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Abstract. This study aims at simulating satellite-measured
lightning observations with numerical weather predic-
tion (NWP) system variables. A total of eight parameters,
calculated with the AROME-France NWP system variables,
were selected from a literature review to be used as prox-
ies for satellite lightning observations. Two different proxy
types emerged from this literature review: microphysical and
dynamical proxies. Here, we investigate which ones are best
related to satellite lightning and calibrate an empirical rela-
tionship between the best parameters and lightning data. To
obtain those relationships, we fit machine learning regression
models to our data. In this study, pseudo flash extent accumu-
lation (FEA) observations are used because no actual geosta-
tionary lightning observations are available yet over France,
and non-geostationary satellite lightning data represent a
sample that is too small for our study. The performances of
each proxy and machine learning regression model are evalu-
ated by computing fractions skill scores (FSSs) with respect
to observed FEA and proxy-based FEA. The present study
suggests that microphysical proxies are more suited than the
dynamical ones to model satellite lightning observations with
the AROME-France NWP system. The performances of mul-
tivariate regression models are also evaluated by combining
several proxies after a feature selection based on a princi-
pal component analysis and a proxy correlation study, but
no proxy combination yielded better results than microphys-
ical proxies alone. Finally, different accumulation periods of
the FEA had little influence, i.e. similar FSS, on the regres-
sion model’s ability to reproduce the observed FEA. In future
studies, the microphysical-based relationship will be used as

an observation operator to perform satellite lightning data as-
similation in storm-scale NWP systems and applied to NWP
forecasts to simulate satellite lightning data.

1 Introduction

Thunderstorms that produce phenomena such as lightning,
flash flooding and hail are extreme, dangerous and destruc-
tive events. A better short-term prediction of those convec-
tive events could help to prevent some damage and warn the
population with sufficient lead time. Nevertheless, in spite
of the continuous improvement in numerical weather predic-
tion (NWP) systems, thunderstorms remain hard to predict
with high accuracy. This difficulty partly results from a lack
of storm-related observations to describe the initial state of
the atmosphere, especially over regions like oceans, moun-
tains and countries without ground-based radar networks.

Total lightning, i.e. cloud-to-ground (CG) and intra-
cloud (IC) lightning, is a good indicator to pinpoint thunder-
storms and evaluate their severity. According to Carey et al.
(2005), flashes tend to be initiated and are more frequent near
strong updrafts while being smaller in size than flashes in
stratiform regions of the cloud (Weiss et al., 2012). It has
also been shown that a fast increase in the lightning activity,
i.e. “lightning jump”, is related to thunderstorm intensifica-
tion (Schultz et al., 2009, 2011), in terms of updraft intensity
and the presence of hail and intense precipitation.

Because of the link between lightning activity and thun-
derstorm characteristics, lightning observations represent a
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potentially interesting source of information to initialize
NWP systems by adding lightning data assimilation (LDA).
Several studies have already demonstrated the potential of
LDA with different assimilation approaches at convection-
permitting resolution. Nudging methods have been employed
by Marchand and Fuelberg (2014) and Fierro et al. (2012),
and methods using an ensemble Kalman filter have been de-
veloped by Mansell (2014) and Allen et al. (2016). Varia-
tional approaches were investigated in more recent studies
by Fierro et al. (2016, 2019), Zhang et al. (2017), Hu et al.
(2020), and Xiao et al. (2021). A general improvement was
observed in accumulated precipitation for short term fore-
casts (≤ 3 h) when lightning data are assimilated.

The lightning data used in most of those stud-
ies (e.g. Marchand and Fuelberg, 2014; Fierro et al.,
2012, 2016, 2019; Hu et al., 2020) are either data from the
Geostationary Lightning Mapper (GLM) on the Geostation-
ary Operational Environmental Satellite-R (GOES-R) or data
mimicking GLM products when the study was prior to its
launch. Satellite lightning data present numerous advantages
including their large spatial coverage, providing observations
where ground-based radar data are scarce or nonexistent and
making them well-suited for convective-scale data assimila-
tion in limited-area NWP systems. By 2023, lightning ob-
servations from the Lightning Imager (LI) on board the Me-
teosat Third Generation satellite (MTG; MTG-LI) will be
available over Europe, Africa, the Atlantic Ocean and a part
of South America (Kokou et al., 2018). The LI will be able
to detect both IC and CG lightning, providing total lightning
information, day and night. One of the products that will be
provided by the LI is a flash count per pixel accumulated
over time and hereafter referred to as flash extent accumula-
tion (FEA1).

In modern data assimilation systems like variational or
ensemble-based systems, an observation operator is required
to establish a link between observations and the NWP sys-
tem background. For lightning observations, developing an
observation operator is not trivial since most operational
NWP systems do not include an electrification and light-
ning scheme. Indeed, the equations to relate the NWP sys-
tem prognostic variables and the microphysics to produce
an electric field are complex, non-linear and computation-
ally expensive (e.g. Barthe and Pinty, 2007; Mansell et al.,
2002). In consequence, the observation operator developed
in this study is based on empirical relationships between the
lightning observations and a set of proxies derived from the
NWP system variables, in a similar approach as used in the
assimilation papers mentioned above.

1Note that the FEA has been referred to as flash extent den-
sity (FED) in former studies but is often introduced with different
units (flashes per square kilometre, counts per minute, . . . ). For the
sake of clarification, the terminology FEA was adopted here, ex-
pressed in flashes.

The objective of the present study is to prepare the assimi-
lation of lightning satellite data in storm-scale NWP systems
by designing a suitable observation operator in the scope of
development of a new ensemble-variational (EnVar) assimi-
lation system for the French regional NWP system AROME-
France. The lightning data employed here are generated from
ground-based lightning data from the Météorage network
(Erdmann et al., 2022) to mimic the future MTG-LI data.
This paper is organized as follows. In Sect. 2.1 and 2.2 the
lightning generator to mimic the MTG-LI data and the NWP
system configuration are described. The list of the tested
proxies is detailed in Sect. 2.3, along with the way they are
retrieved from the prognostic variables of AROME-France.
Section 2.4 depicts the method to link the lightning pseudo-
observations to the selected proxies. The results for 10 min
FEA are presented in Sect. 3. In Sect. 4, both lightning threats
introduced by McCaul et al. (2009) are also investigated, and
the McCaul lightning calibration is reproduced to be com-
pared with the results of the method described here. The sen-
sitivity of the relationships established in Sect. 3 to the FEA
accumulation period is then studied in Sect. 5. Finally, Sect. 6
discusses and summarizes the main conclusions of the paper.

2 Data and methodology

In the context of the present study, 1 h forecasts from
the AROME-France assimilation cycle for 47 stormy days
in 2018, described in Table 1, were used to compute a set
of eight storm variables to be tested as proxies for MTG-
LI observations. Those storm variables are hereafter directly
referred to as “the proxies”. The 1 h forecast was chosen be-
cause it is the one carrying the least forecast errors: it avoids
the spin-up phenomena (large forecast errors in the first tens
of minutes due to an imbalance in the model fields) and lim-
its the model errors that increase after a few forecast hours.
Synthetic MTG-LI observations were generated for the same
47 d as targets to train observation operators first from indi-
vidual proxies and then from combinations of proxies based
on their individual performances and their inter-correlations
built on machine learning (ML) regression algorithms. In
the following, a brief description of the lightning generator
and the NWP system configuration is provided, as well as
a detailed description of each proxy and how they are re-
trieved from the AROME-France forecasts. Eventually, the
pre-processing applied to the data, the regression models and
the verification metrics are described in the last subsection.

