas of future urban growth in the GE sce-
nario also combines the requirements given in the urban
master plan to enhance the reality of the scenario.

Therefore, the FLUS model is used to simulate future ur-
ban growth combining various scenarios. First, the driving
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Table 1. Data required and sources. The list details the resolution and sources of the data in the study.

Category Data type Resolution Source

Basic data Land use 100 m× 100 m Resource and Environmental Science and Data Center
(http://www.resdc.cn, last access: 20 February 2021)

Topography Vector line ASTER GDEM (https://earthexplorer.usgs.gov/,
last access: 18 May 2021)

Traffic network Vector line OpenStreetMap (https://www.openstreetmap.org,
last access: 3 March 2021)

Traffic site Vector point Tencent Maps (https://map.qq.com/,
last access: 4 March 2021)

Social economy 1 km× 1 km Resource and Environmental Science and Data Center

Scenario constraints Ecological control line Vector line Shanghai Master Plan 2017–2035
Permanent basic cropland control line Vector line (Shanghai Municipal People’s Government, 2018)
Cultural protection control line Vector line

Flood data Flood walls Vector line Shanghai Water Authority (http://swj.sh.gov.cn/,
last access: 17 May 2021)

Storm surge Vector line GTSR (http://data.4tu.nl/, last access: 17 May 2021)

factors and land use data are trained by an ANN model to ob-
tain a probability-of-occurrence map, and this is then incor-
porated into the self-adaptive land inertial, conversion cost
and neighborhood competition among the different land use
types to estimate the combined probability for each grid.
Next, the numbers of various types of land predicted by the
Markov chain model are combined and the constraints of
each scenario on predicted urban growth in 2030 and 2050
are considered. To better validate the model before predicting
future change, we compared the output with the actual land
use 2015. Note that the number of iterations in each scenario
is set to 5000, which is much higher than the default value to
show higher prediction accuracy.

3.3 The LISFLOOD-FP flood inundation model

LISFLOOD-FP is a 2D hydraulic model based on a raster
grid (Bates et al., 2010), which can efficiently simulate the
dynamic propagation of flood waves over fluvial and estu-
arine floodplains and show real-time changes in water depth
of complex terrain. LISFLOOD-FP model solves the Saint-
Venant equations at very low computational cost by omit-
ting only the convective acceleration term over a structured
grid using a highly efficient explicit finite-difference scheme
to produce a two-dimensional simulation of floodplain hy-
drodynamics (O’Loughlin et al., 2020). The model has been
widely used in the applications of small-scale and large-scale
urban waterlogging and flooding (Hoch et al., 2019; Rajib et
al., 2020; Zhao et al., 2020).

In the present study, the LISFLOOD-FP model is used
to simulate storm surge floods along the coast of Shanghai
and floods along the Huangpu River. The effectiveness of the
model in the study area has been verified by another arti-

cle of our group members and shows good simulation results
(Xu et al., 2021). In addition, the validated relationship be-
tween the simulated and observed values of water levels at
the tidal station was plotted using the observed records of the
Huangpu Park tidal station for comparison (with reference
to the recorded values of Yin et al., 2013), and the results
showed a reasonable match (Fig. S2). In the Manning coeffi-
cient of the model, we assigned friction coefficients of 0.05,
0.15, 0.035 and 0.2 for cropland, woodland, grassland and
urban land, respectively, based on the study of Dabrowa et
al. (2015). In the boundary condition of the model, hydro-
logical stations and global storm surge data are employed as
the input of the scenario design. However, the Shanghai Ge-
ological Environmental Bulletin and land subsidence control
plan show that land subsidence makes a significant contri-
bution to the flood hazards in Shanghai (Xian et al., 2018).
Land subsidence in Shanghai is mainly caused by tectonic
subsidence and compaction of sediments due to geological
structure conditions and human activities. With reference to
the long-term tectonic subsidence monitoring data of the very
long baseline interferometer (VLBI) in the Sheshan bedrock
and the land subsidence analysis rules of Yin et al. (2013),
the total land subsidence is predicted to be 0.12 and 0.24 m
by 2030 and 2050, respectively. However, due to the uncer-
tainty in future anthropogenic activities and spatial distribu-
tion, there could be large variations in the projection. This
study also combines the storyline of the future scenarios of
the IPCC, namely the representative concentration pathway
(RCP) scenarios, and selects conservative (RCP2.6) and the
largest-magnitude (RCP8.5) climate change scenarios, with
values from Kopp et al. (2017). For the simulation of the
Huangpu River flood, we conducted experiments for a 50-
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Figure 2. The overall flowchart of research.

