Articles | Volume 22, issue 9
https://doi.org/10.5194/nhess-22-2943-2022
https://doi.org/10.5194/nhess-22-2943-2022
Research article
 | 
06 Sep 2022
Research article |  | 06 Sep 2022

A satellite lightning observation operator for storm-scale numerical weather prediction

Pauline Combarnous, Felix Erdmann, Olivier Caumont, Éric Defer, and Maud Martet

Related authors

The operational 3DEnVar data assimilation scheme for the Météo-France convective scale model AROME-France
Pierre Brousseau, Valérie Vogt, Etienne Arbogast, Maud Martet, Guillaume Thomas, and Loïk Berre
EGUsphere, https://doi.org/10.5194/egusphere-2025-2642,https://doi.org/10.5194/egusphere-2025-2642, 2025
Short summary
Post-return stroke VHF electromagnetic activity in north-western Mediterranean cloud-to-ground lightning flashes
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
Atmos. Chem. Phys., 25, 1791–1803, https://doi.org/10.5194/acp-25-1791-2025,https://doi.org/10.5194/acp-25-1791-2025, 2025
Short summary
Assimilation of temperature and relative humidity observations from personal weather stations in AROME-France
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 25, 429–449, https://doi.org/10.5194/nhess-25-429-2025,https://doi.org/10.5194/nhess-25-429-2025, 2025
Short summary
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024,https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Assimilation of surface pressure observations from personal weather stations in AROME-France
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024,https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary

Cited articles

Allen, B. J., Mansell, E. R., Dowell, D. C., and Deierling, W.: Assimilation of pseudo-GLM data using the ensemble Kalman filter, Mon. Weather Rev., 144, 3465–3486, https://doi.org/10.1175/MWR-D-16-0117.1, 2016. a
Barthe, C. and Pinty, J.-P.: Simulation of a supercellular storm using a three-dimensional mesoscale model with an explicit lightning flash scheme, J. Geophys. Res., 112, D06210, https://doi.org/10.1029/2006JD007484, 2007. a
Bateman, M., Mach, D., and Stock, M.: Further Investigation Into Detection Efficiency and False Alarm Rate for the Geostationary Lightning Mappers Aboard GOES‐16 and GOES‐17, Earth Space Sci., 8, e2020EA001237, https://doi.org/10.1029/2020EA001237, 2021. a
Breiman, L.: Random Forest, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
Brousseau, P., Seity, Y., Ricard, D., and Léger, J.: Improvement of the forecast of convective activity from the AROME-France system, Q. J. Roy. Meteorol. Soc., 142, 2231–2243, https://doi.org/10.1002/qj.2822, 2016. a
Download
Short summary
The objective of this study is to prepare the assimilation of satellite lightning data in the French regional numerical weather prediction system. The assimilation of lightning data requires an observation operator, based on empirical relationships between the lightning observations and a set of proxies derived from the numerical weather prediction system variables. We fit machine learning regression models to our data to yield those relationships and to investigate the best proxy for lightning.
Share
Altmetrics
Final-revised paper
Preprint