2.1 MTG-LI synthetic observations

As mentioned in the introduction, the geostationary LI will
provide observations by 2023. The geostationary LI is an
optical sensor that detects the cloud top illumination due to
lightning with a resolution of 7 km at European latitudes and
4.5 km at its nadir. Total lightning activity will be detected
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Table 1. List of the days of 2018 used in the present study.

Dataset Month Day of month

Training

January 7, 8
February 1, 2
March 10, 30
April 28, 29
May 7, 8, 22, 25, 27, 28
June 3, 5, 9, 30
July 1, 3, 4, 15, 16, 20
August 12, 14, 22, 28
September 5, 6, 12
October 6, 7, 8, 9, 10, 15, 29
November 9, 20, 21, 22
December 3, 19

Validation August 7, 8, 9

Sensitivity study May 26

both day and night, but LI detection efficiency will most
likely vary with the time of the day and possibly with the
geographical position of the lightning activity within the LI
field of view. This assumption is based on related studies on
the Lightning Imaging Sensor (LIS) instrument on board the
International Space Station (ISS-LIS) and the GLM (Bate-
man et al., 2021; Peterson et al., 2017).

Erdmann et al. (2022) developed a method to generate
GLM pseudo-observations using lightning data from the Na-
tional Lightning Detection Network (NLDN), consisting of
ground sensors in the contiguous US, detecting both CG and
IC discharges. As the MTG-LI and GLM instruments are ex-
pected to provide similar observation and data structure, and
an intercomparison study between the NLDN and the French
Météorage low-frequency network performances relative to
the ISS-LIS instrument showed good consistency (Erdmann,
2020, Chap. II), the lightning generator can be used to pro-
duce synthetic MTG-LI observations using Météorage data
as entry data.

The simulation of synthetic observations is performed in
two steps. First, GLM (or MTG-LI in our case) flash char-
acteristics, such as flash duration or flash extent, are simu-
lated using ML supervised models (Erdmann et al., 2022).
The ML models have been trained with flash characteristics
of coincident NLDN and GLM flashes from a database of
10 lightning active days in the south-east of the USA, spread
over a 6-month period. The second step consists in generat-
ing the pseudo FEA gridded observations from the simulated
flash characteristics. The method was evaluated by compar-
ing the GLM synthetic observations with operational GLM
data. Erdmann et al. (2022) recommend the use of the linear
support vector regressor (LinSVR)-based generator since it is
the one yielding the best results overall. Consequently, all the
MTG-LI synthetic observations used in the present paper are
simulated with the LinSVR generator. A typical example of

Figure 1. Synthetic MTG-LI observation generated in the domain
of interest (in gray), accumulated over 10 min between 20:55 and
21:05 UTC on 7 August 2018.

a synthetic MTG-LI observation generated over France used
in this study is presented in Fig. 1 for an accumulation period
of 10 min between 20:55 and 21:05 UTC on 7 August 2018.

2.2 NWP system configuration

The AROME-France NWP system (Seity et al., 2011;
Brousseau et al., 2016) resolves deep convection with a hori-
zontal resolution of 1.3 km. It has been operational since the
end of 2008 with a major update in 2015 concerning its res-
olution and a reduction of the period of the data assimilation
cycle from 3 to 1 h. It is a limited-area NWP system with
a geographical domain shown in Fig. 2. AROME-France is
computed on 90 vertical levels with a maximum altitude of
10 hPa, but the levels are mostly concentrated in the tropo-
sphere. The model simulates 12 prognostic variables includ-
ing two components of the horizontal wind (U and V ), the
temperature T , specific content of water vapour qv and the
surface pressure p. The ICE3 microphysical scheme used
in AROME-France predicts 5 out of the 12 prognostic vari-
ables: specific contents of rain qr, snow qs, graupel qg (in-
cluding different types of large-rimed crystals like graupel,
frozen drops and hail), cloud droplets qc and ice crystals qi.
The proxies are derived from 1 h AROME-France forecasts
from the assimilation cycle and represent the state of the at-
mosphere at a fixed time (not accumulated). The choice of
the hourly forecasts is based on the duration of the current
assimilation cycle of the NWP system.

2.3 Description of proxies

This section focuses on eight different storm parameters and
their link with the FEA. The selected proxies are the fol-
lowing: the ice water path (Petersen et al., 2005), the up-
draft volume (Deierling and Petersen, 2008), the graupel
mass (Deierling et al., 2005), the maximum vertical veloc-
ity (Deierling and Petersen, 2008), the rimed particle col-
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Figure 2. The AROME-France domain and topography. The dashed
rectangle shows the limits of the sub-domain where the synthetic
MTG-LI data are generated. Locations mentioned in the text are
also indicated.

umn (Figueras i Ventura et al., 2019), the lightning potential
index (Yair et al., 2010), the upward graupel flux (McCaul
et al., 2009) and the vertically integrated ice water content
(McCaul et al., 2009). They all have already demonstrated a
strong correlation with either lightning density or lightning
flash rate and represent both dynamical and microphysical
properties of the cloud. Proxies are considered “microphys-
ical” if they rely on ice masses and “dynamical” if they de-
pend on vertical wind velocities. The original studies where
each of those proxies appears as well as the way they are re-
trieved from AROME-France background are described be-
low. Note that these proxies are not obtained in the same
way as in the original studies, where they were either sim-
ulated with a different NWP system than AROME-France or
measured with instruments with their own specific sensitiv-
ity and spatio-temporal resolution. Here, all the proxies are
calculated column-wise from AROME-France fields. Hence,
the objective of this work is to test their ability to reproduce
lightning observations with one proxy value per AROME-
France column, and results may not be comparable to the
original studies.

Other proxies were also investigated in the literature. A
lightning parameterization based on a fifth power depen-
dence between the flash rate and the cloud top height has
been established by Price and Rind (1992) (PR1992 here-
after) and introduced by Wong et al. (2013) in the Weather
Research and Forecasting (WRF) model. Nevertheless, sev-
eral case studies evaluated this relationship and recom-
mended either that other thermodynamical and microphysi-
cal variables should be used as a masking filter (Giannaros
et al., 2015), using the cold cloud depth instead (Yoshida
et al., 2009), or finding a relationship that slightly differs

from PR1992 parameterization (Karagiannidis et al., 2019).
As cloud top height alone does not seem to perform well in
pinpointing lightning activity, the PR1992 parameterization
was not included in this study.