year return period under the RCP2.6 scenario and a 100-
year return period under the RCP8.5 scenario during 2030 to
2050, with values from Yin et al. (2020). For 2030 and 2050,
both Huangpu River and the coastal floods follow the RCP2.6
and RCP8.5 scenarios. Finally, we combine land subsidence
and the RCP data to control the flood inundation simulation.

4 Results

4.1 Model validity

Model verification is a prerequisite for model operation, and
the operation can only be carried out after confirming the
model to be valid. The applicability of the proposed model
was tested by simulating land use and cover changes (LUCC)
in 2015 in Shanghai. The spatial simulation result shows that
the simulated result and the actual land use have a high con-
sistency (Fig. 3). We compared the actual land use and the
simulated result pixel by pixel in our study and found the

overall accuracy (OA) was 93.20 % and the kappa coefficient
(kappa) was 0.89. The discrepancy between the actual land
use and simulated result is likely due to the neighborhood
interaction in the CA model, in which grid cells in more ur-
banized neighborhoods have a higher probability of convert-
ing to urban, whereas the grid cells are less likely to change
to urban in less urbanized neighborhoods. Overall, the mea-
sured model accuracy outputs showed an acceptable or good
level of prediction; therefore the model is suitable for pre-
dicting changes in land use of the Shanghai area.

4.2 Future land use changes

Based on the conditions under three different development
scenarios, we predicted the development of future urban land
use change in 2030 and 2050. The prediction result shows
different development patterns for each scenario (Fig. 4). Fu-
ture urban growth under the BU scenario is primarily lo-
cated in the northwest with some development in the cen-
tral regions, and under the GP scenario the urban growth in-

Nat. Hazards Earth Syst. Sci., 22, 3815–3829, 2022 https://doi.org/10.5194/nhess-22-3815-2022



Q. Sun et al.: Multi-scenario urban flood risk assessment 3821

Figure 3. Comparing the simulation results of Shanghai urban expansion with the actual situation: (a) simulation result in 2015 and (b) actual
land use in 2015.

volves evenly distributed development. Urban growth in the
GE scenario, however, indicates Chongming Island regions
see more urban growth, and the downtown area is not fully
occupied by urban expansion due to restrictions.

Due to the impact of infrastructure construction, distance
to the city center and policy restrictions, Shanghai’s over-
all urban expansion model shows a center–periphery expan-
sion. The built-up land areas in 2030 and 2050 are projected
to increase by about 6 % and 13 %, respectively, as com-
pared to 2015; the most significant reduction is found for
cultivated land and woodland. Specifically, the built-up land
areas in 2030 are projected to increase by 427.32, 428.27
and 429.12 km2 in the BU, GP and GE scenarios, respec-
tively, and the built-up land areas in 2050 are projected to in-
crease by 926.38, 857.63 and 751.47 km2 in the BU, GP and
GE scenarios, respectively. The most significant reduction is
found for cropland, which is predicted in 2050 to decrease
by 876.97, 857.63 and 723.59 km2 as compared to 2015 in
the BU, GP and GE scenarios. The southwestern region is
not suitable for large-scale urban development, since large
amounts of farmland in the region are listed as ecological
protection areas, so the slow growth of these areas is not
expected. The simulation maps show, as expected, land use
changes under different planning scenarios, especially the
urban-sprawl trend in the GE scenario, creating new devel-
opment areas in suburbs. To sum up, the urban expansion tra-
jectory under BU, GP and GE shows significant differences,
and these changes are mainly at the expense of the cropland.