2.3.1 Ice water path

Petersen et al. (2005) studied the relationship between light-
ning flash density and the vertically integrated precipitation
ice masses (referred to as the ice water path or IWP hereafter)
on a global scale using 3 years of Tropical Rainfall Measur-
ing Mission (TRMM) Lightning Imaging Sensor (LIS) and
Precipitation Radar observations. They transformed pixel-
level IWP and LIS flash counts to 0.5◦× 0.5◦ grids. Two
methods were then used to compare the IWP (kg m−2) and
the flash density (flashes per kilometre per day) statistics:
the first method uses IWP and flash densities coincidentally
observed over the area of individual 0.5◦ grid elements dur-
ing each TRMM overpass, and the second method uses time-
integrated means for those individual 0.5◦ grid squares. For a
more detailed description of the methods, see Petersen et al.
(2005). The relationship between the IWP and the flash den-
sity is established with a linear best fit, with a linear correla-
tion coefficient ranging from 0.97 to 0.99, depending on the
regime (land, ocean, coastal) and the method. For the pur-
pose of our study, the IWP is calculated for each column
from the altitude of −10 ◦C to the roof of AROME-France
(versus echo top for Petersen et al., 2005) as follows:

IWP=

roof∫
−10 ◦C

ρ
(
qs+ qg

)
dz , (1)

where ρ is the local air density (in kg m−3), and qs and qg are
the simulated specific contents of snow and graupel, respec-
tively.

2.3.2 Updraft volume

The updraft characteristics, such as updraft volume and the
maximum updraft speed, were investigated versus the to-
tal lightning flash rate measured by a lightning mapping ar-
ray (LMA) by Deierling and Petersen (2008) for a collec-
tion of thunderstorms in the High Plains and in northern Al-
abama. The updraft volume (m3) was retrieved using Doppler
radars and computed for vertical velocities greater than 5 or
10 m s−1 between −5 and −40 ◦C. Their results showed a
good correlation (linear correlation coefficient r = 0.93) be-
tween the updraft volume and total lightning flash rate. In our
AROME-France simulations, vertical velocities in convec-
tive regions are roughly between 3 and 15 m s−1 even though
some values can exceed 40 m s−1. However, those values oc-
cur in regions with very limited horizontal extension, smaller
than the FEA horizontal extension. To have a matching num-
ber of non-zero values of FEA and updraft volume, the up-
draft volume is here defined as the sum of grid cell volumes

Nat. Hazards Earth Syst. Sci., 22, 2943–2962, 2022 https://doi.org/10.5194/nhess-22-2943-2022



P. Combarnous et al.: A satellite lightning observation operator for storm-scale numerical weather prediction 2947

with vertical velocity higher than 1 m s−1 for each column
from −5 ◦C to the roof. The lower velocity threshold com-
pared to the literature is thus an adaptation to our AROME-
France model specifications.

2.3.3 Graupel mass

The graupel mass is one of the most investigated storm pa-
rameters as a proxy for lightning activity. Deierling et al.
(2005) used polarimetric radar data and total lightning mea-
surements from a 3D lightning very high-frequency (VHF)
interferometer system to compare trends in hydrometeor
types with total lightning frequency. The precipitable ice
(graupel and hail) trend was the most correlated one dur-
ing the studied storm life cycle (linear correlation coefficient
of 0.73). In our analysis, the graupel mass mg (kg) is com-
puted for each grid cell and summed over the column be-
tween −5 ◦C and the roof as follows:

mg =

roof∑
−5 ◦C

qg · ρ ·V , (2)

where V is the volume of the grid cell (in m3), and ρ and
qg are defined above.

2.3.4 Maximum vertical velocity

The maximum vertical velocity wmax (m s−1) was studied
as an updraft characteristic alongside the updraft volume by
Deierling and Petersen (2008). Their study exhibits a lin-
ear correlation coefficient of 0.82 between the time series of
mean total lightning per minute and the maximum updraft
speed for the 11 storms investigated. The maximum vertical
velocity in each column of the AROME-France field is used
for the present study.

2.3.5 Rimed particle column

The rimed particle column (hereafter called RPC, in m) is de-
scribed by Figueras i Ventura et al. (2019) as the difference
between the upper limit of the highest level where rimed par-
ticles are predominant and the lower limit of the lowest level
where those species are predominant. The data they used are
from a lightning measurement campaign that took place in
the Alps in 2017 where a LMA was deployed for the occa-
sion. The RPC was retrieved out of a hydrometeor classifi-
cation from radar data. They noticed an increase in lightning
activity from a RPC thickness of 3 km onward and a high
CG lightning activity when the RPC was larger than 8 km.
For the purpose of our study, the levels where rimed parti-
cles are predominant are the levels where the specific con-
tent of graupel qg is higher than each specific content of the
other hydrometeor variables. As mentioned above, the grau-
pel specific content gathers several types of large-rimed hy-
drometeor types.

2.3.6 Lightning potential index

Yair et al. (2010) developed a lightning potential index (LPI,
in J kg−1) as a parameter to predict lightning. The objective
of this index is to use the model output of microphysical pa-
rameters in conjunction with the vertical velocity field to pa-
rameterize the potential for charge generation and separation
within the charging zone (0 to −20 ◦C). Yair et al. (2010)
compared the simulated LPI from WRF for several Mediter-
ranean flash flood cases with lightning observations from two
sources: the Israeli Electrical Company LPATS system and
the ZEUS European network. In our study, as well as in that
of Yair et al. (2010), the LPI is calculated for each column as

LPI=
1
V

∫ ∫ ∫
εw2dxdydz , (3)

with V being the volume of the column between 0 and
−20 ◦C (in m3),w the vertical velocity of the wind (in m s−1)
and ε a dimensionless number defined as

ε = 2
√
QiQl

Qi+Ql
, (4)

where Qi is the ice fractional mixing ratio and Ql the total
liquid water mass mixing ratio defined by

Qi = qg

(√
qsqg

qs+ qg
+

√
qiqg

qi+ qg

)
, (5)

Ql = qr+ qc , (6)

with the specific contents qg, qs, qi, qr and qc described in
Sect. 2.2.

2.3.7 Upward graupel flux (F1) and vertically
integrated ice content (F2)

McCaul et al. (2009) developed a parameterization to fore-
cast lightning threat using two different parameters and a
blended approach where those two parameters are weighted
to take advantage of the strengths of each. The first parame-
ter, hereafter called F1, is the simulated upward graupel flux
in the −15 ◦C layer for each column (in m s−1) calculated as

F1= w · qg. (7)

The vertically integrated ice content (F2, in kg m−2) is the
second parameter investigated by McCaul et al. (2009). The
quantity is integrated over the whole column as

F2=
∫
ρ
(
qs+ qg+ qi

)
dz , (8)

with the same variables as previously introduced. Note that
in the study of McCaul et al. (2009), F1 and F2 are the names
of the functions linking the parameters to the lightning den-
sity, whereas in our study F1 and F2 refer to the parameters
themselves.
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In the study of McCaul et al. (2009), both parameters are
simulated using WRF, with resolved deep-convection, for
seven case studies from the northern Alabama region. The
flash rate density is derived from lightning observations mea-
sured by the northern Alabama LMA by regrouping VHF
sources into flashes and mapping them on a 1 km resolution
grid. However, it is the flash origin density, which assigns
a unit value to the grid cell where a flash initiates, that is
mainly used in their study. The calibration of F1 and F2 func-
tions is obtained by extracting and comparing the maximum
flash origin density and the maximum simulated parameters
from each of these seven simulated cases. The functions F1
and F2 linking the flash origin density and each parame-
ter are estimated with a linear regression using a reduced
major-axis technique and an intercept forced at the origin.
The study of two successful WRF simulation cases where the
observed and simulated flash densities are compared demon-
strated that F1 captures much of the temporal variability in
the observed peak lightning flash density, whereas F2 repro-
duced the areal coverage of lightning density better. In conse-
quence, the blended approach is a linear combination of both
functions, weighted more heavily toward F1 because they es-
timated that a small contribution of F2 would be sufficient to
provide the desired increase in areal coverage. The blended
parameter F3 is then defined as

F3= r1 ·F1+ r2 ·F2 , (9)

where r1 = 0.95 and r2 = 0.05. This blended parameteriza-
tion is tested for our dataset, using the same calibration tech-
nique, and the results are presented in Sect. 4. Both of the pa-
rameters are also studied herein individually and treated with
the same method as the other proxies described in Sect. 2.4.

2.4 Methodology

The aim of our study is to establish a certain relationship be-
tween the proxies and the FEA observations. Therefore, we
fit linear and non-linear ML regression models to observa-
tions and simulations from 44 d of 2018, listed in Table 1,
to yield this relationship. Those days are referred to as the
training set and were selected either because of their high
lightning activity in terms of strokes and pulses detected by
Météorage or because severe events relative to thunderstorms
such as flooding or wind gusts have taken place. They were
also chosen to represent the annual distribution of thunder-
storms, with a larger number of days selected in summer
months. Then, 3 additional days (7–9 August) constitute the
validation set to evaluate the relationships established during
the training process. One day (26 May) is used for a sensi-
tivity study to the accumulation period (Sect. 5). In the con-
text of this sensitivity study, FEA with accumulation periods
of 5, 10, 15, 20, 30 and 60 min were investigated. However,
it is the 10 min FEA that was used to compare the proxies’
performances (following section), centred at the correspond-
ing time of the AROME-France analysis. The variability in

Figure 3. Domain-wide maximum FEA for each 10 min of each
day of the training dataset. The FEA is calculated on 7 km per 7 km
pixels.

the training dataset is studied in Fig. 3, showing the domain-
wide FEA maximum for each 10 min period of each day of
the dataset. The majority of lightning activity takes place be-
tween May and October, and the diurnal cycle peaks during
afternoon and evening time, between 12:30 and 23:00 UTC,
reaching FEA values higher than 500 flashes per 7 km by
7 km pixel in 10 min. To compare the representativeness of
the training and validation datasets, histograms of all the
10 min FEA values greater than 0 for each 7 km by 7 km
pixel within the domain for each 10 min period from both
of these datasets are plotted in Fig. 4. The null FEA values,
accounting for 98.71 % and 97.15 % of the total amount of
10 min FEA data for the training and the validation datasets,
respectively, are discarded. Both histograms are normalized
to their maximum binned value, indicated in Fig. 4’s caption.
The validation dataset presents a higher proportion of 10 min
FEA greater than 10 flashes than the training dataset likely
due to the selection of the validation dataset as summertime
thunderstorms.

First, the proxies are calculated with the 1 h AROME-
France forecasts at a horizontal resolution of 1.3 km. Then,
they are projected on the FEA 7 km grid by selecting the
closest value to the FEA pixel centre. One FEA grid contains
roughly 30 000 pixels, and data from every hour of 44 d are
used, so the dataset is composed of ∼ 107 samples. One can-
not expect the NWP system to simulate individual convective
cells in the exact time and location as the observed storm be-
cause of typical time and space displacements of convection
in the system by more than the FEA time and space reso-
lutions. In consequence, a pixel-to-pixel comparison is not
performed. We make the assumption that each proxy is an
increasing function of the FEA which means that the sorted
values of the FEA will be compared against the sorted values
of the proxy to fit the regression models. To do so, the data
from the whole time period and domain (i.e. dashed rectan-
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Figure 4. Histograms of all 10 min FEA values greater than 0
for each 7 km by 7 km pixel for the training dataset and the val-
idation dataset, both normalized to their maximum binned value,
i.e. 1 955 622 for the training and 270 310 for the validation.

gle in Fig. 2) are stacked, and the proxy and the FEA are
sorted independently in increasing order. After this step, they
no longer have time and space dependence. Then, all data
points with proxy values equal to zero are disregarded. This
classification allows us to identify a proxy threshold Xth cor-
responding to the first non-zero FEA value that can be inter-
preted as the minimum required amount of the proxy quantity
to observe lightning.

Finally, the data are normalized to the [0, 1] range to per-
form the regressions. All the results presented in this paper
are re-scaled to physical units.

To relate each proxy individually to the FEA, five re-
gression models were tested: an ordinary least squares
linear regression (LinReg), a cubic polynomial regres-
sion (PolyReg3), a linear support vector regressor (LinSVR),
a multi-layer perceptron (MLP) with 20 hidden layers and a
random forest regressor with 20 decision trees (RF20). The
depth of the trees was unbounded. All the regression models
were implemented in Python using the Scikit-Learn package.
For the linear regressions (LinReg and LinSVR), the estab-
lished function f (proxy) is piecewise-defined so that the re-
gression is performed only with the non-zero points:

f (proxy)=
{

0 if proxy<Xth
a · proxy+ b if proxy>Xth

, (10)

where a and b are the coefficients of the linear regression
curve. For the PolyReg3, the MLP and the RF20, the regres-
sion is performed on all the data. As the RF20 regression
algorithm is a model that cannot extrapolate, the non-zero
proxy values that correspond to a null FEA need to be kept
to be learned by the model.

After the fit or training, the skill of each model is assessed
with the coefficient of determination R2 defined as

R2
= 1−

n∑
i=1
(yi − ŷi)

2

n∑
i=1
(yi − y)

2
(11)

for an ensemble of n samples where ŷi is the predicted value
of the ith sample, yi is the corresponding observed value, and
y is the mean of all observation values. Since the R2 score is
sometimes very close to 1 in our study, it is calculated as
1−R2 in the plots and table for the sake of easy monitoring,
but the text discusses the R2 score. This score is also com-
puted on the validation set in order to measure the model’s
predicting ability on an independent dataset.

The validation consists in (i) verifying if the established
regression models fit a dataset independent to the one it was
trained with and (ii) comparing the resemblance between a
FEA field calculated with the regression models and the ob-
served FEA using the fraction skill score (FSS; Roberts and
Lean, 2008). The FSS is computed using the fast calculation
method introduced by Faggian et al. (2015) to evaluate the
displacement error of the modelled FEA values compared to
the observed ones for the validation set. The FSS is a neigh-
bourhood verification score in which the spatial distribution
of events is treated probabilistically, which is particularly
valuable for data with a small horizontal grid spacing. For
fractions po and pf of observed and forecasted events, de-
fined as the ratio of the number of pixels with values higher
than a fixed threshold and the total number of pixels in a de-
fined neighbourhood size (behaving as a sliding window), the
FSS can be written as

FSS= 1−

1
N

N∑
i=1
(pf−po)

2

1
N

N∑
i=1
p2

f +
1
N

N∑
i=1
p2

o

, (12)

where N is the total number of windows in the domain, de-
pending on the size of this window. This score lies between 0
and 1 and is typically computed for a large number of win-
dow sizes and plotted as a function of these window sizes. It
allows us to determine the scale at which the target skill is
reached. According to the conclusions of Skok and Roberts
(2016), the target skill can be set at 0.5 if the frequency of
events is smaller than 20 % over the domain, which is our
case. This target scale is the scale at which the forecast can
be considered skilful and therefore “useful” (Mittermaier and
Roberts, 2010). To obtain the mean FSS over consecutive
hours, the mean values of the numerator and denominator
of the fraction are calculated individually and injected in
Eq. (12).
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Figure 5. Daily FEA for (a–c) 7, 8 and 9 August 2018 and (d) 26 May 2018.