4.3 Changing flood hazard in the future

The LISFLOOD-FP model is used to simulate the flood evo-
lution process under the RCP2.6 and RCP8.5 scenarios (the
inundation results are plotted in Fig. S3), and the submerged
depth and area under different scenarios are statistically an-
alyzed to explore the future flood risk under different RCP
scenarios. First, the maximum water depth risk of the sub-
merged area is counted, and the submerged area is divided
into four depth levels: submerged water depth less than 0.5 m
is classified as shallow water, 0.5–1 m as medium water, 1–
2 m as deep water and above 2 m as extremely deep. The area
and proportion of each water depth level are calculated.

By comparing the scenarios in RCP2.6 and RCP8.5, it
is evident that the submerged area is increasing with time
(Table 2). The total flooded area increased by 162.43 and
189.44 km2 under the RCP2.6 and RCP8.5 scenarios, respec-
tively, from 2030 to 2050. Additionally, the depth of submer-
gence and the extent of submergence will gradually increase
as the floodwater spreads. Taking the area with submergence
depth above 2 m as an example, under the RCP2.6 scenario
the area with submergence is 353.69 and 401.57 km2 in 2030
and 2050, respectively, and under RCP8.5 scenario the area
with submergence is 356.28 and 418.36 km2 in 2030 and
2050, respectively. This shows that Shanghai will still face
great flood risk under these two scenarios.

4.4 Future changes in urban flood risk

The flood risk of the urban area is calculated by overlapping
existing urban and projected future urban scenarios with fu-
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Figure 4. Simulation results of different scenarios in 2030 (a–c) and 2050 (d–f). Each panel shows the spatial distribution and the proportion
of area of different land use types in the simulated scenario.

Table 2. Statistics of flood depth.

Category < 0.5 m 0.5–1 m 1–2 m > 2 m Total (km2)

Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%)

2030
RCP2.6

138.61 14.54 164.07 17.21 296.98 31.15 353.69 37.10 953.35

2030
RCP8.5

137.13 14.23 169.76 17.61 300.82 31.21 356.28 36.96 963.99

2050
RCP2.6

125.04 11.21 229.81 20.60 359.36 32.21 401.57 35.99 1115.78

2050
RCP8.5

141.72 12.29 219.58 19.04 373.77 32.41 418.36 36.27 1153.43

ture flood risk zones. First, in the existing urban (EU) expo-
sure to future flood risk scenarios (the upper left in Fig. 5),
more urban areas with flood walls will be vulnerable to flood
risk in the context of global climate change. The four pie
charts for the EU scenarios represent the proportion of the
existing urban area affected by the future flood risk scenario.
Under the RCP2.6 scenario, 4.68 % and 5.96 % of the total
existing urban areas in 2030 and 2050, respectively, would
be susceptible to flood risk. In 2030 and 2050 in the RCP8.5

scenarios, the area of existing urban land which would be
vulnerable to future flood risks is 110.27 and 146.23 km2, re-
spectively. Many urban areas will be flooded under sea level
rise caused by climate change even when protected by lev-
ees, and more than 5 % of urban areas in Shanghai will still
be in the floodplain (Fig. 5).

Future urban development would occur in the flood zone,
with a rapid expansion of the urban area. Figure 5 also shows
the comprehensive analysis results of the three urban growth
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Figure 5. Flood exposure of existing urban and future urban growth scenarios. The four pie charts for the BU, GE and GP scenarios represent
the proportion of new grown urban area exposed to flooding under the 2030 RCP2.6, 2030 RCP8.5, 2050 RCP2.6 and 2050 RCP8.5 scenarios.
The four pie charts for the EU scenarios represent the proportion of the existing urban area affected by the future flood risk scenario.
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scenarios under different climate change scenarios. Under
the RCP2.6 scenario, new growth in urban land area affected
by flooding in 2030 is 55.11, 23.22 and 30.92 km2 in the BU,
GP and GE scenarios, respectively. Under the RCP8.5 sce-
nario, more urban growth areas will be affected by the flood-
ing, which will reach 115.53, 70.36 and 81.71 km2 in the BU,
GP and GE scenarios in 2050, respectively. In general, the
higher the sea level rises, the greater the risk of flooding in
future urban areas. Small changes in sea level rise will affect
a large amount of land, since the average altitude of Shanghai
is only around 4 m.