3 Results for 10 min FEA

The performances of the proxies to predict lightning individ-
ually or in combination have been evaluated for the 3 val-
idation days (7–9 August 2018, Table 1). On the first day,
7 August 2018, convection started at 12:00 UTC with several
convective cells located in the Pyrenees and from Brittany to
Normandy (see Fig. 2 for the locations). It intensified dur-
ing the day, with hail and wind gusts associated with this
convection. Ground level wind speeds of 112 km h−1 were
measured at Cape Bear, east of the Pyrenees. At the end of
the day, from 17:00 UTC, thunderstorms are also observed
in central France, moving north-eastward, and in the Alps as
well. FEA accumulated over the day is shown in Fig. 5. On
the second day, 8 August 2018, several small storms scat-
tered over the Alps and Corsica appeared at 13:00 UTC. The
lightning activity generally extended in the south-east region.
From 18:00 UTC, lightning activity started west of the Pyre-
nees and propagated north-eastward during the night of 8 to
9 August. A convective system formed above the Cévennes–
Vivarais region around 03:00 UTC on 9 August and remained
active all morning. It moved towards the Mediterranean coast
in the afternoon. This storm was associated with intense pre-
cipitation (101.3 mm were measured at Aubagne at the end of
the day) and a high density of lightning strokes, reaching val-
ues higher than 6000 flashes accumulated over the day (see
Fig. 5c) on a 7 km× 7 km grid.

3.1 Univariate models

The results of the fitting on the training set for all the re-
gression models are presented in Figs. 6 and 7 for the grau-
pel mass and wmax, respectively (other proxies not shown
here). Because data from the all the training days are con-
catenated and sorted, scatter plots of FEA versus each proxy
are monotonic increasing curves. The lower FEA values, be-
low 100 flashes, are well fitted with all the regression models
for the graupel mass and wmax, but their predominance in the
dataset (see colour shades in Figs. 6 and 7) weighs the regres-
sion curves of the LinReg and LinSVR models too heavily. In
consequence, the higher FEA values are not well fitted by the
LinReg and LinSVR models, resulting in lower R2 scores.
All the scores for the training of each proxy with every re-
gression model are summarized in Table 2. For all the prox-
ies, the linear regressions LinReg and LinSVR present lower
performances than the other three models, with R2 scores
ranging from 0.438 (LinSVR, F1) to 0.938 (LinReg, graupel
mass). The MLP and RF20 models present R2 scores very
close to 1, systematically higher than 0.99 for all the prox-
ies. Scores for the PolyReg3 range between 0.971 (F1) and
0.999 (IWP).

The RF20 regression algorithm being the one presenting
the best training performances as shown in Table 2, only the
validation for this model is shown in Fig. 8 for the sorted
distribution over the 3 d of validation for the graupel mass
(Fig. 8a) and wmax (Fig. 8b). Other proxies are not shown
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Figure 6. Model training curves in black for (a) linear regression, (b) linear support vector machine, (c) cubic polynomial regression,
(d) multi-layer perceptron and (e) random forest regression overlaid on the global sorted distribution of observed FEA versus simulated
graupel mass in white. The colour shades represent the number of points in each bin of 0.13× 107 kg width.

Figure 7. Same as Fig. 6 but for the maximum vertical velocity (wmax) and number of points in the bin of 0.974 m s−1.

here because they present very similar curves. Inspection of
Fig. 8 suggests a good fit for graupel mass and wmax since
the predicted FEA are very close to the observations, and
this is confirmed by a R2 score higher than 0.94 for wmax
and higher than 0.98 for the graupel mass. Overall, the lowest
score at the validation is 0.467 and is obtained for the updraft
volume, and the highest is for the IWP with R2

= 0.989.

A good fit on the validation set is not enough to conclude
on the ability of a proxy to predict lightning at the right posi-
tion and time. In consequence, the FEA is computed for each
hour for a given proxy of the validation dataset and com-
pared to the observed FEA using FSS. As stated in Sect. 2.2,
the proxies are calculated using 1 h AROME-France fore-
casts from the assimilation cycle. Figure 9 shows a typical
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Table 2. The 1−R2 score for each regression model and each proxy at the training.

Proxy PolyReg3 MLP RF20 LinReg LinSVR

RPC 2.44× 10−2 1.71× 10−3 4.72× 10−7 3.36× 10−1 4.90× 10−1

F1 2.92× 10−2 8.17× 10−4 1.90× 10−3 2.04× 10−1 5.62× 10−1

F2 3.27× 10−3 1.52× 10−3 3.43× 10−4 1.20× 10−1 1.72× 10−1

Graupel mass 1.34× 10−3 9.72× 10−4 3.91× 10−7 6.14× 10−2 8.18× 10−2

IWP 5.97× 10−4 1.12× 10−3 3.56× 10−7 9.18× 10−2 1.31× 10−1

LPI 2.19× 10−2 1.08× 10−3 7.50× 10−4 1.80× 10−1 4.49× 10−1

Updraft volume 2.41× 10−2 4.17× 10−3 4.37× 10−7 2.21× 10−1 3.51× 10−1

wmax 1.39× 10−2 6.06× 10−3 1.93× 10−3 8.80× 10−2 1.31× 10−1

Figure 8. Sorted distribution for the validation set of the observed FEA versus the simulated graupel mass (a) and maximum vertical
velocity (b) in white. Black dots correspond to the FEA predicted by the RF20 regression.

example of the observed and modelled 10 min FEA fields
using the RF20 regression model with the graupel mass, a
microphysical proxy, for 9 August 2018 at 13:00 UTC. The
minimum observed FEA value is 1 flash, and the colour map
is in log scale. The lightning activity observed in the north-
east of Spain is well reproduced by the regression model, as
well as the storms above the south-east of France, although
slightly shifted northwards because of the displacement er-
ror of the graupel mass forecast from the NWP system. On
the other hand, the lightning flashes observed above Corsica
are not well reproduced by the RF20 regression model even
if graupel has been simulated. The FSS is calculated for two
different thresholds: the 1-flash threshold includes all the ob-
servations and predictions with values equal to or higher than
1 flash, and the 10-flash threshold is stricter and indicates
the ability of the regression model to reproduce the high val-
ues of FEA. The lower threshold is often associated with a
greater FSS since it implies larger areas that are less prone to
displacement errors. For this example, the 1-flash FSS is par-
ticularly high, already higher than the FSS target at the small-
est neighbourhood size meaning that the forecasts, both the
NWP forecast and the prediction from the regression model,
are already useful at the FEA scale.

Similarly to Fig. 9, Fig. 10 presents the results for the FEA
modelled with the RF regression model using wmax, which

is a dynamical proxy. In Fig. 10b, only the maximum vertical
velocities higher than 1 m s−1 are shown. The FSS indicates
a less successful prediction for the FEA than with the graupel
mass, and this conclusion is supported by a visual inspection
of the structure of the modelled FEA in Fig. 10c. The FEA
built from wmax presents isolated structures with a lower
spatial coverage than the FEA computed from the graupel
mass, resulting in less coincident spatial overlaps between
observed and simulated FEA.

This difference of structure in the modelled FEA can be
observed for all the microphysical proxies versus the dynam-
ical ones, as well as for any validation hour. Indeed, the FEA
modelled with either the IWP or F2 presents very similar re-
sults compared with the graupel mass both in terms of spatial
coverage and FEA amplitude for a given time (not shown).
In contrast, when modelled with F1 or the updraft volume,
the FEA is scattered on the map in a similar pattern to FEA
computed with wmax, as in Fig. 10c. This areal coverage
difference between flash extent predicted with either F1 or
F2 was already emphasized by McCaul et al. (2009). FEA
modelled with the rimed particle column, identified here as
a microphysical proxy, presents also the same characteris-
tics as with the graupel, i.e. in terms of spatial coverage and
amplitude. Interestingly, when the observed FEA is plotted
as a function of the rimed particle column thickness for the
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Figure 9. Spatial distribution over the studied domain for 9 August 2018 of (a) the observed FEA between 12:55 and 13:05 UTC,
(b) AROME-France simulated columnar graupel mass valid at 13:00 UTC, and (c) RF20-based modelled FEA for 12:55 to 13:05 UTC
using the graupel mass. Panel (d) shows the FSS for the observed versus modelled FEA plotted as a function of the neighbourhood size.

training distribution, the curve presents a net increase in FEA
when the RPC reaches 3500 m, a close value to the 3000 m
described in Figueras i Ventura et al. (2019), showing con-
sistency between both our studies. The LPI is more difficult
to classify since it is a product of both microphysical and dy-
namical terms. However, the FEA modelled using the LPI is
very similar to the one obtained with wmax. In consequence,
we consider the LPI as a dynamical proxy.

The examination of the FSS calculated for the whole
validation period for FEA predicted with the RF20 model
(Fig. 11) highlights the difference of performance between
these two types of proxies. The microphysical proxies sys-
tematically score better than the dynamical ones for the two
different thresholds. It is however difficult to conclude on
the best proxy among the IWP, the graupel mass, F2 and the
rimed particle column because the differences are not signif-
icant as the confidence intervals overlap (not shown here).
The FEA forecasts beyond 1 flash obtained with the mi-
crophysical proxies require neighbourhood sizes ranging be-
tween 50 and 70 km to reach skilful spatial scales, whereas
the target skill is never reached whatever the range for the
dynamical proxy-based FEA.

Although results were depicted mainly for the RF20 model
in this section, the FEA modelled with the other regression
models presents very similar characteristics, with FEA am-
plitudes slightly lower with LinReg and LinSVR. For ex-
ample, for the same situation as above, 9 August 2018 at
13:00 UTC, domain-wide maximum modelled FEA values
are 174, 204, 265, 269 and 269 flashes for LinSVR, LinReg,
MLP, PolyReg and RF20 regression models, respectively, for
an observed value of 412 flashes. The general underestima-
tion of domain-wide maximum FEA occurred for this spe-
cific case; however, we do not see a general negative bias of
FEA maximum.

3.2 Multivariate models

The objective here is to take advantage of the information
contained in several proxies by combining them into a mul-
tivariate regression model. A problem arose here because
of the high correlation between some of the proxies, called
features in ML, as derived from the same fields from the
AROME forecast. The multicollinearity among the features
is demonstrated when trying to assess the importance of each
feature using the permutation feature importance method
(Breiman, 2001). The goal of this method is to determine
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Figure 10. As in Fig. 9 but with the maximum vertical velocity, wmax.

Figure 11. Mean FSS of the whole validation period for all the proxies for (a) 1-flash threshold and (b) 10-flash threshold for RF20-
based FEA.

how much the performance of a model relies on a single fea-
ture by calculating the difference between the R2 score from
the original dataset for a given regression model and the score
when one feature of the dataset is randomly shuffled. If the
shuffled feature is important, the score difference should be
large. However, when the permutation feature importance is
calculated on our training dataset, the score differences for
the random forest regression model are all smaller than 0.1
(not shown), which suggests that none of them are important.
This is in contradiction with the results presented in Sect. 3.1

with high skill for most proxies, meaning that when a fea-
ture is corrupted, very similar information can be found in
another one. Multicollinearity is a problem because it de-
creases model accuracy and robustness and increases over-
fitting (Cohen et al., 1983; Neter et al., 1996; Chatterjee and
Hadi, 2006). To avoid these issues, we went through a pro-
cess of features selection using two different methods: (i) hi-
erarchical clustering on the Spearman correlation rank-order
features to study their correlation and drop redundant vari-
ables and (ii) a principal component analysis (PCA).
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Figure 12. (a) Dendrogram of the Spearman rank-order correlations of the proxies and (b) correlation matrix.

First, the correlations between the proxies are examined
more profoundly by measuring their Spearman correlation
coefficients. This coefficient is a non-parametric measure of
the rank correlation between two variables. The more the
variables are monotonically related, the higher the coefficient
is. The coefficient values for the studied proxies are displayed
on a dendrogram and a correlation matrix in Fig. 12. Overall,
the dendrogram reveals two main clusters: one composed of
the IWP, F2, the graupel mass and the LPI and another one
that contains the updraft volume, wmax, F1 and the RPC.
Colour shades of the correlation matrix highlight the fact that
the members of the first cluster, IWP, F2, graupel mass and
LPI, present a stronger correlation than any member of the
second cluster. As expected, the IWP and F2 are the most cor-
related features, because they are deduced from practically
the same AROME fields: the difference lies in the mixing ra-
tio of ice taken into account in F2 and an integration column
smaller for the IWP. Surprisingly, the RPC is more correlated
with F1, wmax and the updraft volume than with the other
microphysical proxies, and the LPI is closer to the graupel
mass than to wmax. The objective is then to select one fea-
ture per cluster and fit a random forest regression algorithm
with them. This time, a forest of 64 trees was grown, and the
depth of the trees was set to 80. According to Oshiro et al.
(2012), a forest of 64 to 128 decision trees is recommended
to reach a good balance between processing time, memory
usage and performance. The depth of tree was set to 80 be-
cause no improvement in performance was observed beyond,
only an increase in processing time. Several proxy combina-
tions were tested, and the best results were obtained when
graupel mass and wmax were selected. Figure 13a shows the
FEA modelled when the RF algorithm is trained with these
two proxies, for the same validation hour as Figs. 9 and 10,
i.e. on 9 August 2018 at 13:00 UTC. The general areal cov-

erage is very similar to what was predicted with the graupel
mass alone, especially in the south of France and north-east
of Spain, with some additional isolated patches that can be
attributed to the contribution of wmax, for example over Cor-
sica. However, they do not improve significantly the overall
prediction compared to the graupel mass alone, and this is
also demonstrated with the FSS for the whole validation pe-
riod shown in red in Fig. 14. Other combinations were tested,
for instance using the updraft volume and the IWP, for which
the FSS is plotted as well in Fig. 14, but the performances
were all quite similar.