The research found that the cultivated land is the most af-
fected land type by flooding relative to urban areas, wood-
land and grassland (Table 3). Under the GE scenario, the
flooded area of cultivated land is 618.95 and 625.97 km2 in
the RCP2.6 and RCP8.5 scenarios in 2030 and 677.59 and
698.98 km2 in the RCP2.6 and RCP8.5 scenarios in 2050.
Further, the exposure of various types of land will increase
with time, but urban land and cropland will be the most im-
pacted land types in the future. Comparing the three scenar-
ios, we can find that the urban development area under the
planning scenario is less affected by flooding, as compared to
the business-as-usual development scenario. Comparing the
inundation of the two planning scenarios (GE and GP), the
decision makers’ trade-off between economic development
and ecological protection is also reflected. The inundation
area of the urban land under the GP scenario is less than that
of the GE, which means that under the planning constraint of
protecting ecological and cultural areas, urban built-up areas
will develop in low-protection areas, which are more vulner-
able to flooding. In conclusion, for reducing the risk of future
flooding in urban areas, the GE scenario is shown to be better
than the BU scenario but worse than the GP scenario.

5 Discussions

5.1 Source of uncertainties

There are some limitations in our study, which we need to ad-
dress in the future. First, there is still more room to improve
the accuracy of model prediction. In this study, the perfor-
mance of the FLUS model is tested by kappa and OA mea-
sures, which show a good range of prediction accuracy. In
addition, this study proves that 16 driving factors contribute
to the simulation and prediction of urban growth in Shanghai.
The relationship between human and natural driving factors
and land use change can be effectively integrated through the
FLUS model embedded with an ANN to obtain more real-
istic simulation results. However, if more influential drivers
and the latest land cover are employed, the prediction would
have higher accuracy. Second, future flood risks in coastal
areas are also not fully reflected through the use of hydro-
dynamic models, although these show higher accuracy than
the elevation area submergence method. On the one hand,

the LISFLOOD-FP model quickly simulates surface water
dynamics at relatively low computational cost through sim-
plified shallow water equations (SWEs); however, this also
means that it cannot adequately capture flood shock waves,
which affects the accuracy of 2D flood model simulations.
On the other hand, this study is based on the modeling re-
sults of DEM data, which may overestimate or underesti-
mate the simulation effect due to the error in the DEM data.
In addition, extreme-storm-surge and land subsidence data
are combined to enhance the reliability of the extreme-flood
forecast in this study. However, the change in the impervious
surface that affects hydrology has not yet been considered
in this study. When other land uses are converted to urban
land uses, the risk of flooding will also greatly increase due
to changes in the impervious surfaces. Therefore, it is nec-
essary to dynamically adjust relevant factors affecting flood
peak flows and risk in future forecasts to enhance the accu-
racy of prediction.

In the context of global climate change, extreme weather
in the future may become more and more serious, so it is nec-
essary to dynamically combine climate scenarios to develop
more accurate flood risk delineation methods to guide urban
planning in the future and rely on new technology and equip-
ment to provide data support. For example, unmanned avi-
ation vehicles (UAVs) are deployed around the coastline to
generate real-time information about weather conditions and
sea level changes (Cochrane et al., 2017). These tools will act
as a complement to existing information and early warning
systems, which can also provide guidance for coastal flood
risk management and urban planning in the future. Over-
all, although uncertainty cannot be avoided when assessing
coastal flood risk, the deviation of the proposed model out-
put is within an acceptable range, which ensures the accuracy
of coastal flood risk assessments.

5.2 Recommendations for strategies and policies for
urban adaptation to flooding

In the 21st century, adapting to climate change and coastal
flooding is a critical challenge for coastal cities. The human
response to the impacts of flooding largely depends on the
allocation of urban facilities and managers’ planning for fu-
ture urban development (Hunt and Watkiss, 2011; Jia et al.,
2022). Shanghai is considered one of the most protected Chi-
nese cities in terms of flood protection, yet the expected an-
nual disruption (EAD) / GDP ratio (EAD is the direct dam-
age to buildings and vehicles) is as much as 5 times that in
New York (Aerts et al., 2014). Therefore, there is an urgent
need to adopt flood risk adaptation strategies in Shanghai.