The PCA is a dimension reduction technique that cre-
ates new uncorrelated variables with linear combinations of
each feature from the original dataset (Jolliffe and Cadima,
2016). The linear coefficients are called the principal com-
ponent (PC) loadings and are calculated such that the PCs
have successively a maximum variance. The proportion of
total variance explained by each PC is often expressed as a
percentage, and only the first PCs that cumulatively explain
70 % of the total variance are kept (common cut-off point ac-
cording to Jolliffe and Cadima, 2016). In our case, the PCA
is applied to the non-sorted standardized (mean equals 0 and
standard deviation 1) array of stacked column-wise features.
Analysis of the cumulative explained variance ratios (not
shown) reveals that only the first two PCs are required to de-
scribe at least 70 % of the variance. The random forest regres-
sion algorithm is then fitted with the selected PCs that were
sorted beforehand. The same transformation to a dimension-
ally reduced dataset is applied to the validation dataset. The
FEA is then calculated for each hour of the validation. Fig-
ure 13b depicts the FEA modelled using the first two PCs for
9 August 2018 at 13:00 UTC. It presents little to no differ-
ence with the FEA modelled using simultaneously graupel
mass and wmax, highlighting the contribution from both mi-
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Figure 13. FEA modelled using (a) graupel mass and wmax simultaneously and (b) the first two principal components of a dataset composed
of all the proxies for 9 August 2018 at 13:00 UTC.

Figure 14. Same as Fig. 11 but the FSS for individual proxies are overlaid with the FSS for some multivariate models in red.

crophysical and dynamical proxies. The FSS for multivariate
models using either the first two PCs or the first five PCs are
plotted in Fig. 14 as well. Overall, they do not present a clear
improvement compared to microphysical proxies alone.

4 Comparison with the McCaul et al. (2009) calibration

The objective of this section is to compare the above-
introduced calibration method, in which regression func-
tions are calibrated with concatenated and sorted data from
the training dataset, to the one developed by McCaul et al.
(2009). Indeed, their lightning forecasting algorithm is in-
corporated in several convection-resolved forecast NWP sys-
tems, for example WRF (McCaul et al., 2020), and is of-
ten used as a comparison for lightning forecasts (e.g. Lynn,
2017). To follow a similar method, only the domain-wide
maxima of the FEA observations and of simulated F1 and
F2 are extracted for each day of the training set and plot-
ted in Fig. 15. The FEA observations present a moderate

correlation with the proxies, with Pearson correlation coef-
ficients r = 0.70 for F1 and r = 0.74 for F2. The linear best-
fit curves obtained with the reduced major-axis regression
(Fig. 15) have slopes of 7231 flashes per metre second and
10.14 flashes per kilogram metre squared for F1 and F2, re-
spectively, with an intercept forced at the origin. Hence, the
blended function F3 described by Eq. (9) can be written as

F3= 0.95(7231 ·F1)+ 0.05(10.14 ·F2). (13)

The 10 min FEA is modelled for every hour of the vali-
dation period successively with F1, F2 and F3. An example
for 9 August 2018 at 13:00 UTC is shown in Fig. 16. From
a visual inspection of Fig. 16b and c, the same conclusion
as McCaul et al. (2009) can be drawn regarding the areal
coverage of the FEA modelled with F1 and F2 individually:
while F2 widely overestimates the areal coverage of the FEA,
F1 presents scattered and isolated features and an areal cov-
erage lower than the observed one. The blended approach
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Figure 15. Domain-wide maximum observed FEA versus (a) simulated F1 and (b) simulated F2 with regression curves obtained with the
reduced major-axis regression technique.

Figure 16. Observed FEA for 9 August 2018 at 13:00 UTC (a) and FEA modelled with F1 (b), F2 (c) and F3 (d).

seems to reproduce the observed areal coverage better, in a
similar pattern to what was obtained with the microphysi-
cal proxies with our method. However, the amplitude of the
FEA is underestimated, with maxima reaching fewer than
32 flashes, whereas the observation reaches values beyond
400 flashes for this specific example. This underestimation
of high values is highlighted by the FSS for the whole val-
idation period, shown in Fig. 17. For F3 FEA, the 10-flash
FSS is very low, lower than 0.2 for horizontal scales up to

130 km, implying that only a few values beyond 10 flashes
are modelled compared to what is observed. It means that
taking only the maximum values to fit the regression func-
tion, as in McCaul et al. (2009), is not enough to represent
the dataset variability.

Ultimately, the F3 function presents a simple empirical
way to forecast lightning density using both microphysical
and dynamical properties of the cloud and was able to repro-
duce the areal coverage quite well overall for the validation
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Figure 17. FSS for the whole validation period for FEA modelled
with F1, F2 and F3 for two different thresholds.

period. However, the predicted F3 FEA values have an am-
plitude that is too low, whereas our method, in which all data
from the training dataset are used to fit the regression models,
produces FEA with values closer to the observed ones.

5 Sensitivity to the FEA accumulation period

The sensitivity of the relationship between a proxy and ob-
served FEA to the accumulation period of the FEA has been
evaluated. In the following, the graupel mass is the proxy se-
lected to perform the study because it is one of the proxies
presenting the strongest correlation with the FEA (R2 > 0.9
for all regression models on the validation set). Only the cu-
bic polynomial regression model is considered for this sensi-
tivity study.

The method to calibrate the regression functions is quite
similar to the one described in Sect. 2.4: graupel mass is ex-
tracted from the 1 h AROME forecasts from the assimilation
cycle, and observed FEA accumulated successively on 5, 10,
15, 20, 30 and 60 min are generated for every day of the train-
ing dataset (44 d). In most 3D-Var-like data assimilation sys-
tems, the observations from a whole time window are assimi-
lated against NWP system state at a single time step, the anal-
ysis time t , and NWP system variables are only available at
this time. So the graupel mass is not accumulated; it is an in-
stantaneous data field, valid at time t . The FEA accumulation
period is always centred on this analysis time t , with a time
step of 5 min. For instance, the 10 min FEA is accumulated
between t − 5 and t + 5 min, but the 15 min FEA is accumu-
lated between t−5 min and t+10 min. Data from the whole
training dataset are concatenated, flattened and sorted. Points
where both graupel mass and FEA are null are removed, and
model fitting is performed on normalized data. To compare
the observed and modelled FEA for different time accumu-
lations, they are all divided by their respective accumulation
period to obtain comparable products expressed in flashes per
minute and hereafter called flash extent rate (FER).

The date of 26 May 2018 was selected to study the in-
fluence of the different accumulation periods. On this day,
a series of storms formed in the north of Spain, west of

Figure 18. FER observed on 26 May 2018 at 17:00 UTC for various
accumulation times.

the Pyrenees at 08:00 UTC. These cells propagated north-
ward, following the Atlantic coast, arriving above Bordeaux
at 11:00 UTC. At around 13:00 UTC, these systems evolved
into a bow echo. The bow echo continued its route toward
Normandy and Great Britain and left our domain of interest
at 22:00 UTC. For a more detailed description of the event,
see Mandement and Caumont (2020).

This event was chosen because of its high propagation
speed, approximately 50 km h−1 on average, which should
emphasize the effects of the various accumulation times on
the performance of the graupel mass-based FEA model. Fig-
ure 18 is an example presenting observed FER for four differ-
ent accumulation times, 5, 10, 30 and 60 min, all centred on
26 May at 17:00 UTC. One can notice the spreading of FER
areal coverage northward and southward when the accumu-
lation time increases. Only the western half of the domain
is considered (grey background in Fig. 18) in order to focus
on the bow echo event and avoid other lightning activity that
may mislead the calculation of the FSS.

The polynomial regression curves obtained from the train-
ing set with various accumulation times are plotted in
Fig. 19a. For graupel mass values lower than 0.5×107 kg, the
regression curves are coincident, meaning that there would
be no difference in the predicted FER with various accu-
mulation times for those graupel mass values. The study of
the distribution of the non-zero graupel mass values for the
time period of interest, 13:00 to 22:00 UTC on 26 May 2018
(Fig. 19b), indicates a large predominance of low graupel
mass values, with 99.7 % of them being lower than 0.55×
107 kg. In consequence, the graupel mass values that would
imply a variation in the modelled FER for the different accu-
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Figure 19. (a) Regression curves for various accumulation times and (b) distribution of the non-zero graupel mass values simulated between
13:00 and 22:00 UTC on 26 May 2018.

Figure 20. FSS for the bow echo lifetime period, 13:00 to 22:00 UTC on 26 May 2018, for all the accumulation times tested with two
different thresholds.

mulation times are hardly reached, resulting in very similar
FER. Those resemblances are highlighted by the FSS, plot-
ted for the bow echo lifetime period, 13:00 to 22:00 UTC, in
Fig. 20. Thresholds are set at 0.1 and 1 flash per minute to
be consistent with previous sections’ FSS thresholds set at
1 and 10 flashes for an accumulation time of 10 min. First,
it can be noted that the FSS target is reached roughly at a
horizontal scale of 75 km or beyond, but it is worth recall-
ing that the maximum cell displacement over 1 h is 50 km in
this situation. For both thresholds, the FSSs of the FER with
various accumulation times are very close. The 90 % bias-
corrected and accelerated (BCa) bootstrap confidence inter-
vals (see Efron and Tibshirani, 1993) for each threshold and
each accumulation time overlap (not shown), meaning that
the differences between the FSS are not significant. Even so,
one can notice a slightly lower FSS for the FER accumu-
lated for 60 min with the 1 flash per minute threshold, mean-
ing that the highest FER values present more displacement
errors when accumulated longer. This displacement error is
expected to grow with the accumulation period, but periods
longer than 1 h were not tested here because that is the dura-
tion of the AROME-France data assimilation period.

This sensitivity study did not allow the identification of an
optimal accumulation period. This leads us to think that the
choice of the accumulation period of the flash extent is not of
great importance as long as it is centred on the analysis time.
Therefore, the accumulation period can be chosen by the user
depending on the available observations or the intended us-
age.

6 Discussion and conclusion

In preparation for the upcoming launch of the new generation
European geostationary satellites with LI on board, a cali-
bration between pseudo MTG-LI observations and simulated
cloud parameters was introduced in this study. This calibra-
tion was performed in order to find the best proxy variables
for an observation operator in the prospect of satellite LDA
in the new AROME-France 3D-EnVar assimilation scheme,
but possible applications could also include AROME-related
lightning diagnostics.

First, a set of proxy variables was selected based on their
performance to predict lightning as demonstrated in several
studies. Under the assumption that each proxy is an increas-
ing function of the FEA, empirical relationships between
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simulated proxies and FEA observations were established
climatologically by adjusting different regression models to
concatenated and sorted data from 44 d of the year 2018. It
means that the climatology of the FEA predicted with those
regression functions is set to the climatology of the observed
FEA, allowing their NWP background counterpart to be un-
biased as well, which is useful in a context of data assimila-
tion. The regression functions were used on 3 validation days
to compare the predicted FEA using the different proxies. It
was shown that the microphysical proxies were the most suc-
cessful at reproducing FEA areal coverage and amplitude. It
is consistent with the fact that satellite lightning detection in-
struments measure the light emitted by the flash and scattered
by the cloud, so the horizontal extension of the FEA matches
the cloud horizontal extension, defined by the presence of hy-
drometeors. On the other hand, the updrafts are localized in
the convective core of the cloud that presents a much lower
horizontal extension. It is rather more the integrating action
of those updrafts in forming the ice-phase precipitation that
matters more than considering any updraft.

It is however difficult to tell apart the different micro-
physical proxies because they all present very similar per-
formance in forecasting lightning, with FSSs very close to
each other. In the context of LDA, we recommend the use of
a microphysical proxy to build the observation operator, with
a preference for proxies relying on several specific contents,
IWP or F2 for instance. In a context of variational data as-
similation, the assimilation would be impossible in the case
of a completely cloud-free background because the gradient
of the microphysical-related observation operator would be
zero. Some work is in progress to overcome this issue, but an
observation operator based on several microphysical-specific
contents could increase the sensitivity to the observations
since it increases the chances to have a non-zero total mi-
crophysical content in the background.

In the context of 3D-EnVar LDA, a linearized version of
the observation operator is required. While the RF20 regres-
sion model is the one presenting the best performance, it is
not the simplest relationship to differentiate because it resem-
bles a flowchart rather than a continuous function. The cubic
polynomial regression, as the best compromise, exhibits per-
formances only slightly below this more complex model and
is still easily differentiable. In consequence, polynomial re-
gression is better suited for LDA and will likely be used in
future work. To build a LDA observation operator for an-
other NWP system, the calibration of the regression coeffi-
cients will have to be performed again with FEA observa-
tions and proxies simulated with this NWP system, but the
same method can be applied to process the data climatologi-
cally, i.e. selecting a sufficient amount of days to sample the
data, and concatenating and sorting them.

Secondly, it was shown that combining proxy variables
into multivariate models does not improve FEA prediction
overall, implying that adding dynamical variables is unnec-
essary to forecast FEA. Several proxy combinations were

tested, selected to avoid redundancy in the dataset, but none
of them presented better FSS than microphysical proxies
alone.

Thirdly, results from an existing lightning calibration from
the literature (McCaul et al., 2009) were compared to the
calibration here. Using a similar methodology to adjust re-
gression functions and to deduce the calibration parameters,
the predicted FEA for the validation days exhibits amplitudes
largely inferior to the observed one but with an areal cover-
age similar to what is obtained with the microphysical prox-
ies alone.

Finally, sensitivity experiments on the FEA accumulation
time were performed. The few differences among the regres-
sion functions implied that the modelled FER would likely
not differ much according to the accumulation time, mean-
ing that there is some flexibility in the accumulation time
choice, depending on the user’s preferences or operational
constraints. However, we recommend an accumulation pe-
riod shorter than 60 min to avoid too much displacement er-
rors of the modelled FEA compared to the observed ones.
Also, even though it was not shown in the article, an accumu-
lation period shorter than 5 min will probably not be enough
to gather enough lightning data to have a proper description
of the thundercloud’s position.
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