We conducted a set of comparative experiments to ana-
lyze the coastal flood damage in Shanghai with and without
flood walls (hard adaptation strategies). Our analysis consid-
ered the important effects of land subsidence and sea level
rise on flood risk. We found that the current flood protection
wall can reduce flood losses due to climate change to a rel-
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Table 3. Inundation of each land use type under different scenarios. The inundated areas of different land use types, including cropland,
woodland, grassland and urban land, were calculated for each scenario, where ∗ indicates new-growth areas of the urban class affected by
flooding.

Time Category Urban scenario Inundated areas (km2)

Cropland Woodland Grassland Urban land∗

2030 RCP2.6 BU 595.05 10.05 5.60 55.11
GE 618.95 12.12 5.84 30.92
GP 597.71 12.40 5.91 23.22

RCP8.5 BU 602.38 10.23 5.67 55.92
GE 625.97 12.29 5.91 31.23
GP 604.32 12.59 5.98 23.72

2050 RCP2.6 BU 662.64 13.56 5.25 110.19
GE 677.59 16.74 5.95 78.95
GP 651.24 15.66 5.46 67.55

RCP8.5 BU 683.56 15.06 5.70 115.53
GE 698.98 18.05 6.40 81.71
GP 672.30 16.85 5.91 70.36

atively low level (Fig. S4). In comparison, the flood protec-
tion wall constructed for the current conditions would reduce
the flooded area under the RCP8.5 scenario by about 35 %
and 36 % in 2030 and 2050, respectively. Furthermore, our
results show that the area of future urban flood risk varies
by scenario. Although the GE scenario gives higher values
than the GP scenario in terms of the flood inundation area,
this does not mean that the GE scenario is worse. From the
cases of advanced flood risk management countries such as
the Netherlands (Kabat et al., 2009; Song et al., 2018), an im-
portant lesson in success for future flood protection design is
to leave enough space along coasts for wetland migration and
leave space for nature. In other words, “soft strategies” such
as “working with rivers and nature” are considered in flood
protection measures. Therefore, from this perspective the GE
scenario may be a more likely future development scenario
among these three scenarios. In future, it is necessary to
learn from the practical experience of advanced countries to
strengthen the development and construction of coastal wet-
lands and tidal-flat ecosystems and further reduce residual
risk through the adaptive regulation of coastal ecosystems
and other soft strategies. In addition, the implementation of
soft strategies can increase the value of ecosystem services,
increase biodiversity and carbon sequestration, and improve
social welfare (Du et al., 2020).

6 Conclusion

Scenario-based assessment has been found to be a power-
ful approach in numerous flood risk studies. This study com-
bines an urban growth model with a two-dimensional flood
inundation model to not only simulate urban development
dynamics more accurately but also discard the shortcomings

of the traditional elevation inundation method of overesti-
mating inundation areas. We have also tested the resilience
of Shanghai to future different climate scenarios with the cur-
rent flood wall. The results of the study are beneficial to local
planners and coastal managers in making decisions regarding
future protected areas and developments.

This study employed three urban development scenarios
and detected the relationships of urbanization and climate
changes in 2030 and 2050. The results of the study show
that urban growth under the three scenario models manifests
significant differences in expansion trajectories, influenced
by key factors such as infrastructure development and policy
constraints. According to the predicted results of flood, new
built-up areas are also potentially vulnerable areas of flood
risk. New built-up areas under different scenarios show sig-
nificant vulnerability and exposure risk under different cli-
mate scenarios, even with the support of flood banks and
other hard structures. Additionally, the research provided sig-
nificant insights into the range and spatial distribution of
flood risk in future urban areas.

The current study is based on the multi-scenario analysis
of RCP global warming scenarios. In the future, the shared
socioeconomic pathways (SSPs) can be combined to predict
land use change, which make urban development scenarios
more realistic choices. The results of this study estimate the
future urban flood exposure areas, but this does not mean that
all flood-vulnerable areas will be flooded; it only means that
in these areas, the probability of each possible occurrence is
greater. Therefore, proper preparations (such as definition-
restricted development zones) can reduce the damage risk of
future flooding and build more resilient cities.